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SUMMARY

Combinatorial control of gene expression is pre-
sumed to be mediated by molecular interactions
between coincident transcription factors (TFs). While
information on the genome-wide locations of TFs
is available, the genes they regulate and whether
they function combinatorially often remain open
questions. Here, we developed a mechanistic, rather
than statistical, modeling approach to elucidate TF
control logic from gene expression data. Applying
this approach to hundreds of genes in 85 datasets
measuring the transcriptional responses of murine
fibroblasts and macrophages to cytokines and
pathogens, we found that stimulus-responsive TFs
generally function sequentially in logical OR gates
or singly. Logical AND gates were found between
NF-kB-responsive mRNA synthesis and MAPKp38-
responsive control of mRNA half-life, but not
between temporally coincident TFs. Our analyses
identified the functional target genes of each of the
pathogen-responsive TFs and prompt a revision of
the conceptual underpinnings of combinatorial con-
trol of gene expression to include sequentially acting
molecular mechanisms that govern mRNA synthesis
and decay.

INTRODUCTION

Mammalian cells express genetic information in a manner that is

both cell-type specific and responsive to environmental cues.

The notion that combinations of transcription factors (TFs) may

control gene expression by functioning together, or combinato-

rially, was established by observations that TF binding sites are

often clustered within promoters and enhancers (Zhu et al.,

2002), that some TFs may bind cooperatively (Johnson et al.,

1979), or that they may show transcriptional synergy (Carey
330 Cell Systems 4, 330–343, March 22, 2017 ª 2017 Elsevier Inc.
et al., 1990), possibly mediated by multiple TF interaction do-

mains in coactivators such as CBP/p300 (Vo and Goodman,

2001). Boolean logic gates (Buchler et al., 2003), including

graded versions using thermodynamic formulations (Bintu

et al., 2005b), emerged as a useful conceptual framework and

theoretical considerations emphasized the capacity of combi-

natorial control logic to produce a large variety of gene expres-

sion programs with a smaller number of available TFs (Arkin

and Ross, 1994; Mayo et al., 2006; Morris et al., 2010). How-

ever, despite the availability of genome-wide technologies to

probe transcriptional responses and TF binding events, whether

and how the notions of combinatorial control of gene expression

actually apply to cellular gene expression programs has not been

investigated in an unbiased manner on a genome-wide scale.

A key difficulty for elucidating TF logic functions or construct

predictive gene regulatory network (GRN) models that account

for these logic functions is that, in mammalian genomes, neither

the presence of a consensus TF binding site nor an experimen-

tally confirmed TF binding event is reliably predictive for function

(Jaimovich and Friedman, 2011); indeed, functionally relevant TF

binding events may be far from the transcription start site due to

extensive looping of the native chromatin fiber (Jin et al., 2011;

Lieberman-Aiden et al., 2009). Detailed single-gene studies uti-

lizing CRISPR/Cas9-directed mutagenesis of specific binding

sites are beginning to provide answers, but such approaches

have not been successfully scaled to expression programs

involving hundreds of genes. One consequence of lacking a

mechanistic genome-scale GRN model is that the seemingly

simple question of what the functionally relevant target genes

of a given TF are remains largely unanswered.

A well-studied model system for stimulus-responsive gene

expression is the innate immune and inflammatory response.

Exposure to a pathogen leads to dramatic changes in the tran-

scriptome of myeloid and fibroblastoid cells (Nau et al., 2002;

Novershtern et al., 2011; Ramirez-Carrozzi et al., 2009; Ramsey

et al., 2008; Ravasi et al., 2010). These cells function as sentinels

and initiators of multi-tiered immune responses; in response

to pathogen exposure they induce the expression of genes

that mediate cell-intrinsic defenses, the coordinated recruitment

of professional innate immune cells (e.g., neutrophils and
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Figure 1. Dissecting the Combinatorial Control Logic Underlying the Pathogen-Responsive Transcriptome

(A) Schematic of how combinatorial control of kinases (K) signal-dependent transcription factors (TFs) can mediate stimulus (S)-specific gene (G) expression

programs. In this example the presence of AND and OR gates allows two TFs to mediate four distinct stimulus-responsive gene expression programs.

(B) While chromatin immunoprecipitation sequencing studies enable genome-wide location analysis of TFs, it remains challenging to determine whether these

binding events are functional or incidental, which gene or transcription start site theymay regulate, andwhether they function in conjunction with other TFs nearby

or at a distance, in potential AND or OR gates.

(C) Schematic of key signal regulatory networks (SRNs) that control pathogen-responsive gene expression programs, exemplified by clusters of co-regulated

genes (re-analysis of data by Nau et al., 2002). Prior studies of these SRNs have resulted in computational models of the molecular mechanisms (blue boxes) that

recapitulate observed stimulus-responsive activation of the signal-dependent transcription factors (SDTFs) AP1, NF-kB, and IRF. How these SDTF activities are

interpreted to produce pathogen responsive gene expression programs is determined by the gene regulatory networks (GRNs), for which no mechanistic model

has been developed (gray box).

(D) Schematic of the workflow for iteratively refining a mathematical model that recapitulates pathogen-responsive inflammatory and immune gene expression

programs. Model formulations of increasing complexity are constructed and refined based on prior knowledge of the signaling network, and assessed by

comparison with experimental data. With each round of simulation and experimentation of additional conditions the model is iteratively refined.
macrophages), the initiation of an adaptive immune response

(via dendritic cells and T cells), and tissue remodeling for path-

ogen clearance and subsequent wound healing. A large body

of research has identified numerous molecular factors that

form complex signal regulatory networks (SRNs) and GRNs to

regulate these pathogen-responsive gene expression programs

(Amit et al., 2009; Cheng et al., 2011; Gilchrist et al., 2006; Nau

et al., 2002; Novershtern et al., 2011; Ramsey et al., 2008; Ravasi

et al., 2010). Key pathogen-responsive, so-called signal-depen-

dent TFs (SDTFs), whose dynamic activities are controlled by

SRNs, are activating protein 1 (AP1), nuclear factor kB (NF-kB),

and interferon regulatory factor (IRF). For specific SRNs, partic-

ularly NF-kB (Basak et al., 2012), mathematical modeling has

provided key insights into how a variety of biochemical mecha-

nisms function together to regulate activation and inactivation.

To understand how pathogen-responsive gene expression is

controlled, DNA sequence motifs, chromatin-signatures, and

SDTF binding events have been characterized both genome-

wide and for subsets of highly induced genes (Garber et al.,

2012; Heinz et al., 2013; Jin et al., 2011; Ramirez-Carrozzi

et al., 2009; Bhatt et al., 2012; Tong et al., 2016), but predictive

GRN models that allow for an understanding of how combina-

tions of these SDTFs function have only been produced for

individual genes of interest (Amit et al., 2009; Cheng et al.,

2011; Gilchrist et al., 2006).

Here, we report the development of GRN models underlying

the pathogen-responsive transcriptome for the purposes of

examining how the prominent pathogen-responsive SDTFs
AP1, NF-kB, and IRF, function combinatorially. The modeling

approach allows integration of diverse functional gene expres-

sion datasets in successive cycles of model simulation/predic-

tion, experimental testing, and model refinement, but side-steps

the challenge of characterizing the functional relevance of spe-

cific physical TF-enhancer binding events. By tracking the

performance of the models at single-gene resolution, we could

identify the best-performing GRN model for each cluster of co-

regulated genes. Interestingly, we found no evidence for syn-

ergy (logical AND gates) between these SDTFs, but identified

numerous logical OR gates of sequentially acting NF-kB and

interferon-stimulated gene factor 3 (ISGF3) and AND gates be-

tween sequentially acting NF-kB-driven nuclearmRNA synthesis

and cytoplasmic p38-driven mRNA half-life control.

RESULTS

Identifying GRN Architectures
A hallmark of the notion of combinatorial TF control is that a rela-

tively small number of regulators can provide for a larger number

of different gene expression responses through the use of AND

and OR gates (Figure 1A). However, delineating the combinato-

rial control logic on actual mammalian genes is difficult in part

because genome-wide TF location analyses do not readily pro-

vide functional information about the binding event (Figure 1B).

We sought to leverage knowledge about the SRNs responsive

to pathogens to develop models of the GRNs that underlie path-

ogen-responsive gene expression programs (Figure 1C). We
Cell Systems 4, 330–343, March 22, 2017 331



Figure 2. Assigning Combinatorial GRN Models to Endotoxin-Responsive Gene Expression Clusters

(A) Combinatorial control by three pathogen responsive SDTFs AP1, NF-kB, and IRF described by Boolean logic gates. Considering AND and OR gates,

17 possible GRNs (indicated in purple) can be enumerated.

(B) Knowledge of the pathogen-responsive SRNs indicates that subsets of pathogen-responsive SDTFs may be activated by cytokines (TNF, IFN-b) and growth

factor (PDGF).

(C) Heatmap of the gene expression patterns predicted by the Boolean GRN models of (A) responding to the SDTF-inducing stimuli schematized in (B).

(D) Heatmap of experimental mRNA expression data of 714 genes inducible by endoxin inMEFs. MEFswere stimulated with PDGF-b (50 ng/mL), TNF (10 ng/mL),

IFN-b (500 units/ml), and LPS (100 ng/mL) for the indicated times. Expression fold changes (log2) were analyzed by K-means clustering following row-

normalization, yielding seven clusters of co-regulated genes (A to G, indicated in blue). Data are representative of three experiments in which all conditions were

performed in parallel.

(E) Hierarchical clustering of experimental cluster average profiles (D) and predicted expression profiles of the Boolean GRN model (C). Many Boolean GRN

models lead to indistinguishable expression profiles hindering the assignment of a GRN model to experimentally determined gene expression clusters. Further,

the percentage (blue on right) of in vivo gene expression profiles that are accounted for by the assigned in silico GRN (Spearman rank correlation-based ‘‘good fit’’

criterion; see STAR Methods) is generally low.

(F) Formulation of 17 kinetic in silicomodels of potential GRNswith twomRNA half-lives. Promoter activity f is a function of thermodynamic interactions of TFswith

their cognate binding sites; combinations of these may form AND or OR gates (Figure S1) (Bintu et al., 2005a). As TF abundances change over time (bottom),

promoter activity and the resulting mRNA synthesis rate ksyn.f will change accordingly. Abundances of mature mRNAs may then be calculated with a differential

equation accounting for mRNA synthesis and decay.

(legend continued on next page)
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pursued the systems biology approach of iterative modeling

and experimentation (Ideker et al., 2001) to test increasingly

sophisticated model formulations of Boolean, thermodynamic,

or kinetic formulations of GRNs involving combinations of TFs

with an increasing set of experimental data (Figure 1D).

We first focused on the three prominent pathogen-respon-

sive SDTFs, the families designated AP1, NF-kB, and IRF, and

enumerated 17 possible GRNs including Boolean logic AND

and OR gates (Figure 2A). To elucidate the Boolean logic func-

tions of actual genes we reasoned that experiments involving

subsets of these SDTFs would be informative. Prior knowledge

of the upstream SRNs suggested that this is possible with

a panel of cellular cytokines or growth factors (Figure 2B):

Platelet-derived growth factor b (PDGF-b), the major growth fac-

tor in blood serum, is known to activate the JNK pathway and

AP1 (Tallquist and Kazlauskas, 2004), the inflammatory cytokine

tumor necrosis factor (TNF) activates AP1 and NF-kB (Bradley,

2008), and interferon b (IFN-b), the important antiviral autocrine

regulator, activates the IRF TF ISGF3 (Borden et al., 2007).

Based on this knowledge, we used each of the 17 hypothetical

GRNs for simulations that predicted the mRNA response pattern

to the panel of stimuli (Figure 2C).

To characterize actual cellular gene expression programs

responsive to each stimulus, we performed genome-wide

expression analyses in wild-type (WT) primary mouse fibroblasts

(MEF) with the aforementioned stimuli. K-means clustering of the

MEF expression data of 714 endotoxin inducible genes identified

seven distinct clusters of co-expressed genes (Figure 2D). We

attempted to assign in silico GRNs to the mean profiles of these

gene expression clusters, but because many Boolean GRNs

shows indistinguishable expression patterns, assignments

were generally not unique, and the fraction of genes in a cluster

that were accounted for by the model simulations were generally

below 50% (Figure 2E).

The poor fit scores suggested that more detailed information

was required; indeed, gene expression time courses provide

quantitative information over time that was not used by the

Boolean digital logic model. We therefore constructed thermo-

dynamic versions (Bintu et al., 2005b; Mayo et al., 2006) of the

aforementioned 17 GRNs (including logical AND and OR gates,

Figure S1A) that drive the synthesis of mRNA transcripts,

characterized by either long (L)- or short (S)-decay half-lives (Fig-

ure 2F), resulting in 34 GRN models (see STAR Methods). As TF

activities show stimulus-specific temporal profiles, wemeasured

these in time-course studies in response to each of the four

stimuli (Figure S1B and Table S1), allowing us to generate

numerical inputs (Figure 2F) for GRN model simulations of

stimulus-responsive gene expression (Figure 2G).

Hierarchical clustering the GRN model simulations with the

mean expression profiles of the seven experimentally deter-

mined expression clusters suggested an initial assignment of

an in silico GRN model to each experimental expression cluster

(Figure 2H). Two clusters were assigned combinatorial GRNs:
(G) Heatmap of the predicted expression profiles of the kinetic GRNmodels (F) in r

short (S) or long (L) mRNA half-life (1 versus 6 hr). Simulations employed SDTF a

(H) Hierarchical clustering of experimental average profiles (D) and predicted exp

and the percentage of in vivo gene expression profiles that are accounted for by t

STAR Methods) is indicated in blue on the right. GRNs shaded in purple best ma
cluster E was predicted to be an OR gate GRN (GRN7L) in which

TFs function independently, and cluster D was assigned an AND

gate GRN (GRN10L) in which TFs are predicted to function

cooperatively. (While GRN6L, 8L, 10L, and 17L do reasonably

capture cluster D patterns, GRN10L was slightly preferred due

to the complete lack of response to IFN-b). Comparison be-

tween the simulated and measured temporal expression pro-

files showed that generally more than 60% of genes passed a

‘‘good fit’’ criterion based on rank correlations for time-course

data under different conditions (Spearman correlation; see

STAR Methods).

Testing the Model: Physical and Functional
Characteristics of Assigned GRNs
Based on this analysis, genes in cluster A were predicted to be

AP1 targets (Figure 3A), genes in clusters B and C were pre-

dicted to be NF-kB target genes with either short or long

mRNA half-lives, and clusters F and G were predicted to be

IRF/ISGF3 target geneswith either short or longmRNA half-lives.

Cluster E was predicted to consist of genes that may be induced

by either NF-kB or IRF/ISGF3, while the expression pattern of

cluster D was most consistent with promoters synergistically

controlled by combinations of AP1, NF-kB, and IRF/ISGF3. We

next tested these model predictions with respect to physical

and functional characteristics of the GRNs.

Physical characteristics of GRNs include the presence of

TF binding sites and the half-life of the mRNA. We measured

mRNA half-lives using the transcription inhibitor actinomycin D;

transcriptome-wide measurements (Figure S3) confirmed model

predictions that clusters B and F contained predominantly short

mRNA half-life genes, in contrast to clusters C and G (Figure 3B).

However, for cluster D there was poor agreement between

model (long half-life) and experiment (mostly short). We then

tested predictions regarding the presence of specific TF binding

sites bioinformatically; unbiased de novo motif analysis of

promoters found that the most over-represented sequences in

cluster A conform to AP1 binding sites (Figure 3C), and motif

searches with known TF binding matrices showed little enrich-

ment of kB or interferon response element (IRE) sequences in

either promoter or enhancer sequences. In similar support of

the model’s predictions, we found kB-sites enriched in clusters

B and C, IREs in clusters F and G, and both IRE and kB sites

in cluster E. However, we found only one sequence (conforming

to a kB site) highly enriched in cluster D, although the model had

predicted cluster D to contain AND gate genes controlled also by

AP1 and IRF.

We further tested the model functionally by comparing pre-

dicted expression patterns following TF deletion (Figure 3D)

with expression profiles observed in cells with corresponding

genetic perturbations (Figure 3E). We prepared primary MEFs

frommouse embryos deficient in NF-kB (NF-kB�/�), IRF (IRF�/�),
or both (NF-kB�/�IRF�/�), each involving complex combination

knockouts to ensureminimal residual activity by family members
esponse to the SDTF-inducing stimuli (B). EachGRN is represented twice with a

ctivity profiles measured biochemically (Figure S2).

ression profiles of the GRN models (G). Best-fit GRNs are highlighted in purple,

he assigned in silico GRN (Spearman correlation-based ‘‘good fit’’ criteria; see

tch the experimental data thus far.
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Figure 3. Testing Predicted Physical and Functional Properties of GRNs

(A) Summary of GRN assignments. For each in vivo gene expression cluster the assigned in silico GRN is shown in terms of associated TF logic gate architecture

and fast or slow mRNA turnover rate (short or long half-life, T1/2).

(B) Results of experimental genome-wide mRNA half-life measurements using actinomycin D, represented by the percentage of genes in each cluster that have

short (S) (<6 hr) or long (L) (R6 hr) mRNA half-lives on the indicated white-blue scale.

(C) De novo motif analyses identified the most highly enriched motifs (with indicated p values) within �1.0 to 0.3 kb of transcriptional start sites. Similarly, the

occurrence frequency of known motifs was evaluated from promoter regions as well as enhancers identified by the presence of H3K4me1 and absence of

H3K4me3 peaks (ENCODE data).

(D) In silico gene expression profiles predicted by kinetic model v1 for the indicated stimuli and knockout conditions.

(E) Results from experimental genome-widemRNA expressionmeasurements to test the conditions simulated in (D). This dataset was obtainedwith primary wild-

type (WT), IRF-deficient (ifnar�/�), NF-kB-deficient (rela�/�crel�/�, rela�/�relb�/�crel�/�), and compound-deficient (rela�/�crel�/�irf3�/�) MEFs stimulated with

PDGF-b, TNF, IFN-b, and LPS for 0, 1, 3, and 8 hr, as indicated. Whether the kinetic model v1 recapitulated the expression profile of each genewas assessedwith

the Spearman goodness-of-fit criterion and indicated on the right with yellow indicating passing and black not passing. This analysis indicated thatmodel v1 does

not well account for the expression profiles of gene clusters A and D.
(see STAR Methods), and profiled the transcriptome following

stimulation with lipopolysaccharide (LPS) and cytokines (Table

S2). Consistent with the model, NF-kB�/� cells showed no

LPS-induced activation of NF-kB target genes (clusters B, C,

and D) and, as predicted by the simulations, only partial activa-

tion of the OR gate genes (cluster E). Similarly, IRF�/� cells

showed no activation of IRF/ISGF3 target genes (clusters F

and G), and only partial activation of the OR gate genes

(cluster E); indeed, cluster E gene expression was only abolished

in the compound NF-kB�/�IRF�/� mutant cells. Remarkably,

model fit scores for most clusters remained well above 70%

with this extended dataset, supporting the original assignments

for those clusters. However, clusters A and D fit scores dropped

to 14% and 10%, respectively, indicating that the initial GRN

assignments were likely incorrect.
334 Cell Systems 4, 330–343, March 22, 2017
Iterative Model Refinement: Identification of a
Feedforward Loop
Addressing cluster A, we noted that gene expression was

unexpectedly reduced in NF-kB�/� and IRF�/� cells (Figure 3E).

Testing for the activation of the relevant TF, AP1, we found defi-

ciency in NF-kB/IRF knockout cells in response to LPS, particu-

larly at the later time points (2 and 4 hr), and also, but to a lesser

degree, in response to PDGF treatment (Figure 4A). As endoge-

nous PDGFwas reported to function in an autocrine manner dur-

ing the LPS response (Chow et al., 2005), we examined whether

IRF and NF-kB contribute to the expression of the Pdgfb gene.

We found a partial dependence on IRF and a severe dependence

on NF-kB (Figure 4B). In addition, NF-kB and IRF was found to

control the expression of AP1 family members Jun, Fos, and

JunB. These data suggest that NF-kB, and to a lesser degree



Figure 4. A GRN Involving Coherent Feedforward TF Control

(A) AP1 activity is NF-kB and IRF dependent. Immunoblot of p-c-Jun using cell extracts prepared from WT and NF-kB/IRF compound-deficient

(rela�/�crel�/�irf3�/�) MEFs stimulated with LPS (left) or PDGF (right) for the indicated times (representative of four experiments).

(B) Expression of PDGF and AP1 constituents is NF-kB and IRF dependent. Microarray measurements of Pdgfb mRNA expression in WT (blue), NF-kB-deficient

(red, rela�/�crel�/�), IRF-deficient (green, ifnar�/�), or NF-kB/IRF compound-deficient (black, rela�/�crel�/�irf3�/�) MEFs stimulated with LPS (0.1 mg/mL) for 1, 3,

and 8 hr were plotted as expression fold changes (log2) relative to unstimulated cells.

(C) Schematic of the modified GRN 1S, which depicts that cluster A is controlled by AP1, but that AP1 activity requires NF-kB and IRF by controlling autocrine

PDGF and AP1 constituents, forming coherent feedforward loop.

(D) Inclusion of interdependent TF control into model v2 increases the number of genes in cluster A that pass (yellow) the Spearman goodness-of-fit criterion.

(E) Testing the validity of GRN10L assigned to cluster D. Heatmap of predicted gene expression profiles of TNF and IFN-b co-stimulation, using model v2. The

model predicts that the AND gate containing GRN10L (thought to control cluster D) is responsive to the co-stimulation condition.

(F) Heatmap of experimental transcriptome data from WT MEFs in response to TNF and IFN-b co-stimulation at the indicated times. Genes that passed (yellow

lines) or did not pass (black lines) the goodness-of-fit criterion for model v2 including the co-stimulation dataset (percent of genes shown on the right). This

analysis indicates that GRN10L does not represent the true regulatory logic underlying the expression control of cluster D.
IRF, form a feedforward loop by inducing the expression of

PDGF-b and AP1 components, thus amplifying and extending

AP1 activity (Figure 4C). Including the NF-kB-dependent

feedforward activation of AP1 in response to LPS in the model

significantly improved the fit for cluster A genes from 14% to

71% (Figure 4D).

Addressing cluster D, the GRNmodel of an AND gate between

NF-kB (or AP1) and IRF/ISGF3 fared poorly with the extended

expression data (only 10% passed the fit threshold). We decided

to address the AND gate hypothesis directly using a mixed TNF/

IFN-b co-stimulation protocol in which both NF-kB and IRF/

ISGF3 are activated, mimicking the SDTF activation profiles in

response to LPS (Figure S3). Indeed, such co-stimulation leads

to a transcriptome that closely resembles that induced by LPS
(Figure 4E), including cluster E, which our analysis suggests

is governed by an OR gate GRN between NF-kB and IRF. How-

ever, contrary to model prediction, cluster D genes were not

induced by the TNF/IFN-b co-stimulation protocol (Figure 4F).

Drilling down into the fit of individual gene profiles to model pre-

dictions indicated that Spearman rho correlation score distribu-

tions for each of the clusters were highest for the assigned GRN

(Figure S4A), confirming that assignments of the available

models were optimal, but that a large number of cluster D genes

scored below the established threshold fit (Figure S4B). These

genes did not score better with the OR gate model (GRN 7L),

unlike the genes in cluster E, whose expression control was

generally better accounted for by the OR gate model than the

equivalent AND gate GRN 6L (Figure S4C).
Cell Systems 4, 330–343, March 22, 2017 335
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The SDTF GRN Logic also Applies to Macrophage
Transcriptomes Induced by Pathogens
We next addressed whether the GRN models identified in fibro-

blasts may be applied to other cells also. Although fibroblasts

have the experimental advantage that they can be isolated

from mouse embryos and thus from genotypes that are embry-

onic lethal (e.g., NF-kB knockouts), macrophages are consid-

ered the primary innate immune cells. Pathogen-responsive

SRNs controlling SDTF activities are qualitatively conserved be-

tween fibroblasts and macrophages. To examine whether the

GRNs identified in fibroblasts may also account for the endo-

toxin-responsive gene expression programs in macrophages,

we analyzed transcriptomes in murine bone-marrow-derived

macrophages (BMDMs) in response to LPS, TNF, and IFN-b by

next-generation RNA-sequencing (RNA-seq). We identified

seven co-regulated gene clusters (mA to mG, Figure 5A), which

showed distinct gene ontology terms (Figure S5).We determined

the inputs for the previously identified GRNs by measuring the

SDTF activation profiles in macrophages as we had done for

MEFs (Table S2), and produced GRN outputs of gene expres-

sion. By co-clustering expression profiles of measured gene

clusters and GRNs, we found that the SDTF logic previously

determined in MEFs well matched measured gene expression

profiles in macrophages, producing fit scores ranging from

55% to 94% (Figure 5B). Testing these predicted assignments

by regulatory motif analysis in promoters and enhancers (Fig-

ure 5C), we confirmed that themA cluster contained AP1 binding

sites, mB and mC clusters contained kB sites, mF and mG con-

tained IRE sites, and mE, the predicted GRN7L OR gate cluster,

contained both kB and IRE motifs. However the predicted

GRN10L AND gate cluster mD showed primarily a preponder-

ance of only kB sites, as was also seen in the corresponding

MEF cluster D.

To test whether these GRN models may be used to predict

gene expression in response to a wider range of PAMPs as

well as live pathogens, we measured macrophage SDTF activa-

tion profiles in response to each of seven additional PAMPs that

are ligands for various members of the TLR family and the cyto-

solic sensor Rig-I, as well as the bacterial pathogens Strepto-

coccus pneumoniae (STREP), and viral pathogens Listeria

monocytogenes (LM), murine cytomegalovirus (MCMV), or ve-

sicular stomatitis virus (VSV). Quantified SDTF trajectories (Fig-

ure 5D) were used as inputs for simulations with each of the
Figure 5. Testing GRN Models in Predicting the Transcriptomes of Ma

(A) Gene expression clusters of endotoxin-induced transcriptome dissected by c

were stimulated with 100 ng/mL LPS, 10 ng/mL TNF, and 100 U/ml IFN-b; isol

induced by LPS R3-fold at least one time point, were subjected to K-means clu

(B) Clusters of co-regulated genes were assigned best-matched GRNs by co-c

means of clusters mA-mG identified in (A). Shown on the right in blue are the per

assigned in silico GRN (see STAR Methods).

(C) Summary of GRN assignments. For each in vivo gene expression cluster the as

half-life. De novo motif analyses identified the most highly enriched motifs (with in

the occurrence frequency of known motifs was evaluated from promoter regions

H3K4me3 peaks (ENCODE data).

(D) Measured SDTF activities in cells exposed to indicated stimuli and pathogen

(E) Computational simulations using the indicated GRN models and the TF activ

(F) Testing GRNmodel predictions with new experimental datasets. The heatmap

in each of the indicated conditions. Genes that passed (yellow lines) or did not pas

Note that more than 50% of genes pass the Spearman fit score criterion in all cl
seven models to produce predicted gene expression profiles

(Figure 5E). We then measured the macrophage transcriptomic

responses to these stimuli by RNA-seq with internal controls to

allow for cross-comparisons (Figure 5F). In this manner we chal-

lenged the GRN models with 33 additional datasets. Remark-

ably, these diverse stimulation conditions elicited gene expres-

sion profiles that were largely accounted for by the previously

assigned GRN models, with fit scores mostly remaining well

above 50%, indicating that the identified GRN logic have broad

relevance in accounting for pathogen-responsive gene expres-

sion programs.

However, the predicted GRN10L (AND gate) for cluster mD

fared poorly, with fewer than 35% genes passing the Spearman

fit score test. Thus both MEF and BMDM datasets contained a

cluster of co-regulated genes that did not conform to the initially

identified AND gate model GRN10 (Figure S6B), prompting

further studies to develop a better model.

IterativeModel Refinement: An ANDGate of Nuclear and
Cytoplasmic Control Mechanisms
To investigate the regulatory mechanisms underlying the cluster

mD gene control, we examined the expression of a few repre-

sentative genes (also present in corresponding MEF cluster D)

by qPCR. Their mRNA levels were indeed highly induced by

LPS, but not by TNF (Figure 6A). To examine expression control

of these genes in more detail we measured nascent transcript

levels and found to our surprise that several (e.g., TNF-a,

Cxcl2, and Cxcl1) were equally induced by LPS and TNF, and

for some others (e.g., interleukin-6 [IL-6], IL-1b) the difference

was smaller than that observed for the mature mRNA. These

data did not support the model of an AND gate controlling pro-

moter activity and transcription, but instead suggested a post-

transcriptional regulatory mechanism involving mRNA stability.

We tested whether regulation might occur at the mRNA stability

level by measuring mRNA half-lives using actinomycin D

following TNF or LPS stimulation. Indeed, the aforementioned

mRNAs showed very short half-lives in TNF-stimulated cells

but LPS stimulation led to their stabilization (Figure 6B).

mRNA stabilization may be regulated by p38- and extracellular

signal-regulated kinase (ERK)-dependent phosphorylation of

the AU-rich element binding protein tristetraprolin (TTP) (Mah-

tani et al., 2001), which inhibits its interaction with the RNA

decay machinery (Sandler and Stoecklin, 2008). Interestingly,
crophages Responding to Diverse Stimuli and Pathogens

ytokine stimuli TNF and IFN-b. Bone marrow-derived macrophages (BMDMs)

ated mRNA was subjected to RNA-seq. Expression profiles from 782 genes,

stering.

lustering GRN model outputs (using SDTF activity profiles as inputs) and the

centages of the in vivo gene expression profiles that are accounted for by the

signed in silico GRN is shown in terms of TF logic gate architectures andmRNA

dicated p values) within�1.0 to 0.3 kb from transcriptional start sites. Similarly,

as well as enhancers identified by the presence of H3K4me1 and absence of

s. Experimental data (Table S2) are normalized to maximum.

ities depicted in (D) used as inputs.

depicts the fold induction based on RNA-seq analysis of each of the 782 genes

s (black lines) the goodness-of-fit criterion (Figure S5B) are shown on the right.

usters but mD (35%), to which the AND gate GRN10L was assigned.
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Figure 6. A GRN Governed by an AND Gate of Stimulus-Responsive mRNA Synthesis and Half-Life Control

(A) Mature and nascent mRNA expression fold changes in BMDMs stimulated with TNF (10 ng/mL) or LPS (100 ng/mL). The data shown are representative of

three independent experiments; error bars indicate standard deviations of technical replicates. The same stimulation conditions are used in all subsequent

experiments.

(B) mRNA half-life measurements using the synthesis inhibitor actinomycin D in BMDMs stimulated with TNF (black) or LPS (red) for 30 min. The underlying

qRT-PCR data were representative of three independent experiments. All mRNA half-lives were calculated within a 50% SE by exponential regression analysis.

(C) Phospho-p38 (Thr180/Tyr182) and phospho-ERK1/ERK2 (Thr202/Tyr204) revealed by immunoblot of whole-cell lysates prepared from stimulated BMDMs.

ERK1 and ERK2 immunoblots are shown as loading controls. This is representative of three independent experiments performed by different individuals.

(D and E) Phospho-TTP (arrowhead), TTP, and a-tubulin (loading control) were analyzed by immunoblotting of whole-cell lysates prepared from stimulated

BMDMs with and without a p38 inhibitor (2.5 mM, SB202190). This is representative of three independent experiments performed by different individuals.

(F) A schematic of the ANDgate betweenNF-kB-driven transcription and LPS-specific activation of a p38/ERK- and TTP-dependentmRNA stabilization pathway.

This is referred to as mod.GRN 2S, and its inclusion results in model v3.

(G) mRNA half-life measurements as in (B) in WT and erk2�/� BMDMs stimulated with LPS (red) for 30 min or in the presence of p38 inhibitor (green for WT and

yellow for erk2�/�). The data shown are representative of three independent experiments.

(H) Mature and nascent mRNA expression fold changes inWT or erk2�/� BMDMs stimulated with LPS, in the absence (red) or presence of p38 inhibitor (green for

WT and yellow for erk2�/�). The data shown are representative of three independent experiments.
in our analysis LPS induced much stronger activation of p38 and

ERK than TNF (Figure 6C). Phosphorylation of TTP was specific

to LPS (Figure 6D) and was p38 dependent (Figure 6E). These

results suggested a logical AND gate not of two TFs, but

of two sequentially acting pathways: NF-kB-driven pre-mRNA

synthesis and p38-dependent mRNA stabilization (Figure 6F).

Such a model is also consistent with a more detailed analysis

recently described for the control of TNF expression (Caldwell

et al., 2014), and several genes in this cluster contain AU-rich

elements that are targeted by TTP in their UTRs. (However,

other genes are known to be targets of other RNA decay

mechanisms, mediated, for example, by Regnase/Zc3h12a.)

Importantly, replacing the GRN10 AND gate of TFs with an

AND gate model that combined stimulus-induced transcription

and half-life stabilization (dubbed mod.GRN2) increased the

percentage of genes that passed the goodness-of-fit threshold

from 39% to 76%.
338 Cell Systems 4, 330–343, March 22, 2017
Consistent with this model, we determined that LPS-induced

mRNA stabilization was p38/ERK dependent (Figure 6G). We

found that LPS-specific induction of mRNAs was attenuated

by p38 inhibitors in WT or erk2�/� BMDMs, while LPS-induced

nascent transcript induction of TNF-a, Cxcl2, Cxcl1, and

TTP was unaffected (Figure 6H). Nascent transcript induction

of IL-6 and IL-1b was slightly reduced by p38 inhibition and

may relate to their control via a p38-dependent TF (Kim

et al., 2008).

Delineating the GRN Logics that Decode Pathogen-
Responsive Intracellular Signals
Using simple kinetic models we analyzed an expanding expres-

sion dataset of endotoxin-induced genes (714 in MEFs and 782

in BMDMs) in response to diverse stimuli and genetic knockout

scenarios. In MEFs, the performance of the models improved

with each iteration as ascertained by the increased rank



correlations over a larger number of datasets to be satisfied (Fig-

ures 7A and S7A). The last model of this series accounted for the

observed time courses of induction of the majority of LPS-

responsive genes (84%) in 27 different conditions involving

diverse stimulus and genetic perturbations. According to our re-

sults, most GRNs appear to be responsive to just one of the three

SDTFs (Figure 7B): AP1 (cluster A), NF-kB (clusters B, C, and D),

and IRF/ISGF3 (clusters F and G), with differences in mRNA half-

life providing for further diversification in stimulus responsive-

ness. Only cluster E shows combinatorial control by SDTFs;

the OR gate logic implies that NF-kB and IRF/ISGF3 function

independently rather than cooperatively, although it is coordi-

nated: NF-kB and ISGF3 engage with the OR gate sequentially,

prompting the term ‘‘sequential OR gate.’’ Two other gene clus-

ters appear to be controlled by logic gates that were not initially

considered: cluster A involves an NF-kB-dependent pathway

for enabling AP1 activation, and thus may be described as a

‘‘coherent feedforward gate;’’ it allows signal integration at the

level of JNK or AP1 rather than at the target gene DNA. Cluster

D is controlled by an unconventional AND gate formed by

NF-kB and the p38 signaling axis which controls mRNA half-

life in a stimulus-specific manner. Signal integration does not

occur on the target gene promoter but within the sequential

enzymatic steps of the reaction cascade that determines

the abundance of mature mRNA, hence prompting the term

‘‘sequential AND gate.’’

The resulting functional network map (Figure 7C) allows us to

pinpoint key molecular mechanisms involved in the processing

and interpretation of intracellular signals that transduce the

presence of endotoxin to produce complex gene expression

programs. SRNs determine which precise combination of signal

transducers is activated in response to each stimulus; they

‘‘encode’’ a combinatorial code of signaling pathways via the

TLR4-associated adaptors MyD88 and TRIF. Our results reveal

that GRNs ‘‘decode’’ this combinatorial code not only via the

TF binding sites within promoters, but also through cytoplasmic

events that control mRNA half-life (e.g., cluster D, that may be

described as a ‘‘sequential AND’’ gate).

DISCUSSION

The unresolved challenge of relating physical genome-wide

TF-DNA interactions to the expression of genes (Jaimovich

and Friedman, 2011) is thought to be a key impediment for

the development of predictive GRN models. We focused here

on the functional inputs and output of GRNs, i.e., SDTF activity

and mRNA abundance measurements, and found that the in-

clusion of cytoplasmic and cross-regulatory events is critical

for developing predictive models of pathogen-responsive

gene expression programs. By iteratively testing a series of

models with an expanding sets of expression data, we began

to delineate how signaling activities generated by receptor-

proximal SRNs are interpreted by GRNs to produce mRNA.

Specifically, we delineated the combinatorial logic of signal-

dependent regulatory mechanisms and found that they function

sequentially rather than coincidently within logical OR and

AND gates.

Our analysis indicated that none of the seven clusters of co-

regulated genes involve synergistic or cooperative functions be-
tween the SDTFs NF-kB and ISGF3. Similarly, studies of the

multi-kB site-containing IkBa gene failed to provide support for

cooperative NF-kB function (Giorgetti et al., 2010), and recent

biophysical (Panne et al., 2007) and genetic studies (Wang

et al., 2007, 2010) of the IFN-b gene do not support the

notion that cooperative and coincident binding of NF-kB, IRF,

and AP1 control this enhancer. However, our study supports a

broader notion of a combinatorial code that is not restricted to

coincident molecular events but in fact involves sequential mo-

lecular events, such as NF-kB-responsive transcription and

p38-responsive half-life control (cluster D), or NF-kB-responsive

and then ISGF3-responsive transcriptional control in (cluster E).

This broader notion of combinatorial control of gene expres-

sion was proposed previously (Herschlag and Johnson, 1993)

and suggests that combinations of TF binding sites found

frequently in the genome (Ravasi et al., 2010) may mediate con-

trol at sequential steps in the regulation of gene expression, and

not necessarily imply direct cooperative interactions between

the TFs.

The kinetic notion of how combinatorial control of gene

expression is achieved calls for both renewed experimental

and theoretical efforts to develop a predictive understanding

of gene expression. Specifically, further work needs to develop

appropriate theoretical frameworks that go beyond the

thermodynamic formalism employed here (Bintu et al., 2005a,

2005b). Instead of assuming that there is a single rate-limiting

recruitment step, our work suggests that we need a mathemat-

ical formalism that accounts for the multi-step control of gene

expression control, including explicit formulation of enhancer

formation, preinitiation complex formation, transcription

initiation, elongation, or pre-mRNA processing (e.g., Scholes

et al., 2016). Experimentally, the kinetic notion of combinatorial

control of gene expression calls for a systematic categorization

of TFs based on the kinetic step that they accelerate to

control gene expression (e.g., establishing poised enhancers,

enhancer-promoter interactions, accelerating initiation, or tran-

scriptional elongation). One might expect that TFs affecting

distinct steps are more likely to function synergistically to pro-

vide stimulus-specific control of gene expression, whereas TFs

affecting the same step are more likely to form OR gates to

regulate the temporal changes in mRNA abundance (as NF-

kB and ISGF3 on cluster E). Interestingly, the Smale group

recently found that IRF3 has the propensity to open chromatin

on the CCL5 locus which then facilitates the binding of NF-kB

to activate transcription (Tong et al., 2016); although the IRF3

requirement is not complete and thus did not emerge as an

AND gate in our analysis, the new data illustrate the need for

a kinetic formalism in which multiple steps may potentially be

‘‘rate-limiting.’’

We applied the described systems biology workflow to the

transcriptomic responses in two cell types that function as sen-

tinels for the pathogen response, and produce partially overlap-

ping gene expression programs. Although the gene expression

programs are distinct, the majority of genes induced in both cell

types (but not all) show the same control logic (Figure S7B).

Those that show distinct regulatory logic may potentially

involve distinct enhancers in the two cell types. Overall, our

results suggest that differences between stimulus-responsive

gene expression in MEFs and BMDMs are primarily due
Cell Systems 4, 330–343, March 22, 2017 339



Figure 7. Iterative Modeling of Pathogen-Responsive GRNs Reveals Combinatorial Control Mediated by Sequentially Acting Regulatory

Mechanisms

(A) Tracking the performance of iterative models with increasing datasets. Genes associated with expression clusters A to G passed (yellow lines) or did not pass

(black lines) the Spearman goodness-of-fit criterion in successive GRNmodel versions and an increasing number of experimental ‘‘-omic’’ datasets generated in

indicated perturbation studies, such as ‘‘multiple stimuli’’ (Figure 2), ‘‘knockouts’’ (Figure 3), and ‘‘mixed’’ stimuli (Figure 4). The fraction of genes that pass the

goodness-of-fit Spearman correlation criterion for model v3 (including mod.GRN1S and mod.GRN2S) is shown on the right.

(B) Schematics of the GRNs that govern expression of genes in clusters A to G inMEFs andmacrophages. (Schematic expression profiles are indicated as a solid

blue line for WT cells, or as dashed lines in cells lacking one of the modifying pathway.) Cluster A expression is driven by AP1 which is controlled by a ‘‘coherent

feedforward’’ gate involving NF-kB-driven autocrine PDGF, which introduces a delay relative to the direct activation pathway. Clusters B, C, and D are NF-kB-

driven, but are specificity generated by distinct mRNA half-life control. LPS-responsive p38-mediated inhibition of mRNA decay combines with LPS-responsive

NF-kB-mediatedmRNA synthesis to form a ‘‘sequential AND’’ gate in the GRN for cluster D. Cluster E is driven by NF-kB and IRF, forming a ‘‘sequential OR’’ gate

between a rapidly activated immediate-early TF (NF-kB) and a delayed, protein-synthesis-dependent TF (ISGF3). Clusters F and G are ISGF3-driven, but are

specificity generated by distinct mRNA decay rates.

(C) A summary schematic of signal encoding and decoding via SRNs and GRNs, respectively. Combinatorially encoded signals are decoded not only by the

promoter architecture of TF binding sites, but also by signal-responsive mRNA half-life control.

(D) Gene expression clusters are associated with distinct physiological functions. Highly enriched gene ontology (GO) terms were evaluated based on -log10 p

values as indicated on the white-blue scale.
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to lineage-determining transcription factors (LDTFs)-mediated

establishment of cell-type-specific enhancer landscapes (Ghi-

sletti et al., 2010; Heinz et al., 2010; Jin et al., 2011; Natoli

et al., 2011) rather than SDTF control. Nevertheless, we note

that fit scores to the macrophage dataset, which involved a

greater variety of stimuli, were generally lower than the MEF da-

taset, indicating that additional SDTFs and regulatory mecha-

nisms may play a more important role in macrophages than

in MEFs.

The mathematical models presented here constitute suffi-

ciency tests, identifying regulatory mechanisms that together

are sufficient to account for a given set of experimental observa-

tions. We have used these models to make testable predictions,

allowing for iterative refinement.

Thus datasets from additional perturbation studies may lead

to the inclusion of additional TFs and regulatory mechanisms

in future iterations of the models. For example, this may reveal

distinctions in transcriptional control by NF-kB family members

RelA versus cRel versus RelB (Almaden et al., 2016; Alves

et al., 2014) or IRF3 versus ISGF3 (Ourthiague et al., 2015).

Further, challenging the model to account for longer time

courses may require inclusion of a variety of late inducible TFs

such as ATF3 (Gilchrist et al., 2006), CEBPb, and CEBPd (Litvak

et al., 2009), as well as LDTFs leading to the establishment of

poised enhancers and promoters (Garber et al., 2012; Kaikkonen

et al., 2013; Miele and Dekker, 2008). Further, the functional

description of GRNs responsible for gene control provides a

starting point for the ultimate goal of developing gene-specific

mechanistic models based on physical TF binding events within

promoters and enhancers connected by a looped chromatin

structure. However, the coarse level modeling achieved here

also has advantages: as the functional GRN models described

here use numerically defined inputs of TF activity profiles (based

on experimental measurements), they are easily linked tomodels

of associated SRNs whose outputs are those same TF activities

(e.g., Basak et al., 2012; Caldwell et al., 2014), paving the way

for whole-cell models that account for the cellular response to

pathogens.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fibroblast Cell Culture
Primary MEFs were prepared from male or female E12-E14 embryos from C57BL/6 mice that were WT (wild-type), NFkB�/� (rela�/�

crel�/� or rela�/�relb�/�crel�/�), IRF�/� (ifnar�/�) and NFkB�/�IRF�/� (rela�/�crel�/�irf3�/�), and cultured in DMEM containing 10%

BCS for 5-6 passages before being stimulated (Werner et al., 2005).

Macrophage Cell Culture
Primary BMDMswere prepared by culturing bonemarrow cells from femurs of male or female 8–12week oldWTmice in L929-condi-

tioned medium by standard methods (Cheng et al., 2011; Ourthiague et al., 2015). BMDMs were stimulated on day 8.

Animal Use
Animals were housed in isolator cages and regularly confirmed to be pathogen-free. The animal protocols for this study were

approved by the University of California, San Diego Animal Care and Use Committee.

METHOD DETAILS

Mathematical Modeling
We developed a series models to describe the Gene regulatory Networks (GRNs) controlling the cellular transcriptomic response to

LPS. Version 1 (v1) refers to the initial suite of 17 GRN models, some of which were found to adequately account for experimentally

determined gene expression profiles in a variety of conditions. v2 includes a feedforward loop in model GRN1S by which NF-kB and

IRF control AP1 activation to describe the gene expression behavior of cluster A genes. v3 includes LPS-specific control of mRNA

half-life in GRN2S to describe the gene expression behavior of cluster D genes. Themodels were coded inMathematica 7.0 (Wolfram

Research, Urbana, IL), and are available for download (Data S1).

GRN Model Formulation

Wedeveloped a suite of 17 GRNmodels that combine a thermodynamic expression for promoter activity and a kinetic expression for

promoter-driven mRNA synthesis and first order mRNA degradation.

Briefly, mRNA abundance for gene i is described by an ordinary differential equation (ODE):

d½mRNAiðtÞ�
dt

= kisynf
iðtÞ � kideg

�
mRNAiðtÞ� ; (S1)

where f iðtÞ is the fractional (R0,%1) promoter activity at time t, kisyn is the maximal synthesis rate constant, and kideg is equal to ln(2)/

half-life of the mRNA. Parameter kisyn was assigned a numerical value equal to kideg to normalize mRNA abundance levels regardless

of mRNA half-life.

Promoter activity fi for each GRNwasmodeled with thermodynamic expressions (Bintu et al., 2005a; Mayo et al., 2006), describing

logical gates (f1, f2AND, f
2
OR, f

3
AND, f

3
OR, and combined gates), in which TF1, TF2, TF3 could be any of AP1, NF-kB or IRF, thus yielding

17 possible GRN models.

TF1=KTF1½TF1� TF2=KTF2½TF2� TF3=KTF3½TF3� (S2)
f1 = ð1� k0Þ TF1

1+ TF1
+ k0 (S3)
f2AND = ð1� k0Þ TF1 TF2

1+TF1+TF2+ TF1 TF2
+ k0 (S4)
f2OR = ð1� k0Þ TF1+TF2+ TF1 TF2

1+TF1+TF2+ TF1 TF2
+ k0 (S5)
f3AND = ð1� k0Þ TF1 TF2 TF3

1+TF1+TF2+TF3+ TF1 TF2+ TF1 TF3+TF2 TF3+TF1 TF2 TF3
+ k0 (S6)
Cell Systems 4, 330–343.e1–e5, March 22, 2017 e2



f3OR = ð1� k0Þ TF1+TF2+TF3+ TF1 TF2+ TF1 TF3+TF2 TF3+TF1 TF2 TF3

1+TF1+TF2+TF3+ TF1 TF2+TF1 TF3+TF2 TF3+TF1 TF2 TF3
+ k0 (S7)
f31ORð2AND3Þ = ð1� k0Þ TF1+ TF2 TF3

1+ TF1+ TF2+ TF3+TF2 TF3
+ k0 (S8)
f31ANDð2OR3Þ = ð1� k0Þ TF1

1+TF1

TF2+TF3+ TF2 TF3

1+TF2+ TF3+ TF2 TF3
+ k0 (S9)

GRN Model Simulations

Piecewise functions based on experimental measurements of TF activities (Tables S1 and S2) were used asmodel simulation inputs.

In all cases, we scaled the temporal profiles of TF activities to span a range of 0.05–1 (20-fold) in arbitrary units to avoid assay-specific

reductions of dynamic range. Initial model simulations used an ad-hoc parameter value of 0.5 for each KTF (TF-DNA binding site in-

teractions) to ensure that the scaled inputs fall within the responsive range of the GRN model dose-response curve. To simulate the

transcription factor activity in knockout cells we eliminated the corresponding activation profile from the inputs; for instance NF-kB

activity was set to zero for all stimuli for the NF-kB knockouts.

Assignments of GRN Models to Experimental Gene Expression Clusters

Initial GRN assignment was based on the best fit between GRN simulations of mRNA profiles and the average of each experimentally

determined gene expression cluster. Co-clustering of in vivo and in silico gene expression profiles (Figures 2E, 2H, and 5B) was per-

formed by hierarchical clustering (Manhattan distance). For comparisons with the preliminary Boolean model (Figure 2C), in vivo

expression data were digitized based on whether the maximum expression level within each timecourse passed above the threshold

of 0.5.

GRN Model Maturation

GRN models were matured through parameter optimization to maximize the fit score. Optimal values for KTF’s and kideg were deter-

mined by simultaneousminimization of the total deviation between the time-dependent normalized averagemRNA levels for the clus-

ters and the normalized mRNA levels produced by the assigned GRN models. Optimization was performed simultaneously for the

LPS, PDGF, TNF, and IFN conditions. Numerical minimization was performed with the NMinimize function using the Nelder-Mead

algorithm. For each transcription factor, affinity (KTF) was treated as a free parameter but the same value was used for all GRN

models.

Evaluating the Goodness of Model Fits

Spearman rank correlation coefficient (rho) was used to evaluate the goodness of fit between the model and individual mRNA mea-

surements comprising each cluster. Briefly, for each individual gene, a vector was built containing normalized mRNA measured at

various time points for the collection of conditions (stimuli, perturbation, etc.) specified for each model iteration (see main text).

The Spearman correlation coefficient was calculated by comparing this vector with a similar one built out of mRNA levels predicted

by the model assigned to the cluster containing the gene being evaluated. Fits with Spearman rho values over 0.5 within a 1% con-

fidence level (Fisher CI test) were considered good. For reference, mRNA dynamics experimentally determined for individual genes

are compared with predicted GRN activity in Figures S4B and S6B. Despite intra-cluster variability in the expression levels for indi-

vidual genes, the patterns of expression for the various conditions are remarkably similar justifying the choice of a rank test as an

adequate metric for goodness of fit.

Iterative Model Refinement from Version 1 to Versions 2 and 3

Following evaluation of model v1 (Figures 3 and 4), refinements led to two successive model versions. In model v2, AP1 activity was

reduced 10-fold in the NF-kB KO and NF-kB/IRF3 KO scenarios. In model v3, for cluster D GRN10L was replaced by mod.GRN2S,

which is a GRN2S model in which the half-life was extended to 8hs at t = 0 in all simulations in which the Myd88-pathway is

activated.

Experimental Procedures
Fibroblast Stimulation Conditions

MEFs were stimulated with 0.1 mg/mL LPS, 500 U/ml murine IFNb, 50 ng/mL human PDGFB/B, or 10 ng/mL murine TNF.

Macrophage Stimulation Conditions

BMDMs were stimulated with 0.1 mg/mL LPS, 100 U/ml murine IFNb, or 10 ng/mL murine TNF, as well as with a TLR2/1 agonist, the

synthetic triacylated lipoprotein Pam3CSK4 (PAM) (3 mg/mL); a TLR2/6 agonist, a synthetic lipoprotein derived from Mycoplasma

salivarium, FSL-1 (FSL) (50 ng/mL); a TLR3 agonist, low molecular weight polyinosine-polycytidylic acid (Poly(I:C) (PIC),

50 mg/mL); a TLR5 agonist, recombinant flagellin (FLA) from Salmonella typhimurium (30 ng/mL); a TLR7/8 agonist, the imidazoquino-

line compound R848 (5 mg/mL); a TLR9 agonist, the synthetic CpG ODN 1668 (CpG, 100 mM); the Rig-I agonist transfected Poly(I:C)

(tPIC) using the Lipofectamine 2000 kit per themanufacturer’s instructions (Poly(I:C) 50 mg/mL, Life Technologies); live Strepococcus

pneumoniae (MOI 1.0), live Listeria monocytogenes (LM) (MOI 1.0), murine cytomegalovirus (MCMV, MOI 5.0), or vesicular stomatitis

virus (VSV, MOI 1.0).
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Biochemical Assays

Western blotting analysis and EMSAs were conducted with standard methods as described previously for fibroblasts (Basak et al.,

2007; Hoffmann et al., 2003) and macrophages (Cheng et al., 2011). Briefly, whole cell lysates were made with RIPA buffer; nuclear

extracts by hypotonic cell lysis and high salt extraction of nuclear proteins. Experimental measurements of TF activities (Figure S2)

triggered by LPS, TNF, PDGF and IFNb stimulation are provided in Table S1 for MEFs. Table S2 lists the TF activation profiles for all

stimuli used for BMDMs.

Fibroblast Transcriptome Analyses

MEF RNA was isolated with Qiagen RNeasy kit and hybridized to Illumina mouse RefSeq Sentrix-8 V1.1 BeadChips at the UCSD

Biogem facility. Microarray data were normalized, and probes with R2 fold change in expression with LPS stimulation in all three

wild-type samples were selected (Tables S3 and S4). All array data were deposited at GEO under accession number GEO:

GSE35521. Genes showing a R2-fold increase at any one time point upon LPS stimulation were selected for subsequent analysis.

Macrophage Transcriptome Analyses

BMDM RNA was isolated with Qiagen RNeasy kit, mature mRNA was purified from 2 mg total RNA using oligo(dT) magnetic beads

and fragmented at high temperature using divalent cations. The cDNA library was generated using the Illumina TruSeq kits and

quantitation was performed using Roche Light Cycler 480. Sequencing was performed on Illumina’s HiSeq 2000 according

to the manufacturer’s recommendations by the University of California, San Diego Biogem facility. Paired-end 100 nt reads

were subjected to quality control steps (adaptor sequences were removed with cutadapt, ends with poor quality scores were

trimmed with scythe) before alignment to the mouse genome mm10 with gencode vM4 annotations using the STAR aligner.

Post alignment quality control was done to remove multimappers, low-quality mappers (<30) and ribosomal RNA reads. htseq-

count (union mode) was used to determine the per-gene raw read counts. For subsequent analyses raw reads counts were

normalized to counts per million (cpm) values, and genes showing a R3-fold increase in BMDMs at any time point upon LPS stim-

ulation were selected (Table S5). All RNA-seq raw and processed data were deposited at GEO under accession number GEO:

GSE68318.

Quantitative PCR Analyses

Total RNA was isolated using Qiagen RNeasy kit from MEFs or BMDMs that had been treated as indicated. RNA was reverse tran-

scribed with Superscript II reverse transcriptase (Invitrogen) and resulted cDNA was used for real-time qPCR analysis (SYBRgreen).

Nascent transcript assays were conducted as described previously (Giorgetti et al., 2010) with BMDMs stimulated for 30 min or 2 hr

with 0.1 mg/mL LPS or 10 ng/mL TNF. Chromatin-associated transcripts were extracted with TRIzol reagent (Invitrogen) and treated

with DNase I before the RT reaction. qPCR primers were specific for pre-mRNA. Primer sequences are shown in Table S6.

QUANTIFICATION AND STATISTICAL ANALYSIS

Expression Analysis
Fold changes were clustered (in log2 scale) by K-means using absolute Pearson correlation as a similarity metric with manual cura-

tion. Co-clustering of in vivo and in silico gene expression profiles (Figures 2E, 2H, and 5B) was performed by hierarchical clustering

(Manhattan distance) comparing model simulation outputs with mean expression level of the in vivo expression clusters relative to

basal wild-type. For comparisons with the preliminary Boolean model (Figure 2C), in vivo expression data were digitized based on

whether the maximum expression level within each timecourse passed above the threshold of 0.5.

mRNA Hall-Life Analysis
Half-lives of mRNAs (Figures 3B, 6B, and 6G) were determined by fitting a first order exponential decay equation to qPCR or micro-

array expression measurements from unstimulated MEFs or BMDMs stimulated with 10 ng/mL TNF or 0.1 mg/mL LPS for 2 hr then

treated with Actinomycin D for 1 hr or in the indicated timecourse. Genes for which mRNA levels increased by the first time point of

Actinomycin treatment (presumably due to confounding drug-induced stress responses) were removed from the calculations.

Motif Analysis
De novo motif searches and known motif searches using JASPAR matrixes were performed with the promoter sequences 1 kb up-

stream and 0.3 kb downstream of the transcription start site with the motif search program Homer (Heinz et al., 2010). An in-depth

description and benchmarking of this software suite can be found at homer.salk.edu/homer.

Enhancer-based motif search: Enhancers were identified by the presence of H3K4me1 and absence of H3K4me3 peaks

(Mouse ENCODE datasets for MEFs and BMDMs, available at www.mouseencode.org). Regions proximal to the TSS (1 kb upstream

and 0.3 kb downstream), which had already been used for motif analysis in promoters, were excluded from the enhancer definition.

Knownmotif analysis was performed using Homer, using all enhancers as background, and only enhancers within 50 kb from the TSS

of genes regulated by a given GRNs as foreground. The 264 knownmotifs searched by Homer were ranked by p value, then scaled to

a 1–100 range in order to report a rank percentile. In Homer’s database, AP1 is represented by motifs AP1(bZIP) and Jun-AP1(bZIP);

p65 NF-kB by motifs NFkB-p65(RHD) and NFkB-p65-Rel(RHD); and IRF/IRE by motifs ISRE(IRF) and T1ISRE(IRF). TF rankings re-

sulted from averaging the rankings of related motifs.
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Gene Ontology (GO) Analysis
GO term enrichment was performed using DAVID with the entire mouse genome as the background, and p values represent a

Bonferroni-corrected modified Fisher’s exact test. The 1–2 most enriched GO terms were selected for each cluster.

DATA AND SOFTWARE AVAILABILITY

All array data were deposited at GEO under accession numbers GEO: GSE35521 and GEO: GSE68318. The model code in

Mathematica and R is available upon request. The Mathematica file containing the mechanistic modeling approach is available

for download (Data S1).
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