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Chapter 38

Studying NF-κB Signaling with Mathematical Models

Simon Mitchell, Rachel Tsui, and Alexander Hoffmann

Abstract

Mathematical modeling of NF-κB signaling can be employed to understand how the network of molecular 
interactions leads to signaling phenomena observed experimentally. Model construction is a challenging 
process; however, existing models can be utilized and can provide a great deal of insight quickly and inex-
pensively. The simulation of various inputs and the identification of potential therapeutic targets using the 
mathematical model are detailed here.
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1 Introduction

Mathematical models can be used as a virtual laboratory, to perform 
in silico experimentation and to replace, complement, and improve 
experimental approaches in the wet lab. The NF-κB signaling net-
work is complex, and understanding the individual components and 
interactions in isolation only provides limited progress towards the 
goal of understanding its functions and enabling effective clinical 
intervention. Combining knowledge of network components with 
knowledge of their interactions through simulations allows emer-
gent behavior to be predicted and explained in a rigorous manner.

There are many different modeling approaches and software 
packages available (including MATLAB, Mathematica, and 
COPASI); however, the principles used in constructing a model to 
ensure utility are consistent, regardless of the framework used. In 
this chapter we detail how a model of the NF-κB signaling net-
works can be constructed, validated, and utilized to gain the best 
insight from experimental studies and inform future experimenta-
tion. There is much knowledge to be gained from existing models, 
and constructing a new model should only be considered after 
attempting to utilize existing models. Therefore, in Section 3.2, a 
published model [1] is used to gain insight into the NF-κB signal-
ing network.
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2 Materials

 1. A computer with access to appropriate software (detailed 
below).

 2. Experimentally derived parameters, often based on extensive 
searches or expert understanding of the literature.

 3. Experimental or clinical findings, which the model is required 
to reproduce or account for.

3 Methods

Here we describe a computational approach to improve under-
standing of NF-κB signaling. The general approach to model con-
struction, validation, and application can be applied to any 
biological system; however, we illustrate this general approach with 
the specific steps to simulate NF-κB signaling (see Note 1).

 1. Define the question to be addressed by the model. Modeling can 
provide insight into a wide variety of biological questions. The 
type of question that the model is required to answer must be 
identified first as this informs the model-building process. For 
example, a model designed to investigate physiological scale 
processes such as the control of fever may not provide insight 
into the importance of dimerization of Rel proteins.

NF-κB signaling models [2] can provide insight into many 
of the important open questions in immune signaling. Some 
phenomena that can be investigated using such models are 
dose–response relationships [3, 4], dynamic control as revealed 
by time-course studies [1, 5, 6], the impact of cross talk [7, 8], 
analysis of sensitivities, and identification of points of control 
[9, 10], which may provide viable therapeutic targets. 
Questions beyond the scope of these models include the con-
trol of gene expression profiles, the physiological functions of 
cytokines, or the cellular decisions to divide or die.

When the required scope, detail, and type of model (see 
below steps 2–4) have been identified, and an appropriate 
model has been found or constructed, a fundamental question 
that can be addressed is whether the known molecular mecha-
nisms represented in the model are sufficient to account for 
cell biological or physiological level phenomena. When the 
answer is yes, the model can be used to explore the emergent 
system properties. When the answer is no, the model can 
direct experimentation to identify additional molecular mech-
anisms that render it sufficient.

 2. Define the required scope of the model. The scope of an appropri-
ate model is largely determined by the question of interest. 

3.1 Model 
Construction  
(see Notes 2 and 3)

Simon Mitchell et al.



649

The scope determines what the input(s) and output(s) of the 
model are. Inputs and outputs are generally measureable quan-
tities of metabolites (“molecular species”). All molecular spe-
cies upstream of the input and downstream of the output are 
outside the scope of the model. The scope of a model could 
extend to a whole cell or organism or be restricted to small 
regulatory circuits networks. While it is tempting to choose an 
ambitious scope, this can lead to a poor model that is insuffi-
ciently determined by insufficient data. It is best practice to 
ensure that the initial scope of modeling work is the minimal 
required to provide insight and only expand the model’s scope 
once initial models have been shown to be predictive. The 
practice of generating preliminary data before embarking on 
extensive work has been common in wet lab studies and 
remains important with computational approaches.

NF-κB signaling is a highly complex biological system with 
a wide variety of potentially important cross-talking pathways. 
To simulate every system that could potentially control NF-κB, 
via the IKK hub, is unfeasible as this would extend to a large 
proportion of cellular pathways. As a result, IKK activity profiles 
were chosen as inputs to the NF-κB simulation. Upstream sig-
naling from tumor necrosis factor (TNF) receptor-mediated 
IKK activation was not included in initial models was later added 
as an additional regulatory module [4], thereby expanding the 
scope of the resulting model. NF-κB levels were identified as 
appropriate output from the model as this was highly informa-
tive without introducing the challenges associated with simu-
lating the extensive NF-κB-induced gene expression profiles.

 3. Define the model detail required. Within the identified scope of 
the model, the level of detail included must be decided; this 
can be considered the “graininess” of the model. This is a 
measure of how closely the underlying biological mechanisms 
identify to the mathematical representation constructed. It is 
often necessary to group a multiple-step process into a single- 
compound reaction. This is straightforward when one reac-
tion has the highest control over the rate (the rate-limiting 
step) in all relevant conditions.

Components required to recreate the behavior being 
inves tigated, and answer the question of interest, should be 
included without adding poorly understood components that 
add unnecessary complexity or reliance on under-determined 
parameters. The key components of NF-κB signaling were 
identified as:
 (a) NF-κB and its localization
 (b) Multiple IκB dimers
 (c) IKK activity curves
 (d) mRNA levels for each protein

Modeling of NF-κB Signaling
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The scope chosen permits detailed investigation into the 
effect of temporal features of IKK activity on NF-κB acti vation. 
By including mRNAs we were able to investigate transcriptional 
regulation and utilize the large amount of mRNA data for model 
parameterization and validation. The multiple monomers, which 
combine to form the family of NF-κB dimers, were not included 
in initial models, as understanding general temporal NF-κB pro-
files was the priority.

IKK was modeled as an enzyme that degrades IκB directly, 
whereas the underlying process actually involves ubiquitination 
and proteasomal degradation [11]. By assu ming that IKK-
mediated phosphorylation of IκB is the rate-limiting step of IκB 
degradation, the intricate ubiquitin-dependent proteasomal 
degradation pathway could be represented by a single 
reaction.

 4. Decide on the type of model required. We distinguish here 
between three types of mechanistic models. (We do not con-
sider statistical models here.) (1) Logical modeling does not 
rely on kinetic parameters and may be most appropriate if the 
system is poorly characterized, but can provide insights about 
steady-state control. (2) A differential equation-based 
approach will make best use of kinetic parameter information 
and can provide insights on the dynamic time evolution of 
quantitative concentrations and fluxes. (3) A stochastic model 
accounts for the stochastic nature of individual molecular reac-
tions and is the most detailed. While the primary consider-
ation in choosing the appropriate model strategy is the 
biological question of interest, the trade-off between the need 
for high-quality, highly detailed data and accuracy of output 
contributes to choosing the right modeling strategy [12].

The outputs from differential equation-based models are 
deterministic representations of a system’s average behavior. This 
deterministic result may differ from any single small-scale (e.g., 
single cell) experiment or simulation due to the effect of the 
noise present in all biological systems. This limitation of deter-
ministic modeling is usually unimportant as most commonly 
used experimental techniques also produce data of this type. For 
simulations of systems with small numbers of molecules, stochas-
tic modeling techniques are most appropriate as they capture the 
importance of noise in these systems. Recent studies of newly 
divided cells (sibling analysis) have shown that cell-to-cell vari-
ability is mainly attributed to extrinsic variability such as initial 
conditions and rate constants rather than intrinsic noise [13]. 
This type of cell-to-cell variability as a result of noise can be 
incorporated into an ordinary differential equation (ODE) mod-
eling framework through sampling initial conditions.

For modeling of NF-κB signaling, an ODE-based approach 
is possible due to many of the individual components of the net-
works being well characterized and a number of relevant knock-
out experimental systems being available for model validation.

Simon Mitchell et al.
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 5. Investigate if an appropriate model already exists. This can be 
done through a standard literature search or through querying 
a repository of models such as the BioModels Database (www.
Biomodels.net) [14]. If an appropriate model exists (i.e., one 
that answers the question of interest), then this should be uti-
lized and Section 3.2 details this process. For investigation of 
the temporal control of NF-κB activation provided by the iso-
forms of IκBs, models from our laboratory are appropriate and 
employed in Section 3.2.

 6. Identify data available for model construction. For the construc-
tion of a new model, its quality, and therefore the quality of the 
insight it provides, improves with the amount and quality of 
data available. Data useful for modeling can fall into two catego-
ries: (a) physicochemical results, which are used in model param-
eterization, and (b) emergent properties/physiological results, 
which are used in parameter fitting and model validation.

There are multiple sources of parameters for modeling 
including existing literature, databases of reaction kinetics 
(such as SABIO-RK [15]), and quantitative experimental 
techniques performed in the wet lab.

If more high-quality data than expected are available, then 
the scope and graininess of the proposed model (steps 3 and 
4) can be increased to make best use of these data. Similarly if 
the data required to parameterize a model of the scope/graini-
ness desired are not found, then these should be decreased. 
Constructing a smaller, good quality model that can later be 
expanded is preferable to attempting an over ambitious simula-
tion that may not be feasible.

For NF-κB signaling models, a wide variety of experimen-
tally derived parameters were identified. Protein and mRNA 
 half-lives, steady-state concentrations, and binding affinities were 
all measured for many of the interactions to be modeled. NF-κB 
activity time courses in IκB knockout systems were generated for 
the purpose of parameter fitting and model validation.

 7. Construct a network diagram of the system. A network diagram of 
the system being modeled is a useful first step for model con-
struction. An accurate network diagram represents a consensus 
of the current understanding and ensures that the mathematical 
formulation being constructed closely represents the underlying 
biochemical interactions. Care should be taken that each metab-
olite and reaction to be modeled is represented by a single shape 
or line in the diagram. Identifying diagrammatic entities with 
mathematical entities (equations or terms within equations) 
allows the model to be used as a protocol for model construc-
tion. While any representation that accurately represents both 
the biological and mathematical systems is appropriate, Systems 
Biology Graphical Notation (SBGN) [16] provides a standard-
ized visual language that may aid communication.

Modeling of NF-κB Signaling
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A diagrammatic representation of the NF-κB signaling 
network is given in Fig. 1. This representation of the biochem-
ical network was used to construct the computational model 
we described in 2002 [3].

 8. Identify an appropriate software framework. A number of dif-
ferent computational environments and software packages 
exist for model construction and analysis including MATLAB, 
COPASI [17], Berkeley Madonna [18], and the SimBiology 
MATLAB toolbox. Choosing appropriate tools is key to 
 efficient model construction and maximizing the models util-
ity and reusability. Broadly speaking, constructing a model 

Fig. 1 Diagram representing NF-κB signaling used in the creation of computational simulations. Each colored 
shape is a metabolite (also known as “molecular species”) in the system and an ODE in the mathematical 
representation. Each arrow is a reaction in the system, mathematically represented by terms in the ODEs of 
metabolites involved in the reaction. The inputs to the system are IKK activation curves, and the outputs are 
concentrations of free NF-κB, which is capable of binding DNA

Simon Mitchell et al.
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directly in a programming language such as MATLAB, C++, 
or Python provides the most versatility for advanced analysis 
and construction of models that do not conform to common 
biochemical behavior. Constructing models in such an envi-
ronment requires more specialized technical expertise and can 
restrict the models’ utility for those without specific program-
ming knowledge. COPASI and the SimBiology MATLAB 
toolbox provide a more accessible model-building environ-
ment, while also providing some checks to ensure that the 
model constructed is mathematically sensible and biochemi-
cally valid. These environments allow those without program-
ming experience to construct and utilize models, but may 
restrict the model and its analysis to commonly used methods. 
Berkeley Madonna provides a powerful ODE solving graphi-
cal user interface without specifically limiting the system to 
biochemical simulations.

MATLAB was chosen as the environment for modeling of 
NF-κB signaling due to the complexity of some of the behavior 
and inputs required to recreate accurately experimentally 
observed NF-κB responses. There are well-characterized delays 
in transcriptional activation of IκBs in response to NF-κB activa-
tion; some modeling environments do not support explicit 
delays, but these can be implemented in MATLAB. To make 
best use of the experimentally derived IKK activity time courses 
as inputs to the model, interpolated input curves were required, 
and this was most easily implemented in MATLAB. To ensure 
that the complex model constructed for NF-κB signaling was 
accessible to those without programming experience, a web-
based version of the model, which provided an intuitive inter-
face for performing simulations, was published ( http://
signalingsystems.org/webmodel/).

 9. Construct the mathematical representation. Using the previ-
ously constructed network diagram as a guide, the mathematical 
representation of the biochemical network should now be 
input into the software. For ODE- based modeling, as used for 
NF-κB signaling, this requires construction of an ODE for 
each metabolite in the system. The terms of each metabolite’s 
ODE represent the reactions that alter the concentration of 
that metabolite.

For example, the terms of the ODE representing the 
change in concentration of free IκB as a result of its binding to 
NF-κB are given in Fig. 2. Mass action kinetics were used for 
most reactions in the NF-κB signaling network and should be 
used unless there are experimentally derived data suggesting a 
more intricate mechanism. Terms should be added to the 
appropriate ODE for each reaction it is involved in using the 
parameters identified.

Modeling of NF-κB Signaling
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 10. Estimate any parameters that were not experimentally determined.
The lack of accurate, experimentally derived, kinetic parame-
ters is a common challenge for the construction of computa-
tional models. Any parameter that could not be identified 
from a search of the literature, or from a database, or through 
experimentation, must be estimated or derived.

The most basic form of parameter deduction is used when 
there are parameters available for all but one of the reactions 
in which a metabolite partakes. For example, if a metabolite’s 
half-life and steady-state concentration are known, then the 
expression rate constant can be deduced. This is done by set-
ting the rate of change to zero to represent the steady state, 
substituting the known parameters, and solving the equation 
below for the remaining unknown parameter:

d X
d

X
[ ]

= - [ ] + =
t

k kdeg exp 0

Some parameters can be estimated using knowledge of 
similar systems; for example, parameters from homologous 
proteins can often provide a guide for parameter estimation.

If some parameters still remain unidentified, then they 
must be fitted to their most likely value. Many parameters can 
be constrained within ranges using knowledge from similar 
systems and common biochemical limits.

If some parameters still remain unknown or broadly con-
strained, then a parameter-fitting methodology should be 
employed to find their most appropriate values. There exist a 
number of algorithms such as Hooke and Jeeves, particle 
swarm, gradient descent, etc. Many of these algorithms are 
incorporated into software packages such as COPASI [19].

Despite being complex, the NF-κB signaling model was 
already highly constrained by previously published parameters. 
Multiple IκB isoform knockout cell lines were used to provide 

Fig. 2 A diagrammatic representation of a complex binding reaction within the 
NF-κB signaling system. The reaction is reversible, permitting binding and 
release of reaction’s. An ODE for free IκB was written using the diagram as a 
guide; binding depletes free IκB, while decomplexation increases free IκB. The 
MATLAB code representation of the ODE is given

Simon Mitchell et al.
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data for multiple conditions that the model could be fitted to; 
this ensured that the parameters chosen were valid in a variety 
of conditions [3]. A number of fitting techniques were trialed 
to assess which gave the best fit when measured as standard 
deviation from the experimental results. A random search 
method was found to perform well, and the parameters identi-
fied by this search were subsequently adjusted to improve the 
qualitative fit regarding frequency and amplitude of oscilla-
tions. Standard fitting methods, based around a distance met-
ric (such as root mean square), do not perform well with the 
NF-κB signaling simulation. The NF-κB response to stimuli is 
often highly dynamic with some oscillatory behavior; common 
fitting algorithms can fail to find good fits that are slightly 
offset in initial time or frequency of oscillation. Feature-based 
fitting techniques have been found to perform well for the 
NF-κB signaling network [4, 8]. These methods prioritize fea-
tures such as a maximal peak at a specified time point that 
matches experimental observations.

Once a model has been constructed that closely matches experi-
mental data, it can be used as a tool to provide insight, to make 
testable predictions, and to target better experimental studies.

Here we demonstrate how the model of Werner et al. [1] can 
be used to make predictions on how temporally different IKK 
activity profiles in various genotypes affect the stimulus-specific 
gene expression program:

 1. Select the TNF input curve, by choosing curve 1, from the 
array of defined input curves. These input values have been 
quantitated and normalized from IKK immunoprecipitation 
kinase assays.
ikk_curves      = {'TNFp15' 'TNFc' 'LPSp45'};
ikk_curve_num   = 1;

 2. Run the simulation.
 3. Select the lipopolysaccharide (LPS) input curve (curve 3) from 

the array.
ikk_curve_num   = 3;

 4. Run the simulation and compare the results.

The input curves chosen using the above method can be seen 
in Fig. 3a; the resulting simulated NF-κB profile can be seen in 
Fig. 3b. This predicted response could inform experimental proto-
col to ensure that the correct time points are chosen to observe the 
dynamics. The simulated response prediction was closely matched 
in mouse embryonic fibroblasts (MEFs) exposed to TNF and LPS 
by Werner et al. [1].

3.2 Utilizing Models

3.2.1 Predicting 
Response to Stimuli

Modeling of NF-κB Signaling
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The simulation can identify potential therapeutic targets for most 
effectively controlling the systems response to stimuli. A good 
therapeutic target is able to make large predictable changes to the 
system with only a small perturbation applied. A target with these 
properties leads to lower drug dosages and fewer side effects.  
The effect of perturbations that simulate therapeutic intervention 
can be easily tested in the simulation by adjusting parameters and 
measuring the output:

 1. Specify the amount you wish to vary the parameters by in a 
variable. For an order of magnitude variation in a parameter,
delta = 10;

 2. Multiply each parameter you wish to investigate by the previ-
ously defined variable. Often multiple parameters are changed 
simultaneously as the same process affects various isoforms. To 
change the rate of IKK-mediated degradation of all IκB 
isoforms,
params(78)=params(78)*(delta);
params(79)=params(79)*(delta);
params(80)=params(80)*(delta);

 3. Run the simulation with the increased parameter; this will also 
plot the NF-κB response.

 4. Divide each parameter by the perturbation variable.
params(78)=params(78)/(delta);
params(79)=params(79)/(delta);
params(80)=params(80)/(delta);

 5. Run the simulation again to plot the response with the 
decreased parameter.

3.2.2 Investigating 
Sensitivity to Identify 
Therapeutic Targets

Fig. 3 (a) IKK activity input curves for TNF and LPS, quantitated and normalized 
from IKK immunoprecipitation kinase assays. (b) The simulated free NF-κB 
resulting from each input curve

Simon Mitchell et al.
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Repeating this process for three sets of parameters represent-
ing the basal and IKK-mediated rate of IκB-NF-κB degradation 
and the rate of free IκB degradation gives the plots in Fig. 4.

As expected, increasing the rate of IKK-mediated degradation 
has a strong effect on the response of NF-κB (Fig. 4a). Also as 
expected, increased IKK-mediated IκB degradation results in an 
increase in free NF-κB. Interestingly, the amplitude of the response 
is not only reduced, but the time at which the response is maximal 
is shifted later with a lower degradation rate. As a result of the 
strong control provided by the rate of IKK activity, this process has 
been highly studied.

Fig. 4 Simulated NF-κB in response to LPS input curves with reaction rates increased an order of magnitude 
above and below basal for (a) IKK-mediated IκB degradation, (b) IKK-independent NF-κB-bound IκB degrada-
tion, and (c) free IκB degradation

Modeling of NF-κB Signaling
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Figure 4b shows the basal (not IKK mediated) rate of NF-κB- 
IκB degradation. These parameters had no effect on the simulated 
NF-κB response. Therefore, attempting to use this process as a 
therapeutic intervention is unlikely to be successful.

Figure 4c shows perturbation of free IκB degradation; this was 
found to have a strong effect on the response. Decreasing free IκB 
degradation rate resulted in a slightly decreased peak of NF-κB 
response, but also a delayed response. The peak NF-κB response 
was found to be narrower and returned to lower levels more quickly 
when this parameter was decreased. Free IκB degradation rate has 
been much less actively studied, as it is a less intuitive point of 
intervention; however, through simulations we are able to identify 
this reaction as a point of strong control that should be investi-
gated further.

The simulation of NF-κB signaling is a detailed representation of 
the intracellular environment; however, to draw conclusions rele-
vant at a physiological level, then cell-to-cell variability must be 
considered. Here we create a simple physiologically relevant model 
by repeated simulations with variable delays applied to the output:

 1. Define a mean and variance for the delay.
meanValue=65;
variance=1200;

 2. Calculate μ and σ for a log-normal distribution.
mu = log((meanValue^2)/sqrt(variance+meanValue^2));
sigma = sqrt(log(variance/(meanValue^2)+1));

 3. Define the range of repeated simulations you wish to run. 
Here we use a logarithmic range
logspaceVals=logspace(0,2,6);

 4. For each value chosen, run the simulation that number of 
times. Also create a vector consisting of a concatenation of the 
basal NF-κB level until the delayed time point, the simulation 
output, and the basal NF-κB level for the remainder of the 
vector. Store this vector in a variable and plot the average of 
these vectors to get the population level dynamics. Plot each 
of these averages on the same figure.
for i=logspaceVals

for j=1:i
delay=floor(lognrnd(mu,sigma));
plot(time+(delay),nfkb_timecourse);
concatVector=[ones(delay,1) …
*nfkb_timecourse(1,1);…
 nfkb_timecourse;…

3.2.3 Comparing 
Single-Cell Results 
with Population Level 
Results

Simon Mitchell et al.



659

 ones(500­(SIM_TIME…
 +delay),1)*nfkb_timecourse(1,1)];
averageMatrix=[averageMatrix,…
concatVector];

end
figure(meanCurve);
hold on;
meanPlot=mean(averageMatrix,2);
plot(meanPlot);

end
Figure 5 demonstrates that the average behavior of multiple 

single-cell simulations tends toward a less dynamic time course. 
This is in agreement with experimental results and represents a 
simple way of making the mechanistic cellular-scale model appli-
cable at larger scales.

Fig. 5 NF-κB in response to LPS in repeated simulations sampled with a log- 
normally distributed delay. Top: Each curve represents a single simulation. 
Bottom: Average NF-κB concentration of multiple individual simulations

Modeling of NF-κB Signaling
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4 Notes

 1. The web-based NF-κB signaling model available at http://
signalingsystems.org/webmodel/ can provide a convenient 
way to produce preliminary results. Figures can be generated 
without any modeling expertise and presented to modeling 
experts in order to motivate more in-depth investigations or 
model expansion.

 2. While the goal is generally to produce models that reproduce 
experimental findings and generate predictions that extend the 
experimental work, it is important to note that an important 
function of the model is to provide a sufficiency test. Akin to 
the in vitro reconstituted biochemical systems that led to the 
discovery and characterization of a multitude of replication 
and transcription or translation factors and mechanisms, math-
ematical models of signaling allow one to ask whether the 
known factors and molecular mechanisms are sufficient to 
account for cell biological or physiological phenomena. In other 
words, the model determines whether mechanistic knowledge 
“adds up.” If it does not, the model can direct the experimen-
tal discovery and characterization of the missing factor or 
mechanism. This utility of modeling is often overlooked in the 
field of purely theoretical computational biology, but is often 
a major contribution in work that combines both experimen-
tal and modeling approaches.

 3. To integrate computational studies into an interdisciplinary 
team effort requires careful consideration of phasing the dif-
ferent aspects of a project. The ideal situation, with model 
building and experimentation being conducted simultane-
ously, and iteratively informing each other, is often difficult to 
realize successfully within the time frame available for projects 
and relies on very close collaboration between researchers 
from different backgrounds.

Modeling work undertaken prior to wet lab work can be a 
powerful tool for making predictions and generating hypoth-
eses. This type of exploratory modeling produces the most 
exciting findings, but it can subsequently take many years for 
the experimental work validating the findings to be completed. 
Satisfying the needs of computational biologists may require 
the publication of exclusively computational studies, though 
they often lack the impact of studies combining theoretical 
and experimental work.

The alternative approach is to perform modeling work  
after key experimental results have been obtained. The model 
can then be used to provide mechanistic insights about the 
experimental findings and direct additional, highly quantitative 

Simon Mitchell et al.
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