An Introduction to Python

Day 2
Simon Mitchell

Simon.Mitchell@ucla.edu




Python’s Data Structures - Lists
=

% Lists can store lots of information.
* The data doesn’t have to all be the same type! (unlike

many other programing languages)

>>> myList = []

>>> myEmptylList=[]

>>> myShoppinglList=["Apples”, "Beer", "Chocolate"]
>>> myShoppinglList

["Apples', 'Beer', 'Chocolate']

>>> myMixedList = [123, "a string", 2.75]

>>> myMixedList

[123, 'a string', 2.75]




Python’s Data Structures — Lists 2

* Can access and change
elements of a list by
index.

* Starting at o
* myList[0]
* Just like strings.

\\

>>> myNucList=["A"','G"','C",'T"]
>>> myNuclList

[ " ARG &< G T |

>>> myNuclList[2]

T

>>> myNucList[2]="G"
>>> myNuclList[2]

'G'

>>> myNuclList

[lA', IG', 'GI, 'Tl]




Python’s Data Structures — Lists 3

* Lists have lots of handy 488 :z:azt:zz‘gp’;endgcg , "
functions. >>> myNuclList

['AY, "G", 'C' s IEC S

>>> len(myNuclList)

* Most are self 5 . ¥/
explanatory. ;>> myNucList.index('G")

* Get an error if ,’ndexo >>> myNuclList.index('C")

2
’ )
Cantﬁnd What It’s >>> myNuclList.index('B"')

lookingfor. Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: '"B'" is not in list

* myList.function(arguments)




Python’s Data Structures — Lists 4

>>> myNucList

['A', 'G"', "A', 'C', 'T", '"C']
>>> myNuclList.sort()

>>> myNuclList

['A", 'A', 'C', 'C', 'G", 'T']
>>> myNuclList.remove('G')

>>> myNuclList

['A', "A', 'C', 'C", 'T']

>>> del myNuclList[1]

>>> myNuclList

['A", 'C', 'C', 'T"]




Python’s Data Structures — Lists 5

>>> letters = ['a','b',"'c','d","e',"f']

>>> letters[0:2]

['a’, "b']

>>> letters[:4]

R N - N ol

>>> letters[1l:]

['b', 'c', 'd', 'e',

>>> letters[6]

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: list index out of range

>>> letters[6:7]

L]




Python’s Data Structures —
Dictionaries

——

* Like lists, but have keys and values instead of index.

* Keys are strings or numbers

* Values are almost anything. E.g. Strings, lists, even another dictionary!
>>> experiments={'control':1000, "expl':500, 'exp2':600}
>>> experiments
{'control': 1000, 'exp2': 600, 'expl': 500}
>>> experiments['exp2']

600

>>> experiments['control']

1000

>>> experiments['exp3']=300

>>> experiments

{'control': 1000, 'exp2': 600, 'expl': 500, 'exp3': 300}

>>> del experiments['exp2']

>>> experiments
{'control': 1000, 'expl': 500, 'exp3':




Example: Tip Calculator

e

* First let’s figure out the
pseudocode:

Set cost of meal

Set rate of tax

Set tip percentage
Calculate meal + tax

Calculate and return meal
with tax + tip

r,.Qm (W -  tipCalculator.py v

# Calculates cost of meal with tax and t1p
meal = 44.50

0.075

0.15

tax
tip

meal = meal + meal x tax
total = meal + meal *x tip

print("%.2f" % total)




A Script Not a Module

(00 6 ] tipCalculator.py ¥

# Calculates cost of meal with tax and tip IIII......-‘_
meal = 44.50

tax 0.075
tip 0.15

meal = meal + meal *x tax
total = meal + meal *x tip

print("%.2f" % total)

>>> exit()
SiMac:~ simon$ 1s
testTex.tex
config.log
tipCalculator.py

GCContent.pyc synergy.conf workshop.pyc
SiMac:~ simon$ python tipCalculator.py
55.01




Example: Tip Calculator 3

e

* What if we want to calculate for a different meal cost without
rewriting the code.
* Pass the amount from the command line to python.

SiMac:~ simon$ python tipCalculator.py 55.00

* How do we get python to understand the new amount?

* Need to import sys
* sys.argyv is a list of strings of parameters passed from the
command line.



Handling Commandline Arguments

\,_\

' tipCalculator.py v

O 0 O
import sys
for arg in sys.argv:
print(arg)

# Calculates cost of meal with tax and tip
meal = 44.50

tax 0.075
tip 0.15

meal = meal + meal x tax
total = meal + meal *x tip

print("%.2f" % total)

SiMac:~ simon$ python tipCalculator.py argl arg2 arg3

tipCalculator.py o
argl Sys.argv[o] is tipCalculator.py

arg2
= Sys.argv[1] argt...

55.01




Handling Commandline Arguments 2

e

f .
666 | tipCalculator.py *
import sys
for arg in sys.argv:
print(arg)

# Calculates cost of meal with tax and tip
meal = 44.50

tax = 0.075

tip 0.15

meal = meal + meal *x tax
total = meal + meal * tip

print("%.2f" % total)

75 o | et s A s A s S

© © O | | tipCalculator.py — Edited

e e

import sys

# Calculates cost of meal with tax and tip

tax
tip

Inn
(S
(S
~
(8]

meal = meal + meal x tax
total = meal + meal * tip

print("%.2f" % total)



Handling Commandline Arguments 3

m

sl LtipCalculator.py. ...

S s ) GO AN A Tt . R

0666

s S GO AN MR I

import sys

# Calculates cost of meal with tax and tip
def calculateTip(meal,tip):

meal = float(meal)

tax = 0.075

tip=float(tip)

meal = meal + meal *x tax
total = meal + meal x tip
return total

* Make calculateTip a function. Useful if we need to reuse that code in
future programs!

* Command line arguments from sys.argv are always strings so cast to
a float if we want to do maths with them.




Test Your Tip Calculator

. e EE———
© 6 6 ' tipCalculator.py

import sys L

# Calculates cost of meal with tax and tip
def calculateTip(meal,tip):

meal = float(meal)

tax = 0.075

tip=float(tip)

meal = meal + meal *x tax
total = meal + meal x tip
return total

SiMac:~ simon$ python tipCalculator.py 20.00 0.15

24.73
SiMac:~ simon$ python tipCalculator.py 20.00 0.20
25.80




The for loop

‘

Main

program *
statements
* If we want to perform the
same tasks on every item v ot i
. . . ext item
in a list, string or . gl =
dictionary we can use a = ‘
FOR LOOP. | | ;
EopIng No more
block items?
for variable in listName: ‘
#any code here L
Coptinue
main
program



For Loops on a List

>>> myList=[4,1,3.14159]

>>> for num in mylList:
print 2**num

16

2

8.82496159506

(Back in the python interactive environment)
For num in myList:

print 2*num



For Loops on a Dictionary

myDictionary={'expl':100, '"exp2':500, 'exp3':350}
for key in myDictionary:
print('Key: %s, value: %i' % (key,myDictionary[key]))

exp3, value: 350
exp2, value: 500
expl, value: 100

for key in myDictionary:
print key as a string and value as an integer



For Loops on a String

>>> myString="python'

>>> myNewString=""

>>> for letter in myString:
myNewString += 2 * letter

>>> myNewString
"'ppyytthhoonn’

for letter in myString:
myNewString = myNewsString + 2*letter



Ranges

range(start,stop[,step]) NEns C ;0)4 i

range(0,10)
1 1, 27 3, 4, 5,
Useful for looping over range(d. -10,-1)
unusual ranges. -1, -2, -3, -4,
range(0)

range(1,0,-1)
myRange = range(90,10,3)

for num in myRange:
print num




A Function to Find the Complement

e

Make a function that takes a string of nucleotides and returns a
string with the reverse complement. If the string contains a
character that is not a nucleotide, print a message saying so.

Pseudocode:
for nucleotide in sequence
if nucleotide == ‘A’
prepend complementSequence with ‘T’

else if nucleotide ==‘T";



Reverse Complement 2

e

| revComp

import sys

Import sys so we can get command line arguments

00 ~ revComp

import sys
#prints the reverse complement of a sequence
def reverseComp(seq):

Make a function that takes a sequence as an argument




A Function to Find the Complement

3

import sys

#prints the reverse complement of a sequence

def reverseComp(seq):
rc_seq=""
for nuc in seq:

Define a new empty string for the reverse complement
Use a for loop to do something for each nucleotide in the sequence

~ revComp

00
import sys
#prints the reverse complement of a sequence

def reverseComp(seq):
rc_seq=""
for nuc in seq:

if nuc not in 'AGCT':
print("s%ss is not a nucleotide" % (nuc))

If one of the nucleotides isn’t AGCT the print a message and return
nothing (quit the function without returning a new string).



A Function to Find the Complement
4

®®®
import sys
#prints the reverse complement of a sequence

def reverseComp(seq):
rc_seq=""
for nuc in seq:
if nuc not in 'AGCT':
print("%s is not a nucleotide" % (nuc))

else:
if nuc=='A"':
rc_seq="'T'+rc_seq

If the nuceotide is ‘A’, append T to our reverse complement string

Do the same for each nucleotide...



A Function to Find the Complement

g —

00 ~ revComp
import sys

#prints the reverse complement of a sequence
def reverseComp(seq):
rc_seq=""
for nuc in seq:
if nuc not in 'AGCT':
print("%s is not a nucleotide" % (nuc))

return '

else:

if nuc=='A":
rc_seq="'T'+rc_seq

elif nuc=='T":
rc_seq="'A'+rc_seq

elif nuc=='C":
rc_seq='G'+rc_seq

elif nuc=='G":
rc_seq="C'+rc_seq

return rc_seq

The reverseComp function should return rc_seq string once the for
loop has checked every nucleotide in the sequence.



A Function to Find the Complement
6

00 ~ revComp —~
#prints the reverse complement of a sequence
def reverseComp(seq):
rc_seq=""
for nuc in seq:
if nuc not in 'AGCT':
print("%s is not a nucleotide" % (nuc))
return ''

else:
if nuc=='A":
rc_seq="'T'+rc_seq
elif nuc=='T":
rc_seq="'A'+rc_seq
elif nuc=='C":
rc_seq='G'+rc_seq
elif nuc=='G":
rc_seq="'C'+rc_seq
return rc_seq
mySequence = reverseComp(sys.argv([1])
Frint("%s“ % mySequence)

Run the script and print the output.

This should be the result of passing the first command line argument to
our new reverseComp function.



A Function to Find the Complement

/

Save it as revComp.py M

SiMac:~ simon$ python revComp.py ATTGCCTTT
AAAGGCAAT

SiMac:~ simon$ python revComp.py XTTGCCTTT
X 1is not a nucleotide
AAAGGCAA

What if we want to stop if an incorrect character is found?

for nuc in seq:

if nuc not in 'AGCT':

print("%s is not a nucleotide" % (nuc))
for nuc in seq:

if nuc not in 'AGCT':
print("%s is mot a nucleotide" % (nuc))
return '' %

SiMac:~ simon$ python revComp.py XTTGCCTTT

X is not a nucleotide




A Function to Find the Complement
8

e

Another improvement:

rc_seq=
return rc_seq

mySequence = reverseComp(sys.argv([1])

print("%s" % mySequence)

-

return rc_seq
print("%s" % reverseComp(sys.argv([1]))

Run the function within the print statement!



A Function to Find the Complement
9

e

00 | revComp

Can we make import sys
better code than | #prints the reverse complement of a sequence

def reverseComp(seq):

these if rc_seq=""
for nuc in seq:

statements: if nuc not in 'AGCT':

print("%s is not a nucleotide" % (nuc))
|f return ''

else:
. if nuc=='A":

Elif rc_seq="T'+rc_seq

elif nuc=='T":
Ellf rc_seq="A'+rc_seq

elif nuc=='C":
. rc_seq="'G'+rc_seq
Elif elif nuc=='G":
rc_seq="C'+rc_seq
return rc_seq
print("%s" % reverseComp(sys.argv([1]))




Dictionaries!

~ revCompDictionary.py
import sys

#prints the reverse complement of a sequence s

def reverseComp(seq):
rc_seq=""
compDict = {'A':'T','T':'A",'C'":'G","'G":"'C"'}
for nuc in seq:
if nuc not in 'AGCT':
print("%s is not a nucleotide" %

(nuc))
return ''

else:
rc_seq = compDict[nuc] + rc_seq

return rc_seq
print("%s" % reverseComp(sys.argv[1]))

SiMac:~ simon$ python revComp.py ATTGCCTTT
AAAGGCAAT

SiMac:~ simon$ python revCompDictionary.py ATTGCCTTT
AAAGGCAAT

Works the same, much more elegant code!



More Data Structures:
Enumerate

——

Returns an ‘enumerate’ object which is the input with
sequentially numbered inputs.

>>> seasons=['Spring', 'Summer’', 'Fall', "Winter']
>>> enumerate(seasons)
<enumerate object at 0x10395ea50>
>>> Llist(enumerate(seasons))
[(@, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]
>>> for index,item in enumerate(seasons):
print(index, item)

(0, 'Spring')
(1, 'Summer')
(2, '"Fall')

(3, '"Winter')




e

“Zips together” two lists

>>> zippedList = zip([1,2,3],['a','b',"'c'])
>>> zippedList
[(1, *a'), (2, 'b'), (3, "c')l]

>>> for x,y in zippedList:

print(x*y)




Break statements

=

Exit the loop they are in. Notice the output isn’t printed for the
negative number:

>>> def square_root(n):
for num in n:
if num<0Q:
print("Can\'t take squareroot of a negative")
break
print num** 5

>>> square_root([1,4,5,9])
1.0

2.0

2.2360679775

3.0




While loops

——

Keeps executing the code in the
loop while the condition remains ! haia

true. |

Rechecks the condition after each
iteration. * |

while condition:

7T

#code to execute




While loops

>>> lLoopCondition=True

>>> While loopCondition:
loopCondition=False
print("This will print once")

This will print once

Set loopCondition to True.
While loop checks if loopCondition is true.
It is, so the code inside the loop will be executed next.



While loops

>>> LoopCondition=True

>>> Wwhile loopCondition:
loopCondition=False
print("This will print once")

This will print once

Set loopCondition to False.

The while loop doesn’t recheck the loopCondition until it reaches
the end so the code will continue executing.



While loops

>>> LoopCondition=True

>>> Wwhile loopCondition:
loopCondition=False
print("This will print once")

This will print once

Print “this will print once”.

We are at the end of the loop now so the loopCondition will be
checked next.



While loops

>>> LoopCondition=True

>>> Wwhile loopCondition:
loopCondition=False
print("This will print once")

This will print once

loopCondition is False now so the code inside the loop will not be
executed.



While loops

>>> LoopCondition=True
>>> Wwhile loopCondition:
loopCondition=False

print("This will print once")

q This will print once

Indeed the text is printed just once!




While loops

/

>>> count = 0

>>> while count < 10:
print count
count +=1

Don’t forget to include the count+=1
else you create an infinite loop!

Why does it print 9 last yet
count = 10 after the code is finished?

How do we get it to print all the way
to 10?

coNO UV PP WNRELEO:

9

>>> count
10



While loops

Switching order of count and print
statements is one way!

Could also have made condition:
While count <=10

e

>>> count =

>>> while count < 10:
count +=1
print count

1
2
3
4
5
6
/
8
9
1



While loops

——

Keep doing a loop until the correct input is received:

>>> choice =
>>> While choice !=

"'python’':

choice = raw_input('What language are we learning?')

What language we
What language we
What language we
What language we

learning?Java
learning?HTML
learning?pthon
learning?python




Break statements can exit while
loops

>>> count =
>>> While count < 100:
print count
count += 1

. .. if 100 / count < 10:
The while loop condition break
is never met but the
code reaches a break

before count reaches
100.

0
1
2
3
4
)
)
74
8
9
1



——

Else: only executed if while loop finishes
without reaching a break.

>>> def randomNumberGame():
random_number=randrange(1,10)

count=0

while count<3:
guess=int(raw_input("Guess a number:"))

if guess==random_number:
print("YOU WIN!")
break

count +=1

print("You lost.")




Play the random number game!

>>> def randomNumberGame():
random_number=randrange(1,10)
count=0
while count<3:
guess=int(raw_input("Guess a number:"))
if guess==random_number:
print("YOU WIN!")
break
count +=1

print("You lost.")

>>> randomNumberGame()
Guess a number:6

Guess a number:5

Guess a number:4

YOU WIN!




Reverse Complement Returns

| revCompDictionary.py

import sys

#prints the reverse complement of a sequence
def reverseComp(seq):
rc_seq=""
compDict = {'A':'T','T":'A",'C':'G','G':'C"}
for nuc in seq:
if nuc not in 'AGCT':

print("%s is not a nucleotide" % -‘
(nuc))

return ''
else:
rc_seq = compDict[nuc] + rc_seq
return rc_seq
print("%s" % reverseComp(sys.argv([1]))

000 ~ revCompWhile.py v
import sys

#prints the reverse complement of a sequence
def reverseComp(seq):
rc_seq=""
compDict = {'A":'T','T":"A",'C':'G",'G":'C"}
count=0
while count < len(seq):
if seqlcount] not in 'AGCT':
print("%s is not a nucleotide" % (nuc))
return ''
else:
rc_seq = compDict[seqlcount]] + rc_seq
count+=1
return rc_seq
print("%s" % reverseComp(sys.argv[1]))



Reverse Complement Returns

000 | revCompWhile.py v
import sys

#prints the reverse complement of a sequence
def reverseComp(seq):
rc_seqg=""
compDict = {'A':'T",'T':'A",'C':'G",'G":'C"}
count=0
while count < len(seq):
if seqlcount] not in 'AGCT':
print("%s is not a nucleotide" % (nuc))

return ''

else:
rc_seq = compDict[seqlcount]] + rc_seq

count+=1
return rc_seq
print("%s" % reverseComp(sys.argv[1]))

SiMac:~ simon$ python revCompDictionary.py ATTGCCTTT
AAAGGCAAT

SiMac:~ simon$ python revCompWhile.py ATTGCCTTT
AAAGGCAAT




e

Everyone gets errors in their code. You may already have had
some!

Knowing what the errors mean help you fix them.

Errors messages are quite informative even if they seem difficult
to understand



>>> While True
File "<stdin>", line 1

while True

A

SyntaxError: invalid syntax

Notice the error highlighting which part of the code is incorrect.
Syntax errors are the most generic and common.

To fix, check the line in the error message, specifically check
around the arrow.

What is wrong with the first line above?



Indentation Error

>>> While True:
print 'test'
File "<stdin>", line 2
print 'test'
A

IndentationError: expected an indented block

We’ve fixed the while True: line.

Indentation error is a specific type of syntax error which tells you
your code was not correctly indented.

How do we correct this code?



e

Sometimes code will be valid and won’t cause an error while you
input it but can error when it is executed.

Errors that occur at the time code runs are called exceptions.

Not all exceptions are fatal, you can include code to handle
exceptions.



Name error

Divide by
zero error

Keyboard
interrupt
(ctrl+c)

>>> someText
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'someText' is not defined

>>> 1/0
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>

ZeroDivisionError: integer division or modulo by zero

>>>
KeyboardInterrupt



>>> len(123)
Type error Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
TypeError: object of type 'int' has no len()

Input object [l Aii

Traceback (most recent call last):
error File "<stdin>", line 1, in <module>
IOError: [Errno 2] No such file or directory:

Let’s figure out how to handle these exceptions...



Handling Exceptions

>>> while True:
x=int(raw_input("please enter a number: "))
break

please enter a number: a
Traceback (most recent call last):
File "<stdin>", line 2, in <module>
ValueError: invalid literal for int() with base 10:

We can see that this code throws a ValueError.

If we don’t want this to stop the program, or we want show a
more helpful error message then we need to add some code:




Handling Exceptions

e

x=int(raw_input("please enter a number: "))
break

except ValueError:
print("Not a valid number. Try again.")

>>> While True:
try:

please enter a number: a
Not a valid number. Try again.
please enter a number: b
Not a valid number. Try again.
please enter a number: 1

The try section is executed first.

If a number is received then no exception will be thrown so the
break command will be reached




Handling Exceptions

>>> While True:
try:
x=int(raw_input("please enter a number: "))
break
except ValueError:
print("Not a valid number. Try again.")

please enter a number: a
Not a valid number. Try again.
please enter a number: b
Not a valid number. Try again.
please enter a number: 1

If an exception occurs anywhere the code immediately stop
running the try statement and tries to match the exception
thrown with an except and then runs the code inside the matching
except clause.




Handling Exceptions
__

x=int(raw_input("please enter a number: "))
break

except:  ValueError:
print("Not a valid number. Try again.")

>>> While True:
try:

please enter a number: a
Not a valid number. Try again.
please enter a number: b
Not a valid number. Try again.
please enter a number: 1

If no error types are matched the code will throw an unformatted
exception as if the try and except commands were not there.




Handling Exceptions

L —

>>> while True:
try:
x=int(raw_input("Please enter a number:"))
except (TypeError,ValueError):
print("Not a valid number")
except (KeyboardInterrupt):
print("Attempted to end input")

else:
print("Good job. You picked a number.")

break

Please enter a number:Attempted to end input
Please enter a number:k

Not a valid number

Please enter a number:3

Good job. You picked a number.

Can have multiple exceptions handled by the same section.

Have an else clause that runs if the try ends without a break
command.




Exception Hierarchy

e

If you handle a class it will
handle all subclasses, so
consider that if you catch
StandardError it will be
difficult to write code to
handle all possible
exceptions. Try and handle
as low level exception as
possible and avoid:

except Exception

BaseException
+-- SystemExit
+-- KeyboardInterrupt
+-- GeneratorExit
+-- Exception
+-- StopIteration
+-- StandardError

+-- BufferError

+-- ArithmeticError

| +-- FloatingPointError
| +-- OverflowError

| +-- ZeroDivisionError
+-- AssertionError

+-- AttributeError

+-- EnvironmentError

| +-- IOError

| +-- OSError

| +-- WindowsError (Windows
| +-- VMSError (VMS)
+-- EOFError



