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SUMMARY

Highly networked signaling hubs are often associ-
ated with disease, but targeting them pharmacolog-
ically has largely been unsuccessful in the clinic
because of their functional pleiotropy. Motivated by
the hypothesis that a dynamic signaling code confers
functional specificity, we investigated whether
dynamic features may be targeted pharmacologi-
cally to achieve therapeutic specificity. With a virtual
screen, we identified combinations of signaling hub
topologies and dynamic signal profiles that are
amenable to selective inhibition. Mathematical anal-
ysis revealed principles that may guide stimulus-
specific inhibition of signaling hubs, even in the
absence of detailed mathematical models. Using
the NFkB signaling module as a test bed, we
identified perturbations that selectively affect the
response to cytokines or pathogen components.
Together, our results demonstrate that the dynamics
of signaling may serve as a pharmacological target,
and we reveal principles that delineate the opportu-
nities and constraints of developing stimulus-
specific therapeutic agents aimed at pleiotropic
signaling hubs.
INTRODUCTION

Intracellular signals link the cell’s genome to the environment.

Misregulation of such signals often cause or exacerbate disease

(Lin and Karin, 2007; Weinberg, 2007) (so-called ‘‘signaling dis-

eases’’), and their rectification has been a major focus of

biomedical and pharmaceutical research (Cohen, 2002; Frelin

et al., 2005; Ghoreschi et al., 2009). For the identification of

therapeutic targets, the concept of discrete signaling pathways

that transmit intracellular signals to connect cellular sensor/

receptors with cellular core machineries has been influential. In
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this framework, molecular specificity of therapeutic agents

correlates well with their functional or phenotypic specificity.

However, in practice, clinical outcomes for many drugs with

highmolecular specificity has been disappointing (e.g., inhibitors

of IKK, MAPK, and JNK; Berger and Iyengar, 2011; DiDonato

et al., 2012; Röring and Brummer, 2012; Seki et al., 2012).

Many prominent signaling mediators are functionally pleio-

tropic, playing roles in multiple physiological functions (Chavali

et al., 2010; Gandhi et al., 2006). Indeed, signals triggered by

different stimuli often travel through shared network segments

that operate as hubs before reaching the effectors of the cellular

response (Bitterman and Polunovsky, 2012; Gao and Chen,

2010). Hubs’ inherent pleiotropy means that their inhibition

may have broad and likely undesired effects (Karin, 2008; Berger

and Iyengar, 2011; Force et al., 2007; Oda and Kitano, 2006;

Zhang et al., 2008); this is a major obstacle for the efficacy of

drugs targeting prominent signaling hubs such as p53, MAPK,

or IKK.

Recent studies have begun to address how signaling networks

generate stimulus-specific responses (Bardwell, 2006; Haney

et al., 2010; Hao et al., 2008; Zalatan et al., 2012). For example,

the activity of some pleiotropic kinases may be steered to partic-

ular targets by scaffold proteins (Park et al., 2003; Schröfelbauer

et al., 2012; Zalatan et al., 2012). Alternatively, or in addition,

some signaling hubs may rely on stimulus-specific signal

dynamics to activate selective downstream branches in a

stimulus-specific manner in a process known as temporal or

dynamic coding or multiplexing (Behar and Hoffmann, 2010;

Chalmers et al., 2007; Hoffmann et al., 2002; Kubota et al.,

2012; Marshall, 1995; Purvis et al., 2012; Purvis and Lahav,

2013; Schneider et al., 2012; Werner et al., 2005).

Although the importance of signaling scaffolds and their

pharmacological promise is widely appreciated (Klussmann

et al., 2008; Zalatan et al., 2012) and isolated studies have

altered the stimulus-responsive signal dynamics (Purvis et al.,

2012; Park et al., 2003; Sung et al., 2008; Sung and Simon,

2004), the capacity for modulating signal dynamics for phar-

macological gain has not been addressed in a systematic

manner. In this work, we demonstrate by theoretical means

that, when signal dynamics are targeted, pharmacological



perturbations can produce stimulus-selective results. Specif-

ically, we identify combinations of signaling hub topology

and input-signal dynamics that allow for pharmacological per-

turbations with dynamic feature-specific or input-specific

effects. Then, we investigate stimulus-specific drug targeting

in the IKK-NFkB signaling hub both in silico and in vivo.

Together, our work begins to define the opportunities for phar-

macological targeting of signaling dynamics to achieve

therapeutic specificity.

RESULTS

Dynamic Signaling Hubs May Be Manipulated to Mute
Specific Signals
Previouswork has shown how stimulus-specific signal dynamics

may allow a signaling hub to selectively route effector functions

to different downstream branches (Behar et al., 2007). Here, we

investigated the capacity of simple perturbations to kinetic

parameters (caused for example by drug treatments) to produce

stimulus-specific effects. For this, we examined a simple model

of an idealized signaling hub (Figure 1A), reminiscent of the NFkB

p53 or ofMAPK signalingmodules. The hub X* reacts with strong

but transient activity to stimulus S1 and sustained, slowly rising

activity to stimulus S2. These stimulus-specific signaling

dynamics are decoded by two effector modules, regulating tran-

scription factors TF1 and TF2. TF1, regulated by a strongly adap-

tive negative feedback, is sensitive only to fast-changing signals,

whereas TF2, regulated by a slowly activating two-state switch,

requires sustained signals for activation (Figure 1B). We found it

useful to characterize the X*, TF1, and TF2 responses in terms of

two dynamic features, namely the maximum early amplitude

(‘‘E,’’ time < 150) and the average late amplitude (‘‘L,’’ 150 < t <

6 hr). These features, calculated using a mathematical model

of the network (see Experimental Procedures) show good fidelity

and specificity (Komarova et al., 2005) (Figure 1C), as S1 causes

strong activation of TF1 with minimal crosstalk to TF2, and vice

versa for S2.

Seeking simple (affecting a single reaction) perturbations that

selectively inhibit signaling by S1 or S2, we found that perturba-

tion A, partially inhibiting the activation of X, was capable of

suppressing hub activity in response to a range of S1 amplitudes

while still allowing for activity in response to S2 (Figure 1D).

Consequently, this perturbation significantly reduced TF1 activ-

ity in response to S1 but had little effect on TF2 activity elicited by

S2. We also found that the most effective way to inhibit S2

signaling was by targeting the deactivation of negative feedback

regulator Y (FBR). This perturbation caused almost complete

abrogation of late X activity yet allows for significant levels of

early activity. As a result, TF2 was nearly completely abrogated

in response to S2, but stimulus S1 still produced a solid TF1

response. The early (E) and late (L) amplitudes could be used

to quantify the input-signal-specific effects of these perturba-

tions (Figure 1E).

This numerical experiment showed that it is possible to

selectively suppress transient or sustained dynamic signals

transduced through a common negative-feedback-containing

signaling hub. Moreover, the dynamic features E and L could

be independently inhibited. To study how prevalent such oppor-
tunities for selective inhibition are, we established a computa-

tional pipeline for screening reaction perturbations within multi-

ple network topologies and in response to multiple dynamic

input signals; the simulation results were analyzed to identify

cases of either ‘‘input-signal-specific’’ inhibition or ‘‘dynamic

feature-specific’’ inhibition (Figure 1F).

A Computational Screen to Identify Opportunities for
Input-Signal-Specific Inhibition
The computational screen involved small libraries of one- and

two-component regulatory modules and temporal profiles of

input signals (Figure 2A), both commonly found in intracellular

signaling networks. All modules (M1–M7, column on left) con-

tained a species X that, upon stimulation by an input signal,

is converted into an active form X* (the output) that propagates

the signal to downstream effectors. One-component modules

included a reversible two-state switch (M1) and a three-state

cycle with a refractory state (M2). Two-component modules

contained a species Y that, upon activation via a feedback

(M3 and M5) or feedforward (M4 and M6) loop, either deacti-

vates X (M3 and M4) or inhibits (M5 and M6) its activation.

We also included the afore-described topology that mimics

the IkB-NFkB or the Mdm2-p53 modules (M7). Mathematical

descriptions may be found in the Experimental Procedures.

Although many biological signaling networks may conform to

one of these simple topologies, others may be abstracted to

one that recapitulates the physiologically relevant emergent

properties.

The library of stimuli (S1–S10; Figure 2A, top row) comprises

ten input functions with different combinations of ‘‘fast’’ and

‘‘slow’’ initiation and decay phases (see Experimental Proce-

dures). The virtual screen was performed by varying the kinetic

parameter for each reaction over a range of values, thereby

modeling simple perturbations of different strengths and

recording the temporal profile of X* abundance. To quantify

stimulus-specific inhibition, we measured the area under the

normalized dose-response curves (time average of X* versus

perturbation dose) for each module-input combination (Experi-

mental Procedures, Figure 2B, and Figure S1 available online).

For many perturbations, we found doses that abrogated the

response to some inputs but not others (Figure S1). We also

observed that the responses to some input functions are

affected similarly in different modules (e.g., inputs S1 and S2,

both transient pulses), but others are not. For example, both

of the responses to inputs S8 and S1 are attenuated by the

IS (inhibitor strength) perturbation in M5, but FBA (feedback

activation) affects only the former. This indicates that the

capacity for selective inhibition is not intrinsic to the specific

dynamics of the input signal. Similarly, whereas some perturba-

tions targeting similar reactions in different topologies had

similar ‘‘dynamic footprints’’ (i.e., affecting responses to com-

mon sets of inputs, for example, feedforward activation [FFA]

in modules 4 and 6), most were less consistent and some

seemed to have opposite effects (activation [A] in M3/5 and

M4/6, for example).

Taken together, the results of this screen demonstrate that

perturbations with input-dynamics-specific effects are indeed

possible, but the specificity is dose and topology dependent.
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Figure 1. Pharmacologic Perturbations with Stimulus-Specific Effects

(A) A negative-feedback module transduces input signals S1 and S2, producing outputs that are decoded by downstream effectors circuits that may distinguish

between different dynamics.

(B) Unperturbed dynamics of X*, TF1*, and TF2* in response to S1 (red) and S2 (blue). Definition of early (E) and late (L) parts of the signal is indicated.

(C) Specificity and fidelity of E and L for TF1* and TF2*, as defined in Komarova et al., 2005).

(D) Partial inhibition of X* activation (A) abolishes the response to S1, but not S2, whereas a perturbation targeting the feedback regulator (FBR) suppresses the

response to S2, but not S1.

(E) Perturbation phenotypes defined as difference between unperturbed and perturbed values of the indicated quantities (arbitrary scales for X*, TF1*, and TF2*).

Perturbation A inhibits E and TF1*, but not TF2*; perturbation FBR inhibits L and TF2*, but not TF1*.

(F) Virtual screening pipeline showing the experimental design and the two analysis branches for characterizing feature- and input-specific effects.

See also in Experimental Procedures and Table S1.
Inhibition of Specific Dynamic Signaling Features
Applying the afore-described E (early maximum) and L (late

average)metrics,we foundsomeperturbations to have selectivity

for early (E) or late (L) phases of a signal (Figure 3A); for example,

FBRand to a lesser extent FFR (feedback and feedforward recov-

ery) consistently suppressed the late phase in a module- and
450 Cell 155, 448–461, October 10, 2013 ª2013 Elsevier Inc.
largely input-independent manner (shown as the tangent angle

at the unperturbed point in the E-L space, Figure 3B, top). Others

were less consistent; for example, FBA and FFA tended to affect

early signalingor late signaling inan input-dependentbutmodule-

independent manner (Figure 3B, center). On the other hand, low-

dose perturbation of the activation reaction (A) inhibited primarily



Figure 2. A Virtual Screen for Stimulus Specificity in Pharmacologic Perturbations

(A) Signaling modules (left) and input library (top) used in the screen. Dotted lines indicate enzymatic reactions (perturbation names indicated in letter code). Time

courses of hub activity for each module/input combination for the unperturbed (black) and perturbed cases (blue indicates a decrease, red an increase in

parameter value).

(B) Relative sensitivity of the stimulus response to the indicated perturbation (defined as the perturbation’s effect on the area under the curve), normalized per row.

See also Experimental Procedures, Figure S1, and Tables S2 and S3.
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Figure 3. Inhibition of Specific Dynamic

Signaling Features

(A) Feature maps: effect of a perturbation on the

maximum early (t < 600) amplitude (y axis) and late

(600 < t < 300’) average amplitude (x axis) of the X*

response. Colored dots mark the unperturbed

response to indicated input signals, and curves

represent the responses for varying strengths of

the indicated perturbation.

(B) Tangent angle at the unperturbed point in the

E-L space (q < 0 E specificity, q > 0 L specificity)

(Top) Perturbation FBR (M3) suppresses late

signaling in an input-independent manner.

(Center) FFA attenuates early or late signaling in an

input-dependent manner. (Bottom) E-L specificity

switch for two doses of FBA (M3).

(C) Hierarchical clustering of the inhibitory effects

(left) related to the number of input signals

showing selective inhibition of early (blue), late

(yellow), or both (green) parts of the output. Bars

represent different perturbations doses.

See also Experimental Procedures and Figure S2.
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early signaling in the feedback-based modules (M3 and M5) and

late signaling in the feedforward-basedmodules (M4 andM6) but

only for some inputs. Interestingly, the specificity for E or L of

some perturbations may be reversed in different dosing regimes

(Figure 3B, bottom; note horizontal-vertical transition in the

corresponding panel in Figure 3A).

We then asked whether feature-specific inhibition correlated

with stimulus-specific inhibition. Hierarchical clustering the

perturbation data (Figure 3C) identified two major groups, char-

acterized by inhibition of the response to very brief (S1 and S2)

or sustained inputs. Comparing the clusters and the E or L

selectivity (determined from the angle in the E versus L space;

see Experimental Procedures and Figure S2) showed some

correlation between a perturbation’s E-L and stimulus speci-

ficity (Figure 3 C). We found that perturbations that affect the

late phase (e.g., FFR and FBR) affect signaling in response

to sustained inputs but had virtually no effect on the response

to S1 and S2. The reverse was less clear cut; perturbations

that tend to cause selective suppression of early phases could

have an effect on signals without strong early components as

well. We also observed that inputs that rise gradually (S7–

S10) tend to be more sensitive to inhibition than those that

rise quickly. However, these correlations are of limited predic-

tive value, as the same perturbation in the same module can

affect early signaling for some inputs but late signaling for

others. Moreover, E-L selectivity appeared dependent on

perturbation dose. Given the complexity of relating perturba-

tions with input and signal dynamics, we decided to study

the origin of the phenomenology observed in the screen using

the analytical tools of dynamical systems theory.

Phase Space Analysis Reveals Underlying Regulatory
Principles
To understand the origin of dynamic feature-specific inhibition,

we investigated the perturbation effects analytically on each

module’s phase space, i.e., the space defined by X* and Y*

quasi-equilibrium surfaces (Figures 4 and S4). These surfaces

(‘‘q.e. surfaces’’) represent the dose response of X* as a function

of Y* and a stationary input signal S (‘‘X surface’’) and the dose

response of Y* as a function of X* and S (‘‘Y surface’’) (Figure 4A).

The points at which the surfaces intersect correspond to the

concentrations of X* and Y* in equilibrium for a given value of

S. In the basal state, when S is low, the system is resting at an

equilibrium point close to the origin of coordinates. When S in-

creases, the concentrations of X* and Y* adjust until the signal

settles at some stationary value (Figure 4A). Gradually, changing

input signals cause the concentrations to follow trajectories

close to the q.e. surfaces (quasi-equilibriumdynamics), following

the line defined by the intersection of the surfaces (‘‘q.e. line’’)

in the extreme of infinitely slow inputs. Fast-changing stimuli

drive the system out of equilibrium, causing the trajectories to

deviate markedly from the q.e. surfaces.

Two main principles emerged: (1) perturbations that primarily

affect the shape of a q.e. surface tend to affect steady-state

levels or responses that evolve close to quasi-equilibrium, and

(2) perturbations that primarily affect the balance of timescales

(X*, Y* activation, and S) tend to affect transient out-of-equilib-

rium parts of the response. These principles reflect the fact
that out-of-equilibrium parts of a signal are largely insensitive

to the precise shape of the underlying dose-response surfaces

(they may still be bounded by them) but depend on the

balance between the timescales of the biochemical processes

involved. Perturbation of these balances affects how a system

approaches steady state (thus affecting out-of-equilibrium and

quasi-equilibrium dynamics), but not steady-state levels. To

illustrate these principles, we present selected results for

modules M3 and M4 and discuss additional cases in the supple-

ment (Figure S3).

In the feedback-based modules (M3 and M5), the early

peak of activity in response to rapidly changing signals is an

out-of-equilibrium feature that occurs when the timescale of Y

activation is significantly slower than that of X. Under these

conditions, the concentration of X* increases rapidly (out of

equilibrium) before decaying along the X* surface (in quasi-

equilibrium) as more Y gets activated (Figure 4A, parameters

modified to better illustrate the effects being discussed; see

Table S2). For input signals that settle at some stationary level

of S, Y activation eventually catches up and the concentration

of X* settles at the equilibrium point where the X* and Y* curves

intersect. Gradually changing signals allow X* and Y* activation

to continuously adapt, and the system evolves closer to the

q.e. line.

In such modules, perturbation A (X* activation) changes both

the shape of the q.e. surface for X* and the kinetics of activation.

When in the unperturbed system Y* saturates, perturbation A

primarily reduces X* steady-state level (Figures 4B and 4C,

left and center). When Y* does not saturate in the unperturbed

system, the primary effect is the reduced activation kinetics.

Thus the perturbation affects the out-of-equilibrium peak (Fig-

ures 4B and 4C, center and right), with only minor reduction

of steady-state levels (especially when Y*’s dose response

respect to X* is steep). The transition from saturated to not-

saturated feedback (as well as the perturbation strength) under-

lies the dose-dependent switch from L to E observed in the

screen. In both saturated and unsaturated regimes, the shift in

the shape of the surfaces does change the q.e. line and thus

affects responses occurring in quasi-equilibrium. In contrast,

perturbation of the feedback recovery (FBR) shifts the Y* sur-

face vertically (Figure 4D), specifically affecting the steady-state

levels and late signaling; the effect on Y* kinetics is limited

because the reaction is relatively slow. Perturbation FBA

also shifts the Y* surface, but the net effect is less specific

because the associated increase in the rate of Y* activation

tends to equalize X* and Y* kinetics affecting also the out-of-

equilibrium peak.

In feedforward-based modules (e.g., M4), early signaling

peaks could arise also under quasi-equilibrium conditions

when X and Y have different dose-response curves for S

(observe the q.e. line in Figure 4E). In this module perturbation,

A (activation) primarily changes the shape of the X* surface,

affecting steady-state levels and quasi-equilibrium dynamics.

A perturbation dose sufficient to affect early signaling will also

completely suppress the late phase of the response, explaining

why, in contrast with feedback-based modules, perturbation A

in feedforward-based modules (M4 and M6) tended to affect pri-

marily late signaling.
Cell 155, 448–461, October 10, 2013 ª2013 Elsevier Inc. 453



Figure 4. Phase Space Analysis of Signaling

Modules’ Responses

(A) Quasi-equilibrium surfaces for X* (orange) and

Y* (green) as functions of stimulus strength s and

2D projections for low (sL) and high (sH) s levels in

feedback-based module M3. The time course of

X* in response to a fast (red) and slow gradual

(blue) input are indicated. Strict quasi-steady

response is shown in black.

(B) Effect of perturbation A in negative feedback

module M3. The arrow indicates whether the

perturbation suppresses (–) or enhances (+) the

reaction.

(C) Cross-sections of the X* and Y* (orange and

green) surfaces for low and high S and the pro-

jection of the time-course concentrations of X*-Y*

for fast and gradually changing signals (red/blue).

Projection of the q.e. line is indicated with a

dashed black line. Corresponding time courses

are shown on the right (top-most curve corre-

sponds to higher values of parameter). The

perturbation primarily affects steady-state levels

(transition from left to center panels when the

feedback saturates and out-of-equilibrium and

quasi-equilibrium dynamics otherwise (transition

from center to right panels).

(D) Effect of perturbation FBR in negative feed-

back module M3.

(E and F) (E) Effect of perturbation A on incoherent

feed-forward loop M4, and (F) the corresponding

two-dimensional projections. Note how the inter-

section (black line) of the surfaces defines a peak

of activity

See also Figure S3 and Table S4.
These dynamic response principles (summarized in Table S4)

link a perturbation’s feature and stimulus specificity. While with

simple perturbations, effects on dose response and kinetics

are linked, the particular parameters determine which effect is

dominant. Here, we have explicitly considered responses to
454 Cell 155, 448–461, October 10, 2013 ª2013 Elsevier Inc.
input signal activation, but the same prin-

ciples apply to input termination. In those

cases, specificity may arise from differ-

ences in the decay rate of the input.

Manipulating Specific Dynamic
Features of NFkB Signaling
The IKK-IkB-NFkB signaling module

functions as a signaling hub for diverse in-

flammatory, immune, and developmental

signals (Hoffmann and Baltimore, 2006).

Its activity is regulated in a stimulus-

specific manner, and stimulus-specific

dynamic control of the input kinase IKK

was shown to mediate stimulus-specific

gene expression programs (Hoffmann

et al., 2002; Werner et al., 2005). We

examined here how the principles out-

lined above could be applied to design

pharmacological perturbations causing
stimulus-specific inhibition of NFkB. We focused on NFkB

dynamics typically triggered by tumor necrosis factor (TNF), a

proinflammatory cytokine that may mediate chronic (TNFc)

or pulse (TNFp) stimulation, and lipopolysaccharide (LPS), a

component of Gram-negative bacteria.



Figure 5. Modulating NFkB Signaling

Dynamics

(A) The IkB-NFkB signaling module.

(B) Equilibrium dose-response relationship for

NFkB versus IKK.

(C) Three IKK curves representative of three

stimulation regimes; TNFc (red), TNFp (green), and

LPS (blue) function as inputs into the model, which

computes the corresponding NFkB activity dy-

namics (bottom). The quasi-equilibrium line (black)

was obtained by transforming the IKK temporal

profiles by the dose response in (B). Deviation from

the quasi-equilibrium line for the TNF response

indicates out-of-equilibrium dynamics.

(D) Coarse-grainedmodel of the IkB-NFkBmodule

and predicted effects of perturbations.

(E) Selected perturbations with specific effects on

out-of-equilibrium (top three) or steady state

(bottom two). (Left to right) Featuremaps in the E-L

space (E: t < 60 0, L: 1200 < t < 3000), tangent angle
at the unperturbed point (q > 0 indicates L is more

suppressed than E and vice versa), and time

courses (green, TNF chronic; red, TNF pulse; blue,

LPS). Only inhibitory perturbations are shown.

Additional perturbations are shown in Figure S4.

See also Experimental Procedures and Table S7.
In resting cells, NFkB is held inactive through its association

with inhibitors IkBa, b, and ε. Upon stimulation, these proteins

are phosphorylated by the kinase IKK triggering their degrada-

tion. Free nuclear NFkB activates the expression of target genes,

including IkB-encoding genes, which thereby provide negative

feedback (Figure 5A). The IkB-NFkB-signaling module is a com-

plex dynamic system; however, by abstracting the control mech-

anism to its essentials, we show below that the above-described

principles can be applied profitably.

We begin by determining whether NFkB activation proceeds

out of or in quasi-equilibrium, using an experimentally validated
Cell 155, 448–461,
computational model (Werner et al.,

2005) and temporal profiles of IKK inputs

determined experimentally for the condi-

tions under consideration. For this, we

compared the time-dependent concen-

tration of nuclear NFkB with that ex-

pected if, at each time point, the network

was in equilibrium with the instant IKK

activity level (Figures 5B and 5C). Devia-

tions during the early phase of the TNF

response indicated that it occurs out of

equilibrium, whereas the response to

LPS evolves close to quasi-equilibrium.

Under these conditions, our findings

suggest that it may be possible to selec-

tively attenuate the out-of-equilibrium

(early) or steady-state (late) phase of the

TNF and LPS response. Selective attenu-

ation of out-of-equilibrium dynamics re-

quires a perturbation that equalizes the

activation and feedback timescales
without substantially reshaping the dose-response relationships.

Conversely, attenuation of steady-state levels and quasi-

equilibrium dynamics requires perturbations that alter the

dose-response relationships without substantially affecting the

balance of timescales. We compared the essential control

mechanisms of the IkB-NFkB signaling module (Figure 5D, left)

with module M3 studied above to infer the effect of perturbations

(Figure 5D). We estimated that perturbations classified as A

(inhibition of activation), such as inhibition of IKK-mediated IkB

degradation or free NFkB nuclear import, would primarily affect

timescales and therefore out-of-equilibrium dynamics. These
October 10, 2013 ª2013 Elsevier Inc. 455



perturbations show E-L switch behavior (Figure 3), but because

feedback is not saturated (enough IkB can be produced), we

expect them to affect out-of-equilibrium dynamics. In contrast,

perturbations classified as IS (inhibitor strength), such as

inhibition of IkB import, would unlikely affect the balance of

timescales, as the feedback timescale is dominated by slow

de novo protein production. On the other hand, we expected

perturbations that enhance the feedback without substantially

altering its timescale to cause a reduction in steady-state

levels and late signaling. Partial inhibition of the feedback

recovery (FBR) proved very selective before, suggesting stabili-

zation of IkB mRNA, or the protein itself may selectively atten-

uate the late component of the TNFc response and the LPS

response.

We next used the detailed mathematical model to test the pre-

dictions (Figures 5E and S4). We found that partial inhibition of

NFkB nuclear import or IkBa degradation (Figure 5E, top) at

some doses affected out-of-equilibrium dynamics, attenuating

the response to TNFp and the initial peak of the response to

TNFc. The response to LPS was delayed but less impacted in

terms of sustained amplitude. Unexpectedly, partial inhibition

of nuclear export of the NFkB-IkB complex or stabilization of

free IkBa produced similar effects. Further analysis revealed

that, in this network, both perturbations effectively act as activa-

tion inhibitors: the former causes initial accumulation of the inac-

tive NFkB-IkB complex in the nucleus from which it cannot be

directly activated (IKK is cytosolic), whereas the latter generates

a basal excess of IkBa that must be degraded before nuclear

translocation of NFkB can proceed. Perturbations affecting the

timescale of the feedback (e.g., increase of mRNA production

rate) were less selective, probably due to the changes that

they introduced in the IKK-IkB-NFkB dose-response relation-

ships. Simulations also confirmed that partial inhibition of IkBa

mRNA degradation (protein stabilization affects early signaling

as discussed above) attenuates the late phase of the TNFc

response and suppresses the response to LPS (Figure 5E, bot-

tom), although with some collateral attenuation of the early

phase as well. Conversely, destabilization of IkBmRNA impaired

postinduction attenuation and significantly extended the

response to TNFp. Finally, enhancement of IkBε mRNA produc-

tion suppresses late TNF-induced signaling in a specific manner.

This specificity arises from the delay (�45 0) associated with the

induction of this gene (Kearns et al., 2006), which also explains

why the response to LPS is not affected until late during the

signaling event.

The above principles identify conditions necessary but not

necessarily sufficient for the existence of perturbations with

dynamics and, by extension, stimulus-specific effects. Even

though the specific effects attained in the IkB-NFkB module

are partial (compared to the idealized cases in Figure 4), they

demonstrate that perturbations with stimulus-specific effects

are indeed feasible within that signaling module.

Targeting the NFkB-Signaling Hub to Achieve Stimulus-
Specific Inhibition
To develop experimentally testable predictions, we simulated

the effect of actual pharmacological agents. We focused on

agents that target known but ubiquitous biochemical mecha-
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nisms (as do some successful therapeutic agents such as as-

pririn or bortezomib) to test whether they could nevertheless

have stimulus-specific effects. Computationally, we simulated

the effect of each drug at 11 doses and 3 times of administration

and used the feature metric for early and late phases to select

treatment conditions from the resulting data set that had

stimulus-specific effects (Experimental Procedures). These pre-

dictions were tested experimentally in cultures of primary

fibroblasts, preparing nuclear extracts and mRNAs at specific

time points for subsequent assays of DNA-binding activity and

target gene expression. We found that cotreatment with the

general translation inhibitor cycloheximide (inhibits IkB synthe-

sis) preferentially affected TNFp-responsive signaling, resulting

in higher target gene expression (Figure 6A, middle), whereas

pretreatment with this inhibitor affected NFkB signaling in

response to all stimuli (Figure 6A, right). Similarly, whereas low

doses of the antioxidant pyrrolidine dithiocarbamate (PDTC)

(Brennan and O’Neill, 1996), a drug that inhibits NFkB-induced

transcription, inhibited NFkB induction and target gene expres-

sion by LPS, high doses abrogated signaling in response to all

stimuli (Figure 6B). Interestingly, the general proteasome inhibi-

tor MG132 (inhibits IkB degradation) was predicted to specif-

ically inhibit late-phase TNFc and LPS-induced NFkB activity

but with little effect on early responses characteristic of TNFp

stimulations (Figure 6C, middle). Consistent with this observa-

tion, the expression of the nfkbie gene that is typically induced

in the hour timescale was abrogated by this treatment. In

contrast postinduction attenuation of NFkBn, a hallmark of

TNF stimulation, was impaired by treatment with the HDAC in-

hibitor trichostatin A (TSA), a general inhibitor of transcription

(and therefore IkB synthesis), whereas LPS-induced NFkB activ-

ity was barely affected.

DISCUSSION

Here, we delineate the potential of achieving stimulus-specific

inhibition when targeting molecular reactions within pleiotropic

signaling hubs. We found that it is theoretically possible to

design perturbations that (1) selectively attenuate signaling in

response to one stimulus but not another, (2) selectively atten-

uate undesirable features of dynamic signals or enhance desir-

able ones, or (3) remodulate output signals to fit a dynamic profile

normally associated with a different stimulus.

These opportunities—not all of them possible for every

signaling module topology or biological scenario—are governed

by two general principles based on timescale and dose-

response relationships between upstream signal dynamics and

intramodule reaction kinetics (Figure 4 and Table S4). In short,

a steady-state or quasi-equilibrium part of a response may be

selectively affected by perturbations that introduce changes in

the relevant dose-response surfaces. Out-of-equilibrium re-

sponses that are not sensitive to the precise shape of a dose-

response curve may be selectively attenuated by perturbations

that modify the relative timescales. Dose responses and time-

scales cannot, in general, be modified independently by simple

perturbations (combination treatments are required), but as we

show, in some cases, one effect dominates resulting in feature

or stimulus specificity.



Figure 6. Stimulus-Specific Pharmacological Perturbations of NFkB Signaling

(A–C) Simulated and observed effects of pharmacological inhibitors on NFkB activity. Leftmost bar graph panels show NFkB activity predicted at indicated time

points in MEFs in response to TNFc (red), TNFp (green), and LPS (blue) in the absence of pharmacologic inhibitors. Center and right bar graphs show

computational predictions in response to the same stimuli under drug treatments. Asterisks indicate effects greater than 2-fold thought to be experimentally

detectable. (Top rows of gel images) Electrophoretic mobility shift assays (EMSAs) of NFkB activity. (Bottom gel images) RNase Protection analysis (RPA)

revealing the effect on the indicated NFkB target genes.

See also Figure S5 and Table S7.
The degree to which specific dynamic features of a signaling

profile or the dynamic responses to specific stimuli can be selec-

tively inhibited depends on how distinctly they rely on quasi-

equilibrium and out-of-equilibrium control. Signals that contain

both features may be partially inhibited by both types of pertur-

bation, limiting the specific inhibition achievable by simple per-

turbations. In practice, this limited the degree to which NFkB

signaling could be inhibited in a stimulus-specific manner (Fig-

ure 5) and the associated therapeutic dose window (Figure 6).

The most selective stimulus-specific effects can be introduced

when a signal is heavily dependent on a particular dynamic
feature; for example, suppression of out-of-equilibrium tran-

sients will abrogate the response to stimuli that produce such

transients. For a selected group of target genes, this specificity

at the signal level translated directly to expression patterns (Fig-

ure 6B, middle). More generally, selective inhibition of early or

late phases of a signal may allow for specific control of early

and late response genes (Figure 6C), a concept that remains to

be studied at genomic scales. Though the principles are general,

how they apply to specific signaling pathways depends not only

on the regulatory topology, but also on the dynamic regime

determined by the parameters. As demonstrated with the
Cell 155, 448–461, October 10, 2013 ª2013 Elsevier Inc. 457



Figure 7. Timescales of Cellular Processes Relevant for Signaling

Order of magnitude timescales associated with intracellular processes that

can be combined to produce complex signaling networks. Combinations of

processes with different timescales can result in responses with significant

out-of-equilibrium components, whereas similar timescales will likely produce

quasi-equilibrium dynamics. The timescale difference must be considered in

relation to the timescale at which the input signal changes.
IkB-NFkB module, analysis of a coarse-grained topology in

terms of the principles may allow the prediction of perturbations

with a desired specificity. Although not studied here, we believe

it is possible to exploit features such as multistability and sus-

tained oscillations to introduce specific effects based on fre-

quency discrimination or through selective alteration of specific

stable states. Which dynamic feature to target depends on the

downstream effector modules that decode the hub’s dynamic

activity and thus determine which dynamic feature is physiolog-

ically relevant (Behar and Hoffmann, 2010; Purvis and Lahav,

2013). While we employed simple examples of such decoding

circuits in Figure 1 that informed our selection of E and Lmetrics,

future studies (both theoretical and experimental) may uncover

diverse topologies and decoding properties that could substan-

tially extend the present work.

The timescales associated with signaling processes (Figure 7)

suggest that some aremore likely to generate kinetic imbalances

that could lead to out-of-equilibrium response dynamics and

thus opportunities for achieving specificity based on signaling

dynamics. For example, because activation and deactivation

mechanisms based on posttranslational modifications are typi-

cally fast (in the subsecond to second regime), they are more

likely to determine dose-response relationships than out-of-

equilibrium transients. On the other hand, mechanisms involving

protein synthesis and protein degradation are slower (in the sub-

hour to hour regime) and are therefore more likely to cause

out-of-equilibrium dynamic features and thus provide for oppor-

tunities for selective drug targeting. The recycling motif (M2),

relevant to receptors (Becker et al., 2012) or kinases (Behar
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and Hoffmann, 2013), can respond with out-of- or quasi-equilib-

rium signals, depending on the specific kinetic rates (Behar and

Hoffmann, 2013). In summary, knowing the molecular processes

that regulate hub activity can provide clues about signal dynamic

features and potential perturbation strategies.

Our results warrant a number of other observations. First, the

pharmacologic interventions discussed here do not require full

inhibition of the target. In fact, strong inhibition is undesirable,

as it suppresses signaling wholesale and tends to degrade the

dynamics selectivity. Thus, drug candidates that are too weak

to be deemed suitable for therapeutic use could become viable

for therapeutic applications based on signal dynamics. This

could also allow for lower concentrations, potentially mitigating

side effects due to a drug’s polypharmacological footprint (Force

et al., 2007; Ma’ayan et al., 2007). Second, perturbations often

remain relatively selective for a given dynamic feature or signal

input family over a range of doses (often by an order of magni-

tude or more). This implies that robust effects could be achieved

over a wide therapeutic window (notice the pronounced horizon-

tal or vertical segments in Figure 3A). Third, pharmacological

intervention does not need to occur concurrently with the stim-

ulus. Thus, particularly for stimuli or conditions involving only

short term signaling, the design of perturbations targeting

signaling dynamics is largely decoupled from the pharmacody-

namic problem. Fourth, what is most relevant for the control of

a dynamic signaling feature is the timescale on which a ‘‘pro-

cess’’ operates and the shape of the overall dose-response

curves. As processes comprise multiple reactions, the result is

an expanded list of potential targets. This is exemplified by the

role of IkB stability as part of the NFkB ‘‘activation’’ process, in

which both IkB degradation and NFkB import reactions emerged

as targettable. Taken together, these findings mean that, once

the corresponding target processes are identified, there could

be a large window of opportunity for finding suitable pharmaceu-

tical approaches for which coarse tuning may suffice. Further,

these considerations may suggest a two-step strategy for phar-

macological targeting of signaling hubs: first, using a coarse-

grained model of regulatory processes to identify opportunities

for pharmacological intervention, and second, developing a

detailed mechanistic reaction model of the key process(es) to

be targeted to identify actual molecular drug targets with desired

effects.

The approach described here can be used to devise strategies

for selective control of signals that are relevant for particular

biological or pathological scenarios even in the absence of a

detailed mathematical model. In systems in which temporal con-

trol is suspected, the principles outlined here can be used to

guide pharmacological design on a trial-and-error basis with

signal dynamics as the readout. In this sense, signal dynamics

per se (not the signal transducer) may be treated as a pharmaco-

logical target.
EXPERIMENTAL PROCEDURES

Primary mouse embryonic fibroblasts (MEFs) were prepared, cultured, and

stimulated as described (Werner et al., 2005), using either 0.1 mg/ml LPS

(Sigma, B5:055) or 1 ng/ml murine TNF (Roche) for the duration of the time

course (chronic, TNFc) or transiently for 45min (pulse, TNFp). Pharmacological



inhibitors (cycloheximide (CHX, Sigma), MG132 (Calbiochem), pyrrolidine

dithiocarbamate (PDTC, Sigma), or trichostatin A (TSA, Wako Chemicals)

were administered at the concentration indicated 2 hr prior to or coin-

cident with TNF or LPS. Electrophoretic mobility shift assays (EMSA) and

RNase protection assays (RPA) were performed as described (Werner et al.,

2005).

Simple Computational Model

The network in Figure 1 was modeled as in Equations 1–5.

d½X��
dt

=
k1,s,ð1� ½X��Þ
km1 + ð1� ½X��Þ �

k2b,½X��,½Y��
km2b + ½X�� � k2a,½X�� (Eq. 1)

d½Y��
dt

=
k3,½X��,ð1� ½Y��Þ
km3 + ð1� ½Y��Þ � k4,½Y��

km4 + ½Y�� (Eq. 2)

d½TF1��
dt

= k6,ð1� ½TF1��Þ � k7a,½TF1�� � k7b,½TF1��½W�� (Eq. 3)

d½W��
dt

=
k8,½TF1��,ð1� ½W��Þ
km8 + ð1� ½W��Þ � k9,½W��

km9 + ½W�� (Eq. 4)

d½TF2��
dt

= k5að1� ½TF2��Þ � k5b½TF2�� (Eq. 5)

Parameters (perturbed and unperturbed) are given in Table S1. Input s was

replaced with the functions in Equations 6 and 7 (representing S1 and S2,

respectively) with parameters: sl = 0, sb = 0.0001, sh = 1, tr = 0.1, td = 0,

tp1 = 0.5, j = 30, h = 0.0085.
F1ðtÞ= j sb t%td

sb+
ðt � tdÞsh

tr
td%t<tr + td

sb+ sh tr + td%t<tp1+ tr + td

sbase+ sh� ðt � tp1� tr � tdÞðsh� slÞ
tc

tp1+ tr + td%t<tp1+ tr + tc+ td

sb+ sl tp1+ tr + tc+ td<t

(Eq. 6)
F2ðtÞ= j sb t<td

sbð1+ jÞ+ ð10t�tdÞh � 1

j + ð10t�tdÞh tRtd

(Eq. 7)

We used the definition of specificity and fidelity in Komarova et al. (2005)

(Equations 8–11).

STF1 =
TF1jS1
TF2jS1;STF2 =

TF2jS2
TF1jS2 (Eq. 8, 9)

FTF1 =
TF1jS1
TF1jS2;FTF2 =

TF2jS2
TF2jS1 (Eq. 10, 11)

The quantity TFxjSy is TFx activity (early or late as, defined in the text) in

response to stimulus Sy.
Virtual Screen and Phase Space Analysis

The modules in the virtual screen were modeled with ordinary differential

equations using kinetic laws of the form VA, VAI, VD, VDF, and VMA (Equations

12–17).

VA =
k1,s,½X�
km1 + ½X�; VAI =

k1,s,½X�
km1 + k2i½Y�� (Eq. 12, 13)

VD =
k2a,½X��
km2 + ½X��; VDF =

k2b,½Y��,½X��
km2 + ½X�� ; VDMA = k2a,½X�� (Eq. 14-15)

VFB =
k3,½X��,½Y �
km3 + ½Y � ; VFF =

k3,s,½Y �
km3 + ½Y �; VFR =

k4,½Y��
km4 + ½Y�� (Eq. 16-17)

In all cases, the species were conserved and the total concentration normal-

ized to 1. For the cycle motif, the activation proceeded as in the previous

cases, but species X* had to undergo deactivation to a refractory species

X�, which in turn was recycled back to X (Equation 18).

VR =
k3,½X��

km3 + ½X�� (Eq. 18)

Module equations:

M1: ½X��0 =VA � VD (Eq. 19)

M2: ½X��0 =VA � VD (Eq. 20)

M3: ½X��0 =VA � VDMA � VDF; ½Y��0 =VFB � VFR (Eq. 21)
M4: ½X��0 =VA � VDMA � VDF; ½Y��0 =VFF � VFR (Eq. 22)
M5: ½X��0 =VAI � VD; ½Y��0 =VFB � VFR (Eq. 23)

M6: ½X��0 =VAI � VD; ½Y��0 =VFF � VFR (Eq. 24)

M7: ½X��0 = k1,½X�
km1 + ½X�� �

k2i,½X��,½Y �
km2i + ½X�� � VD; ½Y��0 = k3,s,½Y �

km3 + ½Y �
� k4,½X��,½Y��

km4 + ½Y��
(Eq. 25)

The rates for the activation reactions were tuned so they all respond on

similar timescales. Negative regulation was set to operate slower to generate

a wider range of dynamics. The timescale was chosen to be slower than the
Cell 155, 448–461, October 10, 2013 ª2013 Elsevier Inc. 459



initial increase rate for ‘‘fast’’ inputs (e.g., S1) but faster than the rate corre-

sponding to gradual inputs (e.g., S8). The Michaelis constants were set to

10% of the total concentration of the corresponding species to represent

enzymatic reactions with saturation. The EC50 for the modules was set to

roughly correspond to 1 unit of s in order to allow suppression but also

enhancement of the responses. Perturbations were simulated by applying

multipliers to the kinetic parameters (Table S2). The input curves were

generated according to Equations 6 (stepwise) and 7 (sigmoid) with parame-

ters in Table S3.

The global metric (Figure 2A) was calculated as follows: for a given module-

perturbation-input signal combination, we calculated the area under the curve

(AUC) for the X* time course for each perturbation dose. We then generated a

dose-response curve for AUC (normalized to the unperturbed value) versus

perturbation dose (Figure S1). The relative effect of a perturbation was quanti-

fied as the area under the dose-response curves corresponding to different

inputs. A smaller number represents higher sensitivity. For Figure 2, the metric

was inverted (brighter colors indicate higher sensitivity) and normalized within

each row. This data set was clustered using the function ‘‘DendogramPlot’’

(Mathematica, version 8, Wolfram, Urbana-Champaign, IL) with Euclidean

distance andWard linkage. Selectivity for early or late signaling was quantified

by the angle Q in the E-L space (Figures 3A and S2). We excluded doses that

did not substantially change the response (Euclideandistance in theE-Lplane<

0.1) and classified the rest as E (QR 15�), L (Q% 15�), or both (�15� <Q< 15�).

NFkB Signaling Hub

The mass action kinetic model of the NFkB signaling module was taken from

an updated version of that in Werner et al. (2005) See Figure S5 for diagram

and Table S5 for reactions and parameters. Themodel was equilibrated before

applying the IKK activity profiles (Table S6). Perturbations were simulated by

applying a range of multipliers to groups of related parameters (Table S7).

For modeling the effects of pharmacological inhibitors on the response to

LPS stimulation (Figures 5B–5D), a simple model to account for TNF feedback

was introduced, parameterized by the measured IKK activity profiles in TNF

knockout cells (Werner et al., 2005). Specifically, ‘‘TNF’’ is synthesized in an

NFkB-dependent manner (0.4 min�1), is added to the IKK scaling factor, and

is degraded (0.3 min�1). To simulate pharmacological perturbations, parame-

ters were grouped as described in Table S7 andwere altered over a wide range

(10�0.0625–10�2) in three treatment regimens: pretreatment (during equilibra-

tion phase), cotreatment (at start of signaling phase), and posttreatment

(at t = 60 min).

Simulation and analysis were performed with the package Mathematica 8

(Wolfram, Urbana-Champaign, IL) except for the pharmacological simulations

performed with the package MatLab R2007a (The Mathworks, Natick, MA).
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Schröfelbauer, B., Polley, S., Behar, M., Ghosh, G., and Hoffmann, A. (2012).

NEMO ensures signaling specificity of the pleiotropic IKKb by directing its ki-

nase activity toward IkBa. Mol. Cell 47, 111–121.

Seki, E., Brenner, D.A., and Karin, M. (2012). A liver full of JNK: signaling in

regulation of cell function and disease pathogenesis, and clinical approaches.

Gastroenterology 143, 307–320.

Sung, M.H., and Simon, R. (2004). In silico simulation of inhibitor drug

effects on nuclear factor-kappaB pathway dynamics. Mol. Pharmacol. 66,

70–75.

Sung, M.H., Bagain, L., Chen, Z., Karpova, T., Yang, X., Silvin, C., Voss, T.C.,

McNally, J.G., Van Waes, C., and Hager, G.L. (2008). Dynamic effect of borte-

zomib on nuclear factor-kappaB activity and gene expression in tumor cells.

Mol. Pharmacol. 74, 1215–1222.

Weinberg, R.A. (2007). The biology of cancer (New York: Garland Science).

Werner, S.L., Barken, D., and Hoffmann, A. (2005). Stimulus specificity of gene

expression programs determined by temporal control of IKK activity. Science

309, 1857–1861.

Zalatan, J.G., Coyle, S.M., Rajan, S., Sidhu, S.S., and Lim, W.A. (2012).

Conformational control of the Ste5 scaffold protein insulates against MAP ki-

nase misactivation. Science 337, 1218–1222.

Zhang, X., Crespo, A., and Fernández, A. (2008). Turning promiscuous kinase

inhibitors into safer drugs. Trends Biotechnol. 26, 295–301.
Cell 155, 448–461, October 10, 2013 ª2013 Elsevier Inc. 461


