An Introduction to Python

DEAC
Simon Mitchell

Simon.Mitchell@ucla.edu

Combining what we’ve learnt

e

Yesterday we learnt a lot of different bits of Python.

Let’s summarize that knowledge by writing a module of
functions to do various analysis on values in a list.

e

* In a text edijcor:

o0 ® | myStats

#Functions to analyse values in a list

#print the numbers in the list
def printNums(numbers):
for num in numbers:
print num

* Comment your code well so you remember what it
does when you look at it again.

‘

4 -
.‘ . . .
A

* A function to sum values:

#Functions to analyse values in a list

#print the numbers in the list
def printNums(numbers):
for num in numbers:
print num

#sum the values in the list
def sumNums(numbers):
total=0
for num in numbers:
total+=num
return total

* A function
to average
numbers:

e

#sum the values in the list
def sumNums(numbers):
total=0
for num in numbers:
total+=num
return total

#returns the mean average of a list of numbers
def averageNums(numbers):
sumOfNums = sumNums(numbers)
average = float(sumOfNums) / len(numbers)
return average

e

#returns the mean average of a list of numbers
def averageNums(numbers):
. sumOfNums = sumNums(numbers)
* A function average = float(sumOfNums) / len(numbers)
return average

to calculate

the #returns the variance of a list of numbers
. . def varianceNums(numbers):

variance: variance = [@]xlen(numbers)

average = averageNums(numbers)
for num in numbers:

variance [numbers.index(num)]=(num-average)*x2
return averageNums(variance)

>>> myList = [0]*5
>>> mylList

[0’ G’ 0) 0, 0]

e

#returns the variance of a list of numbers
def varianceNums(numbers):
variance = [@]xlen(numbers)
average = averageNums(numbers)
for num in numbers:
variance[numbers.index(num)]l=(num-average)*x2

* i j
A function to return averageNums(variance)

calculate the
population def stdDevNums(numbers):

standard variance = varianceNums(numbers)
deviation try: ;

i return variance xx .5
using the except (TypeError):

variance print("wrong data type received")

e

* Test it

>>> 1mport myStats

>>> myStats.stdDevNums([3.14,5.32,1.34,5.67])
1.7518757804136684

>>> myStats.varianceNums([3.14,5.32,1.34,5.67])**0.5
1.7518757804136684

Quiz Time:
What Is the average and standard deviation of:
[3-14, 5.32, 1.34, 5.67]

More Dictionary Methods

\\

* .items() returns key value pairs
* .keys() returns just the keys
* .values() returns just the value

>>> myDictionary={"'name': " 'harry', "hair':'brown','eyes': 'brown'}
>>> print myDictionary.items()

[('hair', 'brown'), ('eyes', 'brown'), ('name', 'harry')]

>>> print myDictionary.keys()

["hair', 'eyes', 'name']

>>> prfnt myﬁfctfonary.vafues(s
['brown', 'brown', 'harry']

* This is useful so we can iterate over dictionaries more easily...

lterating over dictionaries
=

The comma means ‘“on the same line”’:

>>> for key in myDictionary:
print key,myDictionary[key]

hair brown
eyes brown
name harry
>>> for key in myDictionary:
print key,myDictionary[key],

hair brown eyes brown name harry

List Comprehension

‘
=

If we want to create a list that is a modified version of an
existing list we usually do something like this:

>>> squares = []
>>> for x in range(10):
squares.append(x**2)

>>> squares
[0, 1, 4, 9, 16, 25, 36, 49, 64,

Python offers an easy alternative!

>>>
>>>

L0,

List Comprehension

squares = []
for x in range(10):
squares.append(x**2)

squares
1, 4, 9, 16, 25, 36, 49, 64,

squares = [x**2 for x in range(10)]
squares

1, 4, 9, 16, 25, 36, 49, 64, 81]

List Comprehension

>>> squares = [x**2 for x in range(10)]
>>> squares

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

To create a list this way:
newlList = [expression for value in oldList]

List Comprehension

-
>>> compDict={'A':'T')'T':'A','C':'G','G':'C'}‘:>—<:””’—’——————__
>>> seq = 'AAATCGAT'

>>> revComp = [compDict[x] for x in seq.upper() if x in "ACGT']
>>> revComp

[* 150 S RS ACRIIGE), * C SR AR

>>> revComp.reverse()

>>> .join(revComp)
"ATCGATTT'

Reverse complement function we wrote previous in much less
code!

Have to reverse() the list and then use a string method (join) to
turn the list of characters into a string.

Slicing Up a List (with Stride)

>>> mylList range(1l1)
>>> mylList

(e, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> myList[:6:3]

[0, 3]

>>> myList[2:9:4]

From 2"9 value to 9" value, choosing every 4t [2, 6]

listName[start:end:stride]

From 15t value to 6t", choosing every 3" value.
)

>>> myList[::2]
Entire list, every other value KN PR PN

>>> myList[::-1]

[10’ 9’ 8’ 7’ 6, 5, 4, 3, 2, 1, @]
>>> myList[2::-1]

2"d value to 1%, don’t skip any [2, 1, 0]

>>> myList[9::-1]

9th value to end of list, in reverse [ICEER-IANEN TN TR SO IO AN RN
>>> myList[:4:-1]
(16, 9, 8, 7, 6,

Entire list, every value, in reverse

From beginning of list to 4t value, in reverse

Lambda functions

An alternative way to define a function.

>>> def byThree(x):
return x % 3 == 0

>>> byThree(9)

True
>>> lLambda x:x%3==0
<function <lambda> at 0x10a51e398>

Not useful on its own but for use in conjunction with other
functions!

Filters (use lambda functions!)

return x % 3 ==

>>> myList = range(16)
>>> print filter(byThree,myList)
[6, 3, 6, 9, 12, 15]

>>> print filter(lambda x:x%3==0,myList)
[0, 3, 6, 9, 12, 15]

Filters (use lambda functions!)

filter(function, list)

>>> names = ["john","simon","jane","jenny"]
>>> print filter(lambda x:x == 'simon', names)
["simon']

>>> myList = range(50)
>>> print filter(lambda x:x%3==0 and x%4==0, mylList)
[0, 12, 24, 36, 48]

e

Reading from a file is the main way of getting biological data into
Python.

fileVariable = open(“fileName.txt”, “w”)

fileVariable.read(size)
size is optional and specifies how many bytes to read

fileVariable.readLine()
reads and returns a single line of the file

Wﬁer

Writing results to a file is useful for large data sets
programs to create graphs etc.

fileVariable.write(string)
writes the contents of string to the file.

fileVariable.tell()

returns an integer value representing how far through the file you
currently are, in bytes.

fileVariable.seek(offset,0)

change current position in file to offset bytes from the beginning. To
offset from current position or end do seek(offset,1) or seek(offset,2)
respectively.

File Input/Output Example.

myList = [x**3 for x in range(1l,11)]

file = open("output.txt”,"w")

for item in mylList:
file.write(str(item) + "\n")

>>> file.close()
>>> I

‘¢ simon

£ = DR

Name

1 .DS_Store
| output.txt
“ mysStats.pyc
| myStats.py
» (] Downloads
v (1] Documents
1 .DS_Store
» [] BBBPaper

Hﬁ Avcrhhivia =i

RITTT VLR 0 —

Always close() Files

e

It’s important to close() a file when you have finished writing or
reading from it.

>>> with open("text.txt","w") as fileVariable: R

fileVariable.write("Great Success") e 6 6 Dtext.txt

Great Success|

>>> fileVariable

<closed file '"text.txt', mode 'w' at 0x10a4e9780>
>>> fileVariable.closed

True

>>> D

Alternatively use with open() as variable: to automatically close
the file after the code is executed.

File Mode

e

What does the “w” do in: Open(‘“‘fileName.txt”, “w”)

mode can be 'r' when the file will only be read, 'w' for only
writing (an existing file with the same name will be erased),
and 'a' opens the file for appending; any data written to the
file is automatically added to the end. '=+' opens the file for
both reading and writing. The mode argument is optional; 'r:

will be assumed if it's omitted.

File Mode

myFile = open("output.txt","r"
print myFile.readline()

print myFile.readline()

print myFile.readline()
27

>>> print myFile.readline()
64

>>> print myFile.read()
125

216

343

512

729

1000

>>> myFile.close
<built-in method close of file object at 0x10a4e98a0>
>>> myFile.close()

T

Contain reads for sequencing analysis.

A FASTQ file normally uses four lines per sequence.

« Line 1 begins with a '@’ character and is followed by a sequence identifier and an
optional description (like a FASTA title line).

» Line 2 is the raw sequence letters.

« Line 3 begins with a '+' character and is optionally followed by the same sequence
identifier (and any description) again.

» Line 4 encodes the quality values for the sequence in Line 2, and must contain the
same number of symbols as letters in the sequence.

A FASTAQ file containing a single sequence might look like this:

@SEQ ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+

DUk ((((F*%4))33%++) (33%8) . L***—+% ' ')) **55CCF>>>>>>CCCCCCCH5

e

www.signalingsystems.ucla.edu/users/Simon/example.fastq

fastQ Example

B

Code to find which reads contain an adapter sequence

000 | fastQAdapter
myFile=open("example.fastq","r")
adapterSequence="'GCCAAT'
totallLines=0
countOfAdapter=0
for line in myFile:
if line[@]=='N":
if adapterSequence in line:
countOfAdapter+=1
totalLines+=1

print("Total Lines:%.0f" % totallLines)
print("Count of adapter:%.0f" % countOfAdapter)

percentage=(float(countOfAdapter)/totallLines)*100
print("Percentage of reads containing the adapter:%.2f" % percentage)|

fastQ Example

Let’s test it!

:
.

®®® | fastQAdapter
myFile=open("example.fastq","r")
adapterSequence="'GCCAAT'

| totalLines=0

countOfAdapter=0
for line in myFile:
if line[@]=='N":
if adapterSequence in line:
countOfAdapter+=1
totalLines+=1

print("Total Lines:%.0f" % totallLines)
print("Count of adapter:%.0f" % countOfAdapter)

percentage=(float(countOfAdapter)/totalLines)*100
print("Percentage of reads containing the adapter:%.2f" % percentage)|

SiMac:~ simon$ python fastQAdapter.py
Total Lines:25

Count of adapter:9

Percentage of reads containing the adapter:36.00

Continued learning

Lock inside 3 Learning Python, 5th Edition Paperback -

July 6, 2013
by Mark Lutz ~ (Author)

WYYy ~ 120 customer reviews
A NEEEECEETR in Object-Oriented Software Design

ISBN-13: 978-1449355739 ISBN-10: 1449355730 Edition:

Fifth Edition
Buy New Rent
Price: $29.15 «Prime Price: $17.49 Prime

45 New from $26.15 27 Used from $26.99

O'REILLY" Mark Tues .
S — Mo Rent from Amazon Price New Used

from from

http://www.codecademy.com/en/tracks/python

e

Before you leave please fill out the survey, it really helps us and
only has a few tick-boxes:

surveymonkey.com/r/PythonOct2016

