An Introduction to Python

DEVA
Simon Mitchell

Simon.Mitchell@ucla.edu

Beautiful is better than ugly.
Explicit is better than implicit. Simple
is better than complex. Complex is better
than complicated. Flat is better than
nested. Sparse is better than dense.
Readability counts. Special cases aren't

special enough to

break the rules.
Although practicality beats purity. Errors should never
pass silently. Unless explicitly silenced. In the face of j9soys Jo aJow
ambiguity, refuse the temptation to guess. There should be one op S,19] — eapl
— and preferably only one — obvious way to do it. Although that SESEEYESA TN
way may not be obvious at first unless you're Dutch. Now is aJe sadedsawen
better than never. Although never is often better than right ‘eapl poos e aq Aew
now. If the implementation is hard to explain, it's a bad)1 ‘urejdxa 031 Ases S|
idea. If the implementation uoneyusawsa|dwi ay3 41 ‘eapl
is easy to explain, it peq e s, ‘uiejdxa 01 pJey si uoneusawa|dwi 3yl J "Mmou
may be a good idea. Y814 uey) 19139q U0 S| JIASU Y3NOY)|Y "J9A3U UeY) J131q
Namespaces are SI MON 'y2InQ a.4,noA ssajun 1s41} 1e SNOIAGO 3] 10U Aew Aem
ORI F4El 1ey) y3noyyy '3 op 03 Aem snoinqo — auo Ajuo Ajqessssad pue —
idea — let's do 3Uu0 3 p|noys aJ4ay] ‘ssangd 01 uoneidwal ay3 asngaa Ansique
more of those! J0 928} 9y Ul "paduajis Apdndxa ssajun "Apusjis ssed
JaA3u pinoys sJo443 *Aund syeaq Ayjeannsead ysnoyly
"S9|NJ 3Y3 yea.q
01 ygnous |e1ads
1,UdJe sased e1ads ‘syunod Ayljigepeay
"9SUdp uey) 491394 SI asaeds "pajsau
uey) 491194 Si yej4 ‘paledljdwod ueyy
J9119q sI xajdwio) "xajdwod ueys Janaq sl
a1dwis 3o dwi ueyy 1amaq s yd1jdx3
‘A13n ueyl 4a119q sI [njIneayg

uoyihd

INL

e

* Great beginner language

* Clear code

* Powerful text manipulation

* Wrangle large data files

* Great compliment to other languages
* Large user group

* Supports many advanced features

Warning: Spacing is important!

>>> def dna():
. nucs = 'AGCT'

>>> def dna():
nux = 'AGCT'
return nucs

>>> ﬂ

File "<stdin>",

nucs = "AGCT'
A

IndentationError:
>>> !

No Error:

line 2

expected an indented block

Open A Terminal
=

* Open a terminal:
* Mac: cmd + space then type terminal and press enter

* Windows: Start -> Program Files -> Accessories ->
Command Prompt.

* Type “python” (no quotes). Exit() to exit python.

SiMac:~ simon$ echo "this is my terminal"”

this is my terminal

SiMac:~ simon$ python

Python 2.7.5 (default, Aug 25 2013, 00:04:04)

[GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.0.68)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> print "this is python"

this is python

>>> exit()

SiMac:~ simon$ echo "and back to the terminal"”

and back to the terminal

SiMac:~ simon$ |

— Thisis python

Hello World

Launch python S LA
Python 2.7.6 (default, Sep 9 2014, 15:04:36)
[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.39)]
n darwin

Type "help", "copyright", "credits" or "license" for m
e information.
>>> print("Hello World")

Call the built in function print, which displays whatever comes after the command.
Put any message in quotes after the print command.

Hello World
>>> I

The command has finished and python is ready for the next command.
>>> means tell me what to do now!

>>> help()
Welcome to Python 2.7! This is the online help utility.

If this is your first time using Python, you should definitely check o
ut
the tutorial on the Internet at http://docs.python.org/2.7/tutorial/.

Enter the name of any module, keyword, or topic to get help on writing
Python programs and using Python modules. To quit this help utility a
nd

return to the interpreter, just type "quit".

To get a 1list of available modules, keywords, or topics, type "modules

b
"keywords", or "topics". Each module also comes with a one-line summa
ry
of what it does; to list the modules whose summaries contain a given w
ord
such as "spam", type "modules spam".

help> pprint

Getting help — single command

help> quit

You are now leaving help and returning to the Python interpreter.

If you want to ask for help on a particular object directly from the
interpreter, you can type "help(object)". Executing "help('string')"
has the same effect as typing a particular string at the help> prompt.
>>> help("pprint")

But usually just Google!
If you got stuck on something, someone else probably has.

Let’s get programming - Variables

Set a variable with
equals

Display a variable
by typing its name

Variables can be
text, numbers,
boolean (True/
False) and many
more things.

Capitalization is
important for True/
False

>>> someText = "Ssssso thissss issssss a sssstring”

>>> someText

'"Ssssso thissss issssss a sssstring'

>>> somelnteger = 42

>>> somelnteger

42

>>> someFloat = 3.14159

>>> someFloat

3.14159

>>> aBoolean = True

>>> aBoolean

True

>>> aBoolean = FALSE

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'FALSE' is not defined

>>> aBoolean = False

>>> aBoolean

False

>>> I

Add +
Subtract —
Multiply *
Divide /
Power **

Modulo
(remainder) %

Numeric Operators

myNumber =

myOtherNumber = 3
myNumber =

myNumber + myOtherNumber

myNumber * 2
myNumber / 2

myNumber ** 2

myNumber % 2

Reassigning Variables

Reassign with >>> myNumber
equals. >>> myNumber (myNumber * 2) + 1
(Same as assigning) (ATl Y

Warning! 5/2
In some version of python division might

not do what you expect. float(5)/2
Integer division gives an integer result.

5/float(2)

Types of number

Integer: >>> =12
-12
Plus and minus. >>> 13000

No decimal points or commas 13000

>>> 13,000
(13, 0)

Float: >>> 2.5

2.5
Decimal points or scientific ss>> 2e4
notation okay. 20000 .0
2e-2=2x107?

>>> 2e-2
0.02

>>> 2*%10**-2
0.02

Working With

Numbers

What is the minimum of these
numbers:

What is the maximum of these

numbers:

What type of variable is this?

Remember that str(anything)
makes that variable into a string:

>>> min(5,7,3,5,8,2)
2
>>> max(5,7,3,5,8,2)
8

>>> abs(-10)

10

>>> type(-10)

<type 'int'>

>>> type(-10.4)
<type 'float'>

>>> type(str(-10))
<type 'str'>

Working With Text
. e

No char type. Just a single letter string.

>>> "Hey Python”
"Hey Python'
>>> "Are single quotes okay?'
"Are single quotes okay?'
>>> "What about symbols !@)£(*¥%()!@f"
"What about symbols !@)\xc2\xa3(*%()!@\xc2\xa3'
>>> "What's the deal with quotes in text?'
File "<stdin>", line 1

"What's the deal with quotes in text?'
A

SyntaxError: invalid syntax

>>> "That\'s better’ IS SaN
"That's better" \’ types a quote.

Working With Text 2

Is a substring in a string?

Is a substring NOT in a string?

String concatenation:

>>> 'TATA' in "'TATATATA'
True

>>> "AA' 1in "'TATATATA'
False

>>> 'AA'" not in 'TATATATA'
True

>>> "AC'+'TG"

"ACTG'

>>> 'aa'+'cc'+"'tt"'+'gg’
'aaccttgg'

Working With Text 3

Multiply a string repeats it: ataE
'TATATATATATA'

>>> 0*'TA'

: . ‘ | ' TATATATATATA'
- Set variable myString to be ‘python’ J myString="python’

Each character in a string is a number FSSSEISTETPIN)
« We start counting from zero! K
>>> myString[1]

y
>>> myString[5]

n

s ., >>> myString[6]
’ Strmg_mdeXOUtOf range: error as g aprarran (most recent call last):
WERULCIORNCIEICHOCRNMEIEMEN Fi1c "<stdin>", line 1, in <module>

el\YolploRiplNCIloNOIMNHSIIAION TndexError: string index out of range
* len(myString) gets the number of e NN TETTD)

characters. &

Working With Text 4

Negative index counts backwards
from the last element.

You can get a range of characters
from a string.

>>> myString[0]
'p
>>> myString[-1]
"n

i

i

>>> myString[-5]

|)

y
>>> myString[1l:4]
lythl

Working With Text 4

Set the variable seq to be ‘AGCT’:
« Get the number of characters in
seq:

Return the variable seq in all lower
case characters:

Return the variable seq in all upper
case characters:

Return the number 3.14 as a string:

Display the variable seq repeated 3
times:

Count the occurrences of ‘A’ in seq:

>>> seq='AGCT"’
>>> len(seq)

4

>>> seq.lower()
'agct'

>>> seq.upper()

"AGCT'

>>> str(3.14)

'3.14°

>>> print seg+seq+seq
AGCTAGCTAGCT

>>> seq.count('A')

1

Working With Text 5

+ Set the variable segto be ‘AGCT’: seg="AGCT'
 Count the occurrences of ‘A’in seq: seg.count('A")

* Find which index in seq contains ‘C’ seq.find('C")

SRR U nVACHl >>> seq.startswith('AG")
True

ERRCERREELSCURTIUNCIONE . .. seqg.startswith('GC")
False

. Does seq start with ‘GC’ if you start [RERLLA TR GUIPED
at the second letter. TSI

Working With Text 6

variable = raw_input(“text here”) A

Prints the text in quotes and waits for user input.
Sets the variable on the left of = to whatever the user types.

>>> name = raw_input("What is your name?")
What is your name?]]

print(“%s” % text-here)

Place a %s in a string to place a variable at that point in the string. The variables
are given in order after a %.

>>> print("Your name is %s.
Your name is Simon.

>>> print("Your name is %s." % (name))

Your name is Simon.

>>> lang = "Python"

>>> print("My name is %s and I use %s." % (name, lang))
My name is Simon and I use Python.

% name)

Changing a Variables Type

>>> int(2.1)

2

>>> 1nt('42"')

47 Cast a variable to another type.

>>> bool(1l)

Note:
True 1 =True
>>> bool(0) 0 = False

False

>>> bool('"') Empty strings = False

Any other string = True

False

>>> bool(' ")
True

>>> float(3)
3.0

True/False — conditional
expressions

\

Equal to (==)

Not equal to (!=)

Less than (<)

Less than or equal to <=
Greater than (>)

Greater than or equal to (>=)
>>> not True

False

>>> True and True

True not
>>> True and False and
False or

>>> True or False

True

>>> False or not (True and True)
False

Main
program
statements

Conditional
block of
commands

Continue
main
program

i f statement

if

False

True

if-else statement

<

If Else Statements.

myNumber =
1f myNumber >= 2:
print('big number')
. else:
print('small number')

number

If Else Statements.

>>> seq = "'ATCCGGGG'
>>> 1f seq.startswith('ATC'"):
print segq
else:
print 'no ATC'

ATCCGGGG

>>> seq = "AGCCGGG'

>>> 1f seq.startswith('ATC'):
print seq

else:
print 'no ATC'

no ATC

Write Code Once and Reuse

e

FUNCTIONS
« Might want to run the same code on million of sequences.
« Write a function once and use it whenever you have to do that task.

def function_name(parameteri,parameter2):
any
code
here
return result_of_function

Write Your First Function

>>> def myFirstFunction(myParameter):
print("Running my first function!")
return myParameter * 3

>>> I
Returned values can be assigned to variables outside functions.

>>> myFirstFunction(2)

Running my first function!

6

>>> myNumber=myFirstFunction(998786656)
Running my first function!

>>> myNumber

2996359968

Your First USEFUL Function

Calculating GC Content: IA
» Let’s write pseudocode

Input is a sequence
count G occurrences
count C occurrences

sum G and C occurrences

divide the sum by the total sequence length
return the result

>>> def gc_content(seq):
gCount=seq.count('G')
cCount=seq.count('C')
totalCount=1len(seq)
gcContent=C(gCount+cCount)/totalCount
return gcContent

>>> gc_content("'ATCCCGGG')
0

Who gets the right result?

Remember the integer division problem?

>>> def gc_content(seq):
gCount=seq.count('G")
cCount=seqg.count('C")
totalCount=len(seq)
gcContent=(float(gCount)+cCount)/totalCount
return gcContent

>>> gc_content("'ATCCCGGG")
0.75

3 Ways to Run Python Code

e

* Interactive environment
* What we’ve been doing

* Modules
* Groups of functions loaded into the interactive python
session.
* Scripts

* Run python code from outside the interactive python
session. Typed into the Windows/OS X/Unix command
line.

Importing Generic Modules

>>> sqrt(25)

Traceback (most recent call last):

File
NameError: name
>>> import math

"<stdin>"

, Line 1,

'sqrt'’

>>> math.sqrt(25)

5.0
>>> math.exp(l)

2.718281828459045
>>> math.1o0gl10(2)
0.3010299956639812

>>> math.pi

3.141592653589793
>>> from math import sqrt

>>> from math import *

in <module>
is not defined

import
MODULENAME

from
MODULENAME
import FUNCTION

from
MODULENAME
import *
(everything -
caution)

Working in a Text Editor

* Typing everything into the

2ol Format

python environment canbe “uonang sz _
Inconvenient. - .
. . Co 8C
* Write your code into atext | rase sev
Paste and Match Style {3V
document ge'etel o L[] GCContent — Edited
omplete AN
* Use a basic text editor Select Al A
. Insert » at)/totalCount
* Notepad (windows) Atach Fes.. oma |
Edit Link... 38K
* TextEdit (Mac) i R
. elling and Grammar
* emacs/Vim! Show Substitutions
Transformations >
* Save with a .py extension. Speech >
Start Dictation... v Smart Dashes

%k CarerI With TeXtEdit on MaC! Special Characters... ~ ~3Space Smart Links

' Data Detectors
v Text Replacement

Combining Everything We've

Learnt

e

Let’s write a function that:

* Takes a sequence as a parameter

* Prints the sequence if it starts with ATC

* If the sequence starts with AGC prints ‘Starting with AGC’.

* If the sequence starts with neither print ‘Starting with
neither ATC or AGC'.

®®@® | workshop

#Prints the sequence if it starts with ATC
#Prints Starting with AGC if it starts with AGC
#Else prints starting with neither

if seqg.startswith('ATC'):

print('Starting with AGC')

else:

print('Starting with neither ATC or AGC')

72y simon
[ansi=TiNg-Ro

ﬁv

ame

>>> startsWithAT(C B workshop
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'startsWithATC' is not defined
>>> from workshop import startsWithAT(C
>>> startsWithATC('ATCATCATC')

ATCATCATC

>>> startsWithATC('AGCATCATAAA')
Starting with AGC

>>> startsWithATC('GCTGCGCGCA'")
Starting with neither ATC or AGC

Python script

