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SUMMARY
Individual cell sensing of external cues has evolved through the temporal patterns in signaling. Since nuclear
factor kB (NF-kB) signaling dynamics have been examined using a single subunit, RelA, it remains unclear
whether more information might be transmitted via other subunits. Using NF-kB double-knockin reporter
mice, we monitored both canonical NF-kB subunits, RelA and c-Rel, simultaneously in single macrophages
by quantitative live-cell imaging. We show that signaling features of RelA and c-Rel convey more information
about the stimuli than those of either subunit alone. Machine learning is used to predict the ligand identity
accurately based on RelA and c-Rel signaling features without considering the co-activated factors. Ligand
discrimination is achieved through selective non-redundancy of RelA and c-Rel signaling dynamics, as well
as their temporal coordination. These results suggest a potential role of c-Rel in fine-tuning immune re-
sponses and highlight the need for approaches that will elucidate the mechanisms regulating NF-kB subunit
specificity.
INTRODUCTION

Individual cells make irreversible fate decisions based on infor-

mation received through the milieu of hormones, cytokines, me-

tabolites, and biochemical input from direct cell-cell contacts.

The information content and the accuracy of single cells inter-

preting the input have been a topic of fundamental importance.1

While early studies of snapshot measurements reported the

limited information capacity of individual single cells,2 recent

studies have shown various mechanisms of augmented informa-

tion processing capacity, including combined signaling of two

pathways,3 time integration of signaling,4 and dynamic response

patterns.5–8 For a ubiquitous immune transcriptional regulator

such as nuclear factor kB (NF-kB), it is especially important to

understand the information coding capacity, because of its

wide-ranging involvement in numerous cell decision-making

processes, and the broad implications.9–14

NF-kB proteins mediate much of the canonical signaling

directly downstream of a wide range of microenvironmental

cues in immune cell communications.13,15–17 Foundational

studies have shown how NF-kB signaling dynamics can regulate

gene expression in response to extracellular signals, mainly us-

ing engineered cell lines expressing a transgene that encodes a

fluorescent fusion of the RelA (also known as p65) subunit of

NF-kB.18–29 Recent advances in experimental approaches

have provided a more functionally relevant characterization of

NF-kB dynamics in primary cells in terms of ‘‘signaling codons,’’
This is an open access article under the CC BY-N
i.e., dynamical features of signaling that convey information

about ligand identity, using fluorescent knockin (KI) reporter

mouse macrophages.7

However, existing data are limited to the RelA subunit of the

NF-kB/Rel family, whereas both RelA and another transcription-

ally active subunit, c-Rel, produce heterodimers and homo-

dimers that mediate the canonical pathway activities. Although

both NF-kB subunits share upstream signaling cascades and

have similar domains and structures,30 their biological functions

have diverged significantly. The most striking difference is that

the RelA knockout (KO) is embryonic lethal due tomassive tumor

necrosis factor alpha (TNF-a)-induced liver apoptosis,31,32

whereas c-Rel deficiency leads to limited defects in T and B

cells.33–35 On the other hand, the induction of inflammatory

gene expression was largely preserved in fibroblasts andmacro-

phages from Rel (encoding c-Rel) KO mice.36,37 Nonetheless,

the results of conventional KO experiments are subject to

compensation by family members such as RelA and are limited

to the chosen assays, time points, cell types, and technical chal-

lenges. Therefore, we sought to understand if and how RelA and

c-Rel signaling activities are coordinated in individual cells using

quantitative live-cell analyses.

Macrophages are innate immune cells that respond to envi-

ronmental signals such as foreign agents or in vivo damage prod-

ucts, thereby serving as a model cell context where NF-kB

signaling can convey biological information for functional

responses.38 While much has been learned about chromatin
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regulatory mechanisms and the impact of tissue-specific niches

in macrophage biology, predictive quantitative models are

necessary to understand how they mount proper functional re-

sponses to a wide variety of pathogen-associated molecular

patterns (PAMPs).

Here, we used the recently developed double-KI (DKI) reporter

mice39 and assessed how primary macrophages interpret

diverse pathogenic and host signals through quantitative fea-

tures of RelA and c-Rel. We found that c-Rel augments the ligand

discrimination capability of macrophages beyond what is

possible through RelA alone. Mathematical modeling suggested

that the biochemical characteristics of RelA and c-Rel interac-

tions account for their distinct dynamics and their coordination

in individual macrophage responses. Our quantitative ap-

proaches provide an unprecedented insight about how macro-

phages exploit coordinated or independent actions of RelA

and c-Rel signaling features to discriminate ligand identity.

RESULTS

Simultaneous quantitative imaging of NF-kB RelA and c-
Rel in live primary macrophages captures the subunit-
specific signaling features
To monitor the endogenous activity of both subunits of NF-kB in

primary macrophages, we isolated bone-marrow-derived macro-

phages (BMDMs) fromour NF-kBDKI reportermice, homozygous

for mEGFP-RelA and for mScarlet-c-Rel.39 The DKI mice allow

simultaneous visualization of endogenous RelA and c-Rel in the

same cell. For a systematic profiling of the ligand-specific NF-

kBactivation dynamics, BMDMswere stimulatedwith six different

Toll-like receptor (TLR) ligands (representing various PAMPs)

alongwith a pro-inflammatory cytokine, TNF-a. Cells were stained

with a far-red, live-cell dye, SPY650-DNA, for nuclear segmenta-

tion, which allows us to perform long-term live imaging without

phototoxicity. We then carried out quantitative long-term live-

cell imaging of DKI mouse BMDMs using our custom time-lapse

microscopy and automated image analysis workflow (Figures 1

and S1), and single-cell RelA and c-Rel signaling was assessed

by the nuclear:total ratio of their mean fluorescence intensities.

The single-cell trajectories for ligand-activated RelA and c-Rel

responses in primary BMDMs showed noticeable ligand-specific

patterns for bothsubunits,withc-Rel often reachinghighernuclear

translocation peaks (Figure 2). These patterns contrast with the

previously published data from immortalized macrophages

(RAW267.4 cells stably expressing the fluorescent fusion RelA or

c-Rel proteins).40 Theprimarymacrophagecells showedgenerally

stronger and more sustained responses with clearly ligand-spe-

cific response times (Figure 2A), compared to the immortalized

macrophages stimulated with the same ligand doses.40 For

example, the immortalized macrophages had little or no NF-kB

activationafter flagellin,CpG,orTNF-a treatment,whereas thepri-

mary BMDMs show activation of both RelA and c-Rel in response

to the same concentrations of stimulating ligands. Overall, NF-kB

signaling responses in BMDMs were robust, with temporal pat-

terns that appear to reflect ligand specificity.

Since co-imaging of RelA and c-Rel in live cells has no prece-

dent, immediate attention was given to a careful comparison of

the single-cell signaling trajectories for RelA and c-Rel. Despite
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the different phenotypes of genetic KOs, the two subunits are

bothmediators of canonical NF-kB responses.We askedwhether

c-Rel follows similar signaling dynamics to RelA after activation by

the ligands in termsof the following quantitative features extracted

from the single-cell trajectories: the peak amplitude, the time

to first peak, the area under the curve (AUC), the duration of

signaling, the slope of the first rise, the post-peak attenuation

rate, and, for oscillatory trajectories, the number of periodic cycles

and the period of oscillation (Figure 2B).

For all the TLR ligands, the amplitude of c-Rel was higher than

that of RelA (in the nuclear/total ratio scale, which allows com-

parison of the two imaging channels), consistent with data that

a substantial portion of RelA is trapped by the IkBsome complex

and does not respond to canonical inhibitor of kappaB kinase

(IKK) activation.41 However, in response to the host cytokine

TNF-a, RelA showed a higher amplitude than c-Rel. This may

reflect an insufficient response by the c-Rel-binding inhibitor of

kappaB (IkB)ε to the transient kinase activity of IKK that is

induced by TNF-a.27,42 For all the ligands, the time to peak of

c-Rel was longer in comparison to RelA, which is related to the

slope of the first rise of RelA being always greater than that of

c-Rel. The other quantitative features (e.g., AUC, attenuation

rate) showed ligand-specific differences between the two sub-

units, which suggests that these signaling features can encode

some ligand-specific information (Figure 2B). A correlation anal-

ysis showed that some signaling features of RelA and c-Rel were

correlated in spite of non-negligible outliers (e.g., in peak ampli-

tude and duration), which is expected from the shared upstream

activation via IKK.43 However, other signaling features had low

correlations (e.g., slope of first rise and attenuation rate) (Fig-

ure S2), raising the possibility of additional information content

in c-Rel signaling that macrophages could exploit.

The correlation of signaling features between RelA and
c-Rel depends on the activating ligand
Having found that non-redundant c-Rel signaling dynamics may

transmit additional information for encoding the identity of the

activating ligands, we wondered what features of c-Rel signaling

might be relevant. To address this question, we dissected the

quantitative relationships of RelA and c-Rel signaling in more

depth. Taking advantage of the co-signaling data from the

same single cells, we calculated the correlation coefficients be-

tween RelA and c-Rel signaling features for each ligand time se-

ries dataset. The correlations observed within each ligand time

series dataset differed from their general correlations found

across all the ligand stimulation datasets, termed ‘‘pan-ligand’’

correlations (Figures 2C and S2). For example, the time to

peak and duration of the lipopolysaccharide (LPS) time series

dataset no longer showed a strong correlation between RelA

and c-Rel. The duration of RelA and c-Rel also had a much lower

correlation for R848 andCpG compared to the overall pan-ligand

correlation across all the ligands.

Cross-correlations of signaling features reveal the
sources of RelA and c-Rel divergence in encoding the
ligand specificity
The previous result led us to expand and calculate the correlation

coefficients for all possible pairs of individual RelA and c-Rel



Figure 1. Schematic workflow for simultaneous live-cell imaging and analysis of both RelA and c-Rel NF-kB subunits in primary BMDM cells

following stimulation with TLR ligands and TNF-a
(A) A simplified schematic of ligand recognition by different TLRs and TNF receptors (TNFRs), initiating downstream responses where NF-kB is a primary signal-

encoding effector. RelA and c-Rel are the two canonical subunits of the NF-kB family that mediate TLR and TNF responses.

(B) Primary BMDM cells were prepared using a standardized isolation and differentiation protocol from double-knockin endogenous NF-kB reporter mice. Both

RelA and c-Rel are fluorescently labeled at their respective endogenous loci in themice. In addition, double homozygotes are used to ensure complete labeling of

the endogenous proteins. A panel of TLR ligands and a pro-inflammatory cytokine, TNF-a, were used to stimulate primary BMDMs in this study. Time lapse live-

cell microscopy data were obtained and subject to quantification and analysis workflow for the characterization of signaling dynamics of the two NF-kB subunits.
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signaling features, which can be displayed in a ‘‘correlation ma-

trix’’ for each dataset. The correlation matrix is thus an exhaus-

tive overview of inter-relationships between signaling features,

computed from interrogating the single-cell time series dataset,

for a quick identification of signaling features that tend to be

linked to each other and those which appear to behave indepen-

dently. Using the total dataset for all seven ligands, we con-

structed a pan-ligand correlation matrix (Figure 3A). The pan-

ligand correlation matrix represents the generic behavior of

RelA and c-Rel signaling features that is not specific to any

ligands. This was to serve as a baseline for the ligand-selective

correlation matrices that were computed separately using the

dataset for each ligand (Figure 3B).

In the pan-ligand correlation matrix, the peak amplitudes of

RelA and c-Rel were highly correlated (0.78; Figure 3A), which

means that high RelA peaks were followed by high c-Rel peaks
in individual cells (RelA nuclear translocation was always faster

than c-Rel; Figures 2B and S2). Moreover, within the cross-cor-

relation rectangle of the pan-ligand matrix, several diagonal

values (relating the same quantitative features for the two sub-

units) were generally high. This probably reflects the extent of

a shared upstream IKK signaling cascade affecting both NF-kB

subunits.38,44 Some values off the diagonal were interesting,

including the strong correlation (0.68) between the peak ampli-

tude of c-Rel and the AUC of RelA. Along this vein, the attenua-

tion rate of RelA was lower (which promotes a more sustained

RelA signaling) when the c-Rel amplitude or AUC was higher

(negative correlations �0.36 and �0.35; Figure 3A).

The correlation matrices generated from individual ligand da-

tasets showed interesting deviations from the pan-ligand matrix.

We found that the ligand-specific correlation coefficients

(diverging by at least 0.45 in absolute values from the pan-ligand
Cell Reports 43, 113940, March 26, 2024 3
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Figure 2. Quantitative imaging of RelA and c-Rel in live macrophages captures the subunit-specific signaling features for different ligands

(A) Primary BMDMcells (n = 131 for LPS, n = 112 for Flagellin, n = 118 for CpG, n = 140 for poly(I:C), n = 96 for R848, n = 109 for Pam3CSK4, and n = 109 for TNF-a)

from the young green-red double-knockin reporter mice (9 weeks of age, male) were plated in a fibronectin-coated, glass-bottom 8-well imaging slide. Cells

were stained with the nuclear dye SPY650-DNA 1 h before the start of imaging and treated with optimum stimulatory concentrations of six TLR ligands along with

TNF-a at t = 0. Three fluorescent channels were acquired at 7min intervals formore than 12 h. The images were processed using custom-writtenMATLAB scripts.

The individual rows in the heatmap show single-cell trajectories of the nuclear-to-total mean intensity ratio of RelA (left) and c-Rel (right) for each ligand indicated

on the right. The data are representative of three individual biological replicates (using independent BMDM batches from different mice on different days).

(B) Comparison of six signaling features between RelA and c-Rel signal for the data in (A). *p < 0.05, **p < 0.01, and ***p < 0.001 from Mann-Whitney U-test.

(C) The correlation of signaling features between RelA and c-Rel depends on the activating ligand. The heatmap displays the Pearson correlation coefficients

between RelA and c-Rel signaling features extracted from time series data for each ligand. Each column is from the indicated ligand. The individual correlation

coefficient values are shown within each cell, and the asterisk (*) denotes the statistical significance, where *p < 0.05, **p < 0.001, and ***p < 0.0001. Data are

representative of three independent biological replicates (using independent BMDM batches from different mice on different days).
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counterparts) have remarkably distinct occurrence patterns

across the ligands (Figure 3B, marked with green boxes). For

example, the time to peak and the duration of RelA and c-Rel

signaling are strongly correlated in general (Figure 3A) but

much less so in LPS-induced dynamics (Figure 3B, LPS matrix,

green boxes). The durations of RelA and c-Rel signaling were

even less correlated in the CpG single-cell co-imaging data.

For Pam3CSK4, the c-Rel duration was no longer negatively

correlated to the number of RelA cycles, in contrast to the pan-

ligand. Unlike PAMPs, TNF-a data produced a correlation matrix

with only weak cross-correlations between RelA and c-Rel fea-

tures (Figure 3B, TNF-a matrix). The amplitude of the first c-Rel

peak had no effect on the AUC of RelA signaling for TNF-a,

whereas they were correlated for most PAMPs (Figure 3B,

TNF-a matrix, green boxes, compared to their counterparts in

other matrices).

Interestingly, these analyses identified two outlier ligands with

opposite properties among the PAMPs. Flagellin, a bacterial

PAMP sensed by the TLR5/Myd88 on the cell surface, had the

largest number of deviations in the correlation matrix from the

pan-ligand (Figure 3B, flagellin matrix, green boxes). On the other

hand, poly(I:C), a viral PAMP sensed by TLR3/TRIF in the endo-

some, is the only ligand with no large deviations in its correlation

matrix from the pan-ligand matrix, which suggests that NF-kB

signaling dynamics induced by this ligand embody the generic

pan-ligand pattern of RelA and c-Rel relations.

A close look at the matrices also indicated that the duration of

c-Rel is often involved in the ligand-specific divergence from the

pan-ligand correlation matrix (Figure 3B, green boxes in the

matrices of LPS, flagellin, CpG, R848, and Pam3CSK). These re-

lations of c-Rel with RelA signaling features are gained, lost, or

even switched between positive and negative correlations for

different ligands. For example, flagellin had three correlations

involving the duration of c-Rel reversed from the pan-ligand (Fig-

ure 3B, flagellin matrix, green boxes in a horizontal row from

‘‘c-Rel duration’’ on the y axis, compared to their counterparts

in Figure 3A). Altogether, the duration of c-Rel had a great impact

on shaping the ligand-specific cross-correlation of RelA and c-Rel

signaling features, whichwill be important later in ligandprediction

accuracy of machine learning (ML) models (Table S1).

Ligand discrimination is more precise with signaling
features of RelA and c-Rel in comparison to either
subunit alone
It was recently shown that distinct signaling codons (similar to

the eight quantitative features introduced above) of RelA carry

the relevant information to help macrophages distinguish the

stimulating ligands.7 Following the observation that some fea-

tures of c-Rel signaling dynamics are different from those of
Figure 3. Cross-correlations of signaling features reveal the sources o

(A) The pan-ligand cross-correlation matrix was generated by calculating the Pe

between RelA and c-Rel. The entire single-cell time series imaging data were used

each cell, and the asterisk (*) denotes the statistical significance, where *p < 0.05

(B) The ligand-specific cross-correlation matrix was similarly generated except b

corresponds to the column for the indicated ligand in Figure 2C. The green boxes a

0.45 absolute difference) from the pan-ligand correlation matrix. The data are rep

batches from different mice on different days).
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RelA, we asked whether c-Rel may relay additional stimulus

information to the nucleus. To evaluate the degree of ligand

discrimination systematically, we developed supervised ML

models by training them with signaling features of RelA, with

those of c-Rel, or with those of both RelA and c-Rel, from the

7-ligand dataset (Figure 4A). Despite some mild correlations be-

tween these features, they capture largely independent aspects

of signaling dynamics unfolding from early to late phases, like the

previously defined signaling codons (Figure S3).7

We used two different classification algorithms, K-nearest

neighbor (KNN) and linear discriminant analysis (LDA), for

learning the ligand-discriminating features. KNN and LDA were

chosen to harness their widely complementary advantages

and limitations. KNN can handle flexible data distributions with

no parametric assumptions (Figure S4), whereas LDA is less

prone to overfitting the training data. Their performances in pre-

dicting the identity of the activating ligand were assessed in a

repeated 10-fold cross-validation: the ML models were trained

on randomly sampled 70% of the total dataset and tested on

the remaining 30% for model performance in ten independent

sampling rounds. To visualize the performance outcome of the

multi-class ML predictions, we computed the F1 score, a har-

monic mean of the precision and recall, which is an ML perfor-

mance measure for both balanced and imbalanced datasets

(Figure 4B). We also generated the confusion matrix for each

ML algorithm that summarizes the predictions made on the

test datasets (Figures 4C and S5).

KNNmodels were more accurate in identifying most ligands (5

out of 7) if the signaling features of both subunits were used

for ligand identification (Figures 4 and S5). For example, ML

with RelA features alone produced the highest confusion in iden-

tifying CpG (only 59% correct on average), with 24% and 13%

misclassified as poly(I:C) and Pam3CSK4, respectively. By

including c-Rel features, the KNN ML improved the CpG predic-

tion accuracy to 62%by reducing the confusion with Pam3CSK4

to 7%. Notably, signaling features of c-Rel alone weremore error

prone, but their inclusion resulted in modest improvements of

prediction accuracy over ML predictions based on RelA features

alone (Figure 4C). Both the c-Rel features that were correlated

with RelA and those that were divergent from RelA contributed

to the modest improvements (Figure S6). The improvements of

prediction accuracy were also observed when the trained ML

models were tested on an independent dataset (Figure S7).

While the performances of the LDA models were slightly lower

than the KNN models (for all ligands except for LPS and TNF-

a), the use of both RelA and c-Rel signaling features again

improved ligand prediction for most ligands (6 out of 7) (Fig-

ure S5). The top two features contributing to the enhanced

LDA prediction were the attenuation rate of RelA and the
f RelA and c-Rel divergence in encoding ligand specificity

arson correlation coefficients between all possible pairs of signaling features

from all ligands. The individual correlation coefficient values are shown within

, **p < 0.001, and ***p < 0.0001.

y using imaging data for the indicated ligand only. The diagonal of each matrix

round the cells in thematrix represent the correlations that are different (at least

resentative of three individual biological replicates (using independent BMDM
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Figure 4. The signaling features of both NF-kB subunits can distinguish immune threats better than those of either subunit alone

(A) Computational workflow of supervisedmachine learning (ML) with K-nearest neighbor (KNN)models that learn features fromRelA alone or from both RelA and

c-Rel and predict ligand identity. Models were created by randomly selecting 70% of data for training; the remaining 30% of data were used for testing with a

10-fold cross-validation.

(B) The average F1 scores of ligand predictions using either the RelA signaling features only or both RelA and c-Rel signaling features, produced by the KNN or the

linear discriminant analysis (LDA) methods. The F1 scores are shown here with mean ± standard error from a 10-fold cross-validation.

(C) Confusionmatrices show the performance of KNNMLmodels (K = 7, Canberra distance) using the signaling features of RelA (top left), c-Rel (top right), or both

RelA and c-Rel (bottom). Within each cell of the matrix, the colors within the subrectangles above and below the numerical value (mean of the 10-fold cross-

validation in B) represent the upper and lower bounds (95%confidence interval). The sum of diagonals (percentage correctly identified) for eachmatrix is shown in

parentheses. The statistically significant changes between components of an upper matrix and a lower matrix are underlined (p < 0.05 in Mann-Whitney U test).

The results are representative of three individual biological replicates (using independent BMDM batches from different mice on different days).
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Figure 5. Signaling features of c-Rel help

maintain ligand discrimination at high doses

Primary BMDM cells from a young male green-red

double-knockin reporter mouse (11 week of age)

were imaged for their responses to LPS or TNF-a at

the indicated concentrations. The dynamic features

of RelA and c-Rel were quantified and analyzed

(numbers of single cells analyzed: n = 154, 113, 127,

and 149 for 1, 10, 100, and 500 ng/mL LPS; n = 267,

265, 212, and 266 for 1, 10, 100, and 500 ng/mL

TNF-a).

(A) For each dose,models were created by randomly

selecting 70% of data for training; the remaining

30% of data were used for testing with a 10-fold

cross-validation. The 2 3 2 confusion matrices

show the performance of ML models, KNN with K =

7, Canberra distance (left), and LDA (right), using the

signaling features of RelA, or both RelA and c-Rel,

for a given dose. Within each cell of the matrix, the

colors within the subrectangles above and below the

numerical value (mean of the 10-fold cross-valida-

tion) represent the upper and lower bounds (95%

confidence interval). The green boxes mark the ML

models with less accurate predictions using RelA

features only that undergo statistically significant

improvements in predictions by using features of

both subunits (p < 0.05 in Mann-Whitney U test).

(B) ML models were trained with the signaling fea-

tures extracted from data for the indicated concen-

tration shown on the right. Each dose-specific

model was tested against the remaining data from all

the other doses. The confusion matrices show the

performance of ML models, KNN with K = 7, Can-

berra distance (left), and LDA (right), using the

signaling features of RelA or both RelA and c-Rel.

The colormap was chosen to aid the visualization of

changes in the 80%–100% range. The results are

from one of two biological replicates (using inde-

pendent BMDM batches from different mice on

different days).
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duration of c-Rel (Table S1). Calculation of additional perfor-

mance measures indicated that the ligand prediction improved

mainly through gains in precision and sensitivity for the ML

models (Figure S5). These results demonstrate that the signaling

dynamics of both NF-kB subunits encode more ligand-discrimi-

nating information in comparison to RelA or c-Rel alone.

Signaling features of c-Rel help maintain ligand
discrimination at high doses
Since the above data were obtained from ligand stimulations at

fixed concentrations, we asked whether different doses affect
8 Cell Reports 43, 113940, March 26, 2024
ligand discrimination. For example, it is

conceivable to suspect that some ligands

may be hard to distinguish at saturating

concentrations when they converge on

shared downstream components. To

address this, we focused on varying the

doses of LPS and TNF-a. First, the time

series data indicate that the reference con-

centrations used above (10 ng/mL for both
ligands) are not saturating, as higher doses produced distinct,

often stronger responses in some cells (Figure S8). Moreover,

the ML analysis with 10-fold cross-validation within a given

dose dataset showed that signaling features of both subunits

help maintain the discrimination between the two ligands at

high ligand doses better than those of RelA alone (Figure 5A).

Another interesting question that could be addressed with the

dose titration data was whether the signaling features learned

from a particular dose can predict the ligand identity of time se-

ries from unseen doses. To assess cross-dose predictability, ML

models were trained on each dataset for a given dose, and then
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models were tested against the remaining dataset for all the

other doses (e.g., training on 1 ng/mL and testing against 10,

100, and 500 ng/mL, and so on). Due to the mismatch of the

doses in model training and testing, the prediction accuracy

was reduced from the same-dose predictions (Figure 5B). How-

ever, ML models performed better if signaling features of

both RelA and c-Rel were used, especially for KNN, where

the cross-dose prediction accuracy was nearly as high as the

same-dose accuracy. These results suggest that macrophages

achieve a more robust ligand discrimination over a wide dose

range through the signaling features of both RelA and c-Rel.

Mathematical modeling suggests key roles of IkBε in c-
Rel-specific encoding of ligand information
Next, we sought to understand the observed single-cell signaling

time series data with a mechanistic dynamical systems model.

Our rationale for mathematical modeling was 2-fold: first, the

RelA and c-Rel co-imaging data for the multiple ligands allowed

an opportunity to construct and test a model that merges a pre-

vious model of receptor-proximal signaling events7 with another

model of RelA, c-Rel, and their interactions with IkBa and IkBε.45

The receptor-proximal signaling model7 included receptor mod-

ules for five of the ligands considered here but not for flagellin

and R848.

Second, the dual NF-kB dimer macrophage model may then

be used to gain further insight into which biochemical reactions

are important for the observed relationship between RelA and

c-Rel signaling dynamics. We combined the two mathematical

models (Figure 6A) by adopting the reaction rates involving

RelA and IkBa interactions from the core module of Adelaja

et al.7 and setting the reaction rates involving c-Rel and IkBε to

maintain the relative difference between RelA vs. c-Rel and

IkBa vs. IkBε as determined by Alves et al.45 We then tuned a

minimum set of parameters from the upstream receptor modules

(CD14-LPS association; TLR4 recycling; CpG internalization

rate; degradation of TLR1/2, TLR3, and TLR9; synthesis of

TLR1/2; TNF-a degradation; and complexed TNF receptor acti-

vation) that were not defined by prior biochemical studies, such

that fits to theDKImacrophage imaging data could be optimized.

As a result, the simulated time courses recapitulated key fea-

tures of the experimental data (Figure 6B). Quantitative features

like peak amplitude and AUC (total activity) demonstrate a

reasonable match between experimental and model trajectories

(Figure 6C). The cross-correlation analysis highlighted the dura-

tion of c-Rel as a recurrent signaling feature whose relationship

with RelA features (e.g., AUC or duration) exhibits ligand speci-

ficity. Since it is experimentally intractable to modulate dynamic

features of c-Rel precisely, we opted for a theoretical exposition

with our data-constrainedmathematical model and performed in

silico manipulations.

To interrogate the role of parameters that regulate the dynam-

ical characteristics of RelA and c-Rel response trajectories, we

devised a computational workflow focusing on interactions

that contained significant differences between the NF-kB and

IkB isoforms (Figure 6D; STAR Methods). This workflow begins

with sampling parameters for the association and dissociation

rate constants between NF-kBs and IkBs and between IKK

and IkBswithin ranges that encompassed the values of each iso-
form and would explore their sensitivity. The effective IkB-NF-kB

Kd values were varied between 3.2 3 10�7 and 2.9 3 10�3 mM

and IKK-IkB Kd values were varied between 0.1 and 1.6 mM.

The resulting activation trajectories of RelA and c-Rel in

response to TNF-a and LPS were simulated for each sampled

parameter set. The trajectories were then decomposed into the

signaling codons, which were then used as the basis for clus-

tering and dimensionality reduction (Figure 6D). We identified 6

clusters in the high dimensional space and projected it onto a

two-dimensional principal-component analysis graph, which

captured just over 50% of the variance in the data (Figure 6E).

Cluster means showed distinct paired RelA and c-Rel trajec-

tories, revealing differences not only in the degree of activation

and oscillations but also in the differences between RelA and

c-Rel dynamics (Figure 6E). We then painted the values of spe-

cific parameters on this landscape of RelA and c-Rel signaling

dynamics (Figure 6F). For example, we observed a region

(around clusters 2 and 3) where c-Rel activation in response to

TNF-a exceeds that of RelA because of abnormally high values

(poor affinity) in the IkBa-c-Rel Kd and IKK-IkBa Kd. In contrast,

we observe a region (around clusters 1 and 5, containing the

wild-type [WT] parameter set) where RelA activation in response

to TNF-a exceeds that of c-Rel, where the values of IkBε-RelA Kd

and IKK-IkBε Kd are high. Importantly, many alternative param-

eter sets resulted in less distinction between RelA and c-Rel

signaling dynamics, supporting the hypothesis that the differ-

ences in interaction affinities of RelA and c-Rel for IkBa and

IkBε, and differences in stimulus-responsive degradation rates

of IkBa and IkBε mediated by IKK, are critical for the observed

differential dynamics of these two NF-kB family members.

RelA and c-Rel dynamics from IkBa and IkBε mutant
macrophages agree with model predictions
To further interrogate the mathematical model, we developed

simulations for RelA and c-Rel response dynamics in virtual ge-

netic mutants that could be tested experimentally. The first, IkBε

KO, is a complete KO of IkBε, as described previously.27 The

second, the IkBa mutant, harbors mutated kB sites in the IkBa

promoter, making it defective in NF-kB-induced expression of

IkBa.46 The translation rate of the IkBε transcript was set to

zero tomodel the IkBεKO, and themaximumRelA-induced tran-

scription rate of IkBa was reduced 4-fold to model the IkBa

mutant to match the published IkBa expression time course.

Model simulations predicted significant changes to NF-kB dy-

namics in response to TNF-a in these mutants, while changes

in response to LPS were more subtle (Figure 7A). In the IkBε

KO, loss of IkBε results in increased TNF-a-response activity

of c-Rel, as exemplified by peak amplitude. Furthermore, the

response was more oscillatory. However, in the IkBa mutant

model, the simulated TNF-a responses were less oscillatory,

with little change in the amplitude.

To test these predictions, we took advantage of IkBε�/�27 and

IkBam/m46 mouse strains and bred them into another fluores-

cence fusion-protein reporter strain for RelA and c-Rel as well

as the nuclear reporter mCherry-H2B strain. These NF-kB re-

porter mouse strains contained different fluorescent proteins,

themiceweremaintained at a different institution, and the exper-

imental data were produced using different instrumentation and
Cell Reports 43, 113940, March 26, 2024 9



Figure 6. Mathematical modeling of the TLR-NF-kB signaling network recapitulates stimulus-responsive RelA and c-Rel dynamics

(A) The topology of themodel that combines seven receptor-proximal signaling modules with a core NF-kBmodule that includes both RelA- and c-Rel-containing

NF-kB dimers and both IkBa and IkBε. See STAR Methods for details. In the core module, A: RelA, C: c-Rel, 50: p50.

(B) Simulated nuclear abundances (relative to total) of RelA- (blue) and c-Rel- (red) containing NF-kB dimers are shown as bold curves. Lighter color curves

indicate five representative single-cell trajectories from imaging data of Figure 2.

(C) Plots of peak amplitude (maximum value within first 4 h) and total activity (integral over complete time series) extracted from the experimental NF-kB tra-

jectories and from model simulations.

(D) Workflow for parameter set variation to identify determinants of RelA and c-Rel dynamic trajectories.

(E) PCA (principal-component analysis) of 100,000 parameter sets defined by their differences in RelA and c-Rel signaling codons in response to TNF-a and LPS

stimulation (left). Parameter sets colored by cluster identity andWT (wild-type) parameter set marked. Representative parameter set (smallest distance to cluster

mean) simulations from each cluster (right).

(F) PCA colored by values for the indicated interaction parameters.

10 Cell Reports 43, 113940, March 26, 2024

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
slightly different protocols. Focusing on the comparison be-

tween mutants and the matching WT reporter, we found that

RelA and c-Rel trajectories in response to TNF-a were elevated

in the IkBε KO, while responses to LPS were much less affected

(Figures 7B and S9), matching model predictions. For example,

the peak amplitude of RelA and c-Rel trajectories for TNF-a

was slightly higher in the IkBεKO (Figure 7C). Furthermore, oscil-

latory features were persistent and clearly identifiable in RelA tra-

jectories from the IkBεKO, consistent with prior studies.27,47,48 In

the IkBa mutant, oscillatory power was reduced in RelA trajec-

tories in response to TNF-a, as seen previously.7 Finally, re-

sponses were faster when cells rely on IkBa in the absence of

IkBε, as evidenced by the shorter time to first peak in the IkBε

KO. These findings confirm the mathematical model’s prediction

that the biochemical characteristics of IkBε reduce the NF-kB

response to TNF-a, thereby providing an explanation for why

c-Rel, with its higher affinity for IkBε, is relatively unresponsive

to TNF-a.

Although it is experimentally intractable to modulate biochem-

ical interaction constants directly to test this plausible explana-

tion further, we opted for a theoretical exposition with our

data-constrained mathematical model and performed in silico

manipulations. Specifically, we modified two key reactions

involving IkBε, given their roles in shaping c-Rel dynamics in B

cells.45 First, we changed the higher affinity of IkBε for c-Rel to

the same as that for RelA by setting the dissociation rate con-

stant for IkBε and RelA binding to be the same as that for IkBε

and c-Rel. Next, since IkBε is set to have a lower sensitivity to

IKK-induced degradation in the model,45,49 we also examined

the effect of making the IKK-mediated IkBε degradation rate

equal to the corresponding rate for IkBa. The model simulations

for both scenarios confirmed that these reactions are control

points for c-Rel duration, but they also affected other features

such as peak amplitude and the extent of oscillations (Figure 7D).

Importantly, the altered parameters resulted in less distinction

between RelA and c-Rel dynamics than observed in the WT

data, supporting the hypothesis that the differences in interac-

tion affinities of RelA and c-Rel for IkBa and IkBε and the differ-

ences in stimulus-induced degradation rates of IKK-mediated

IkBa and IkBε are critical for the observed differential dynamics

of these two NF-kB family members.

DISCUSSION

Here, we examined dynamic characteristics of the NF-kB sub-

unit c-Rel simultaneously with the widely considered subunit

RelA in the same cells by live imaging, with unprecedented quan-

titative detail using an endogenous DKI mouse line. Co-imaging

RelA and c-Rel was possible through the availability of the fluo-

rescent c-Rel endogenous KI mice39 that put c-Rel on par

with the other transactivating subunits, RelA and RelB, of

NF-kB.50,51 Our results reveal the dynamic features, or signaling

codons, of c-Rel that are linked to the nature of the activating

PAMP and distinct from those of RelA. This supports previous

studies that suggest distinct functions of c-Rel36,52 and further

challenges the idea that c-Rel is another canonical subunit with

redundant patterns of signaling dynamics as RelA (Figure 8).

We focused on macrophages, an immune sentinel cell type,
but a similar approach may shed light on the impact of c-Rel in

other immune cell types as well.

The two subunits differed from the earliest signaling event

following NF-kB activation, the nuclear translocation. Our co-im-

aging of DKI macrophages allowed an accurate, controlled com-

parison of the nuclear translocation rates for RelA and c-Rel. The

accumulation of RelA in the nucleus reached a peak faster than

c-Rel, for all the activating ligands without exception, as quanti-

fied by two signaling features (shorter time to peak and higher

slope of the first rise for RelA vs. c-Rel). This likely reflects its con-

trol by IkBa, which is more responsive to IKK, in comparison to

IkBε. This pattern has a noteworthy consequence at NF-kB

target chromatin, giving RelA a competitive advantage over

c-Rel for interacting with the regulatory sites in the epigenome.

Depending on the genomic context and the nature of RelA inter-

actions, the kB-motif-containing locus may be unavailable for

regulatory actions of c-Rel if RelA occupancy is long lived. In

other sites where RelA binding may be short lived, early occu-

pancy of RelA may potentially prime the sites for subsequent

c-Rel action. These possibilities indicate how previous data on

c-Rel effects may be re-interpreted and also raise new questions

about how RelA and c-Rel might regulate the induction of imme-

diate-early genes through potential competition or coordination

at target chromatin sites.

Although it is thought that both combinatorial and dynamic

signaling may underlie the specificity of macrophage responses

to various PAMPs,53 it remains difficult to quantify their relative

contributions in individual primary immune cells. In this regard,

it is quite remarkable thatMLmodels trained on NF-kBdynamics

alone have rather high ligand prediction accuracies (62%–95%

with KNNmodels using RelA and c-Rel features), given the other

factors such as AP-1 and IRFs that are also activated down-

stream of TLRs. It is possible that the other factors may further

improve the ligand discrimination capability to even higher preci-

sion, or they may reinforce the information encoding of NF-kB

against noisy single-cell behaviors. Here, we focused on how

much of the ligand information is encoded by RelA and c-Rel

dynamics. Future studies should also examine the functional

consequence of the information content and the gain enabled

by c-Rel in terms of gene regulation since RelA and c-Rel have

different promoter binding specificities36,54 and can interact

with co-activators differently.55–57 Immunologically relevant cell

types and endogenous target genes within a well-characterized

genomic regulatory landscape would be particularly interesting

to examine with an approach combining quantitative live-cell

imaging and genomic assays, where the relationship between

NF-kB signaling and gene regulation can be discerned.13,18,58

Our in-depth analysis uncovered that the ligand-discriminating

information is engrained partly in theway in which c-Rel signaling

duration is related to the signaling features of RelA in macro-

phage responses to the activating ligands. The analysis also re-

vealed poly(I:C) as a generic PAMP exemplifying the consensus

macrophage NF-kB signaling, while flagellin emerged as a ‘‘spe-

cialty’’ ligand with a unique signaling pattern. We noted that

poly(I:C) is likely the most evolutionarily ancient signal since its

receptor TLR3 is the most conserved TLR subfamily of genes

among vertebrates.59 On the other hand, flagellin may be a rela-

tively recent PAMP that the host has evolved to deal with, as
Cell Reports 43, 113940, March 26, 2024 11



Figure 7. RelA and c-Rel dynamics from IkB signaling mutants support model predictions

(A) Mathematical model predictions of RelA and c-Rel response dynamics to LPS and TNF-a stimulation in IkBε KO (middle) and IkBa mutant (bottom) cells.

(B) Representative experimental trajectories of RelA and c-Rel in response to LPS and TNF-a stimulation in WT, IkBε KO,27 and IkBa mutant.46

(C) Violin plots of peak amplitude (left) in response to TNF-a of experimental RelA and c-Rel trajectories in IkBε KO, time to first peak (middle) in response to LPS,

and oscillatory power (right) in response to TNF-a (average power within the biologically relevant 0.33–1 h�1 frequency range from power spectral density es-

timate of signal) of RelA and c-Rel experimental trajectories in IkBa mutant. White boxes denote median values.

(D) Mathematical model simulations of RelA and c-Rel trajectories in response to LPS and TNF-a stimulation when IkBε affinity to RelA is set equivalent to that of

c-Rel (left) and IKK affinity to IkBε is set equivalent to that of IkBa (right). The experimental results for RelA dynamics are consistent with three replicates in

response to multiple ligand stimulations.7
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evidenced by the positive selection for its receptor TLR5 in verte-

brate evolution.59 The coordinated vs. independent aspects of

RelA and c-Rel signaling that support macrophage ligand

discrimination may have emerged from the host immune re-

sponses against the changing pathogen landscape during

evolution.
12 Cell Reports 43, 113940, March 26, 2024
Limitations of the study
The functional relevance of the additional information encoded by

c-Rel signaling featuresneeds further investigation. It is technically

challenging to address this since such studies require a perturba-

tion that alters specific features of c-Rel signaling ormacrophage-

specific inducible KO of c-Rel, which is out of scope of this study.



Figure 8. Ligand discrimination by joint signaling of two NF-kB subunits

Some concepts and results of the study are illustrated. PAMPs are recognized by different TLRs as activating ligands, initiating complex kinetic responses of

downstream transcription factors. Live-cell imaging of co-signaling dynamics showed unexpectedly non-redundant behaviors of the two subunits, RelA and c-

Rel, of NF-kB that underlie an enhanced PAMP ligand discrimination in macrophages.
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Mathematical modeling was focused on the roles of IkBa and

IkBε in the IKK-NF-kB signaling network based on previous

studies. However, we cannot rule out other mechanisms that

may underlie the distinct features of RelA and c-Rel signaling

dynamics.

The IkBa mutant and IkBe KO experiments (along with WT

controls) were performed on a different reporter mouse strain

at different technical settings (institution, vivarium, BMDM differ-
entiation protocol, microscope, optical properties of fluorescent

reporter proteins such as photobleaching and spectral overlaps,

image acquisition parameters, image quantification and anal-

ysis). While a direct comparison of NF-kB dynamic patterns in

the WT BMDMs from the two reporter systems is complicated

by the different experimental setups, it is significant that the

key conclusions about the differential dynamics of RelA vs.

c-Rel in response to TNF-a and LPS are reproduced.
Cell Reports 43, 113940, March 26, 2024 13
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nih.gov).

Materials availability
The NF-kB double knock-in reporter mice were previously described39 and are available upon completion of a Material Transfer

Agreement according to the NIH guidelines. mTFP1-cRel, mVenus-RelA, IkBa-mut mice are available from the Jackson Laboratory.

mCherry-H2Bmice are available from the RIKEN BioResource Center. Nfkbie KOmice are available upon completion of anMTAwith

UCLA. No unique reagents were generated in this study.

Data and code availability
d All the time series replicate data have been deposited and are available at https://github.com/Toufiq54/Ligand-Discrimination-

from-RelA-and-c-Rel-signaling-dynamics-in-primary-macrophages.

d All the original code for image quantification and analysis have been deposited and are available at https://github.com/Toufiq54/

Ligand-Discrimination-from-RelA-and-c-Rel-signaling-dynamics-in-primary-macrophages. All code for NF-kBmathematical

modeling and simulations is available at https://github.com/apekshasingh/Rela_cRel_Model.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mice
The mEGFP-RelA mScarlet-c-Rel double knock-in (DKI) mice were described previously.39 These mice have mEGFP and mScarlet

knocked into the transcription start sites of Rela and Rel, respectively, producing N-terminal fusion proteins of each from the endog-

enous loci. All animals were bred andmaintained under specific pathogen-free conditions at the animal facility of National Institute on

Aging. All the animal care and procedures in this study were carried out in accordance with the guidelines of NIH and approved by the

NIA Animal Care and Use Committee. 9–11 week old male mice homozygous for both knock-in reporters were used for experiments.

Triple reporter mVenus-RelA, mTFP-cRel, mCherry-H2B mice60(Narayanan et al., in revision) were crossed into an IkBe�/� line27

and a strain harboring mutated kB sites in the IkBa promoter.46 The experimental mice were 6–12 weeks of age with the genotype

cRel mTFP1/mTFP1, RelAmVenus/mVenus, andH2BmCherry/+, and eitherWT, IkBe�/�, or IkBamut/mut. Micewere housed and handled accord-

ing to guidelines established by the UCLA Animal Research Committee under an approved protocol.

Primary BMDM culture
Bone marrow-derived macrophages (BMDMs) were obtained by culturing the bone marrow cells from femurs and tibia of homozy-

gous green-red DKI mice (9–12 weeks age) in M-CSF containing media for 6 days. BMDMs were re-plated in a fibronectin-coated

glass-bottom m-Slide 8-well high (ibidi) on day 6. The coated glass-bottom surface was prepared by incubating 5 mg/cm2 plasma

fibronectin (Fisher Scientific, cat# FC010) for 1 h at 37�C. The next day, BMDMs were stimulated with one of the following ligands:

10 ng/mL lipopolysaccharide (LPS, Enzo Life Science, #ALX-581-008-L001), 250 ng/mL Flagellin (ThermoFisher Scientific,

#C905R23), 25 mg/mL of CpG (InvivoGen, #tlrl-2395), 20 mg/mL of Poly(I:C) (InvivoGen, # tlrl-picw), 350 ng/mL of R848

(InvivoGen, #tlrl-r848), 40 ng/mL of Pam3CSK4 (InvivoGen, # tlrl-pms), 10 ng/mL of murine TNF-a (R&D Systems, Cat#410-MT-010).

For the IkBa mutant and IkBe knockout experiments (with wild-type controls), BMDMs were obtained by culturing bone marrow

cells from the femurs and tibia of reporter mice (6–12 weeks age) in L929 supplemented media. On day 4, BMDMs were re-plated

into 8-well m-slides (Ibidi, #80826) at 25000–30000 cells/cm2. Cells were stimulated on Day 7 or 8 with 10 ng/ml LPS (Sigma-

Aldrich, #L6529-1MG) or 10 ng/ml TNF (R&D Systems, #410-MT-0101).
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METHOD DETAILS

Live-cell microscopy
Primary cells from NF-kB green-red double knock-in reporter mice were plated in a fibronectin-coated glass-bottom m-Slide 8-well

high imaging chamber (ibidi, Cat# 80806) and cultured for 24 h in phenol red free DMEM (Gibco, Cat# 21063029) supplemented with

10% FBS, 1% penicillin, streptomycin, and glutamine. Cells were stained with SPY650-DNA dye (1x or 1.5x of recommended dilu-

tion, molarity not indicated by manufacturer) 1 h before the live-cell imaging experiment. The high-throughput, high-resolution, and

multi-channel live-cell imaging of lowly abundant endogenous proteins was carried out in Zeiss LSM 880 with Airyscan detector sys-

tem and with 403 oil objective. The glass surface of 8-well imaging slide was pre-wetted with the immersion oil for long-term fluo-

rescent microscopy with oil objective without drying out the contact between the bottom glass-surface and oil-objective. Cells were

then placed in a Zeiss LSM880 Airyscan AxioObserver confocal microscope system with incubation, and were maintained at 37�C in

a humidified environment containing 5% CO2. Cells were incubated about 1�2 h before the live-cell imaging experiment started.

Time-lapse images were acquired at 7-min intervals for a time-course of �12.5 h (150 frames). Excitation laser wavelengths were

488 for EGFP, 561 nm for mScarlet, and 633 nm for SPY650-DNA dye. Fluorescence signals were detected using the Airyscan de-

tector. Imaging parameters were: a 40x/1.4 NA Plan-Apochromat oil objective, pinhole size 5.16 AU, 4.60 AU, and 4.07 AU for

mEGFP, mScarlet, and SPY650-DNA, respectively. Frame scan mode, 0.6 scan zoom, 2.06 ms pixel time, line time 30.00 ms, frame

time 1.90 s, unidirectional scan direction, 12 bit, 5123 512 image size. The detector and digital gains are 960.5, 850.0, 760.0 and 1.0,

1.4, 1.2 for mEGFP, mScarlet, and SPY650-DNA, respectively. Images were saved in .czi file and later converted to .tiff for further

analysis.

For the IkBamutant and IkBe knockout experiment, cells were placed on a Zeiss Axio Observer.Z1 inverted microscope with live-

cell incubation and maintained in the 37�C humidified environment containing 5% CO2 for at least 60 min to equilibrate. Time-lapse

images were acquired at 5-min intervals using a Plan-Apochromat 20x/0.8NA M27 air objective for a time course of 12 h. Images

were collected sequentially in four channels, mCherry (filter set Semrock mCherry, excitation 542-582nm, beam splitter: 593nm,

emission 604-678nm, Colibri.2 30%, exposure 200ms), mVenus (filter set Zeiss 46 HE, excitation 488-512nm, beam splitter

515nm, emission 520-550nm, Colibri.2 80%, exposure 160ms), mTFP (filter set Zeiss 47 HE, excitation 424-448nm, beam splitter:

455nm, emission 460-500nm, Colibri.2 80%, exposure 950ms), and for differential interference contrast (DIC) (HAL 100 lamp,

2.5V, exposure: 20ms). Images were recorded on a Hamahatsu Orca Flash4.0 CMOS camera with 2x2 binning. After collection of

baseline images for 1 h, the indicated stimulus diluted in conditioned media was applied using syringe injection into the chamber

in situ and images were acquired for an additional 12 h.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantitative analysis of time lapse imaging data
The live-cell microscopy images were analyzed to obtain the single-cell signaling measurements using custom-written MATLAB

script (MATLAB 2020b). In brief, acquired.czi files were first converted to.tif files for all positions and channels. The nuclear area

of individual cells was segmented using the SPY650-DNA nuclear dye channel images. The cellular area was segmented using either

the mEGFP or the mScarlet channel. Segmented cells were tracked across successive images using the lineage mapper tracking

tool.61 Then, nuclear, cytosolic, and total fluorescence intensities were calculated from the background-subtracted images for

both mEGFP and mScarlet channels. The cells coming in or going out from the field of view, along with apoptotic or dividing cells,

were excluded from the analysis. The analysis codes are available upon request.

For the IkBa mutant and IkBe knockout experiments, the single cells were segmented into cytoplasm and nucleus using the

mCherry nuclear signal and tracked across the 12-h time course. The basal nuclear presence was determined from 12 time points

prior to stimulation. Basal nuclear activity was subtracted from subsequent measurements.Whenmeasurements fall below the basal

level, negative values were reported. A ratio of nuclear over total fluorescence was quantified using mean nuclear fluorescence and

cytosolic mean fluorescence. The cytoplasm was represented by an annulus around the nucleus using a nuclear to cytoplasmic ratio

of 1:3.5. The fluorescence was quantified using MACKtrack in MATLAB 2015a (Adelaja et al., 2021 available at github.com/signal-

ingsystemslab/MACKtrack).

Machine learning (ML) analysis
Based on the recently introduced signaling codons7 and other related dynamic features,24,39,40 we had selected eight features to

encompass all possible signaling dynamics of RelA and c-Rel. We had also refined the definitions tominimize artifactual values called

by the analysis algorithm. We reasoned that the data-driven relationships will emerge from the more accurate quantification of dy-

namic features. The eight signaling features of single-cell RelA and c-Rel trajectories were extracted using custom-written MATLAB

scripts. The signaling features were imported into the R-programming language environment for ML analysis. 70% of each ligand

dataset were randomly sampled for training purposes and the rest 30% were used for testing the model. The random sampling

was repeated for a 10-fold cross-validation of each trained model in all the analyses. Two different ML algorithms were used to train

the models: a. k-nearest neighbors (KNN), and b. linear discriminant analysis (LDA). The models were trained with either the RelA

signaling features, the c-Rel signaling features, or the signaling features of both RelA and c-Rel. We utilized the R-packages
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MASS and caret for LDA analysis and KernelKnn for generating the KNN models. For KernelKnn, the Canberra distance metric and

K = 7 were used in all the KNN analyses, because these options produced the best performance in an extensive comparison of all the

available metrics and K values. The performance measures dependedmore on the distance metric than on the choice of K. While the

F1 score and sensitivity showed K = 5 being equally good, we chose K = 7 because of the slight increase in accuracy and precision

(Figure S4). The stepLDA function of the caret package was used to select the important features of LDA models. The ML analysis

plots were generated using MATLAB scripts. The codes for ML analysis and plotting are available upon request.

Mathematical modeling
Model topology

A model for simulating the dynamics of NF-kB dimers RelA:p50 and c-Rel:p50 (below referred to as RelA and c-Rel for brevity) in

response to the seven ligands used in the described experiments was constructed by combining and extending two previously pub-

lished models. A model that recapitulates RelA NF-kB dynamics of BMDMs in response to TNFR1, TLR1/2, TLR3, TLR4, TLR97 was

extended by formulating models for the TLR5 and TLR7/8 signaling modules to account for Flagellin and R848 stimulation datasets,

respectively. Flagellin binds to TLR5 at the cell surface and the ligand-receptor complex activates MyD88. R848 is first internalized

into endosomes where it binds TLR7/8, and the ligand-receptor complex also activates MyD88.

The core IKK-NF-kB signaling module7 was extended with interactions involving IkBε and c-Rel as described (Alves et al., 2014).

Accordingly, IkBa and IkBεwere set to bind and inhibit RelA and c-Rel with different affinities. Terms for IkBa and IkBε synthesis and

induced transcription by RelA- and c-Rel-containing NF-kB dimers were based on.47 Accordingly, nuclear RelA was set to induce the

synthesis of IkBa and IkBε, while nuclear c-Rel induced only IkBε synthesis.

The concentrations of all the species containing c-Rel or RelA in the nucleus and cytoplasm obtained frommodel simulations were

used to calculate the ratio of nuclear NF-kB to total NF-kB, to match the ratio of nuclear to total cell intensity of RelA or c-Rel from the

experimental data. The experimental ratio was subtracted using the baseline ratio at zero hours, as the model assumed that the cell

starts with no nuclear NF-kB at t = 0. The NF-kB ratio was scaled by adding a constant concentration of RelA (0.13 mM) and c-Rel

(0.035 mM) to the total NF-kB concentration that is untranslocatable, as it is sequestered by IkB complexes.

Model parameters

For new TLR modules, ligand-receptor dissociation constants were obtained from the literature.62–64 Other parameters were based

on other TLR modules and tuned to recapitulate the experimental data as described below. Parameters for IkBε and c-Rel reactions

in the core IKK-NF-kBmodule were based on previously determined ratios to IkBa and RelA reactions.45 Basal synthesis of IkBεwas

adjusted to reflect lower expression in macrophages compared to B-cells.

Model parameters in the TLR/TNFR modules were tuned to improve the visual fit. The model was run for 12 h for all ligands, with a

priority for fitting early activity. PAM3CSK4 signaling was delayed by 90 min to fit the initial peak of the single-cell data. Subsequent

fitting of NF-kB dynamics for each of the seven ligands was achieved through tuning upstream TLR/TNFR module parameters

within a 10-fold range, while minimizing the number of varied parameters (‘‘multi-stimulus NFkB.xlsx’’ in Github repository:

Rela_cRel_Model/Model_Script). As a result, parameters for the following reactions were altered: TNF degradation and activation

of complexed TNFR, CD14-LPS association and TLR4 recycling, the CpG internalization rate and the degradation of bound TLR9,

degradation of free and bound TLR3, TLR1/2 synthesis and the degradation of bound receptor.

Parameter variation

To interrogate parameter value sensitivity to model interpretation, the IkB-NF-kB Kd values were varied between 3.2e-7 and 2.9e-

3 mM and IKK-IkB Kd parameter values were varied between 0.1 and 1.6 mM. The Kd parameter ranges were chosen to encompass

the values of the isoforms, including the dissociation rate constants of IkBa-RelA, IkBa-c-Rel, IkBε-RelA, IkBε-c-Rel, and the asso-

ciation rate constants of IKK-IkBa and IKK-IkBε. Parameter values were sampled 100,000 times and model simulations in response

to TNF-a and LPS stimulation were collected. The 100,000 simulated trajectories were decomposed into four signaling codons,

including peak amplitude, time to peak, total integral (AUC), and number of peaks. Hence each parameter set was associated

with 16 feature values (TNF-a or LPS (2) x RelA or c-Rel (2) x trajectory features (4)). The difference between RelA and c-Rel features

were used for K-means clustering into 6 groups and dimensionality reduction via Principal Component Analysis (PCA) (MATLAB

version R2019b).

To model the IkBε KO,27,47 the IkBε translation rate constant was set to zero. To model the IkBamutant in which several kB sites in

the IkBa promoter are mutated,46 the Vmax of RelA-induced transcription of IkBa was reduced by 4-fold. Additional parameter var-

iations were explored with the model to assess differences between c-Rel and RelA dynamics not accessible through experimental

perturbations: 1) setting the Kd of IkBε-RelA interaction to that of IkBε-c-Rel and 2) setting the Kd of IKK-IkBε binding to that of

IKK-IkBa.
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