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� We developed a stochastic intracel-
lular mathematical model of HIV
replication.

� The model includes spatial micro-
tubule transport of viral compo-
nents.

� The model can simulate single round
infections and viral fates.

� The model predicts that vRNA decay
and RT are critical determinants of
integration.
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Although HIV viremia in infected patients proceeds in a manner that may be accounted for by deterministic
mathematical models, single virus-cell encounters following initial HIV exposure result in a variety of out-
comes, only one of which results in a productive infection. The development of single molecule tracking
techniques in living cells allows studies of intracellular transport of HIV, but it remains less clear what its
impact may be on viral integration efficiency. Here, we present a stochastic intracellular mathematical model
of HIV replication that incorporates microtubule transport of viral components. Using this model, we could
study single round infections and observe how viruses entering cells reach one of three potential fates –

degradation of the viral RNA genome, formation of LTR circles, or successful integration and establishment of
a provirus. Our model predicts global trafficking properties, such as the probability and the mean time for a
HIV viral particle to reach the nuclear pore. Interestingly, our model predicts that trafficking determines
neither the probability or time of provirus establishment – instead, they are a function of vRNA degradation
and reverse transcription reactions. Thus, our spatio-temporal model provides novel insights into the HIV
infection process and may constitute a useful tool for the identification of promising drug targets.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Human immunodeficiency virus (HIV) is an enveloped single-
stranded RNA virus. The most common and natural route of HIV
infection is via sexual mucosal transmission. There are different
time scales associated with the infection process. At the early
stages (usually in the first few hours post infection), HIV will cross
the mucosal barrier and only a small number of cells are suc-
cessfully infected; these constitute the seed or founder population,
which after several days start production of new virus. Within the
first week, lymphatic tissue reservoirs will trigger the conversion
to the seropositive infection state. Thus, the early phases of HIV
exposure and infection are of critical importance, and they are
believed to provide a window of opportunity that determines
sero-conversion, as well as – if sero-conversion cannot be pre-
vented – the viral set point that determines collapse and
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amplification processes (Haase, 2010). Thus early phase infection
events are critical in determining the fate of the exposed indivi-
dual. Here, we present a mathematical framework to address the
stochastic nature of the early phases of the HIV life cycle, namely
from docking to establishment of a provirus.

The HIV life cycle begins when the envelope (Env) glycoprotein
(gp120) binds to the host surface receptor (CD4) and co-receptor
(CCR5 or CXCR4). Then the virion either fuses with host cell mem-
branes in a pH-independent manner (Stein et al., 1987) or via an
alternative endocytic pathway (Miyauchi et al., 2009). Once inside
the cell, the virus is transported across the actin layer and undergoes
uncoating to generate the viral reverse transcription complex (RTC),
which comprises the diploid viral RNA genome, tRNALys primer, RT,
IN, MA, nucleocapsid (NC), viral protein R (Vpr) and various host
proteins. Once the RTC reaches close to nuclear pore complex (NPC)
via microtubule, they will dock to NPC and undergoes DNA-Flag-
dependent maturation, forming a pre-integration complex (PIC)
(Arhel et al., 2007). Then the PIC translocate through the nuclear pore
to get inside of the nucleus. In the nucleus, the PIC can either inte-
grate into the host chromatin or circularizes into 1- or 2 LTR circles.

A large portion of the early HIV life cycle is taken up by trans-
cellular transport that moves the virus from the plasma membrane to
the nuclear pore (Brandenburg and Zhuang, 2007). It is found that
after fusion, the virus will go through three kinetically distinguishable
directed movements until it reaches the nuclear surface. It first travels
across one actin layer with a random diffusion, then binds to the
microtubule and trafficks along it until reaching the proximal of the
nuclei, where it has to cross another actin layer to reach the NPC on
the nuclear membrane (Arhel et al., 2006; McDonald et al., 2002).
How trafficking relates to infectivity is an important question.

Mathematical modeling has been applied at different levels of
HIV infection rendering quantitative insights. Perhaps, the most
established models are those of viral dynamics within patients
(Perelson, 2002).They focus on the dynamics of virion numbers and
numbers of different cell types during the HIV infection and AIDS
development. At the molecular level, molecular dynamic simula-
tions were used to study kinetic mechanisms of the HIV-1 viral
protein conformational transitions (Deng et al., 2011). At the intra-
cellular level, a detailed deterministic model was proposed by John
Yin’s group (Reddy and Yin, 1999), with other simplified models for
different focus. Weinberger developed a small stochastic model to
study the HIV gene expression and replication (Weinberger et al.,
2005). Kim and Yin proposed a model to study different splicing
products during HIV replication (Kim and Yin, 2005). Later, Althaus
and De Boer presented a combination of the models developed by
Weinberger and Reddy to study the relationship between viral
transcription and the viral load during drug therapy (Althaus and
De Boer, 2010). These models account for mechanistic details about
HIV intracellular replication, though they exclude intracellular
transport of viral components. Dinh developed such models to
study adenoviral vectors transportation (Dinh et al., 2005; Dinh et
al., 2007) in the context of gene therapy, but how trafficking and
biochemical reactions combine to give rise to HIV replication
remains elusive. Here we present a model that couples reactions
with transport and provides a more accurate description of HIV
replication in agreement with recent experimental observations.

An infection may be initiated by a single virus particle that
delivers its genome, a single molecule of RNA, to its host cell.
Under such conditions, the inherent fluctuations in the levels of
viral constituents may yield qualitatively different behavior (Sri-
vastava et al., 2002). Deterministic models that describe the
expected progress of the infection cannot be employed to predict
the probability of infection establishment at the primary stage
(Khalili and Armaou, 2008). In this study, we integrate the HIV
transport with basic HIV life cycle model and establish a stochastic
spatio-temporal model to study early HIV infection. The model can
track each infected single virus’s life cycle. Three different fates of
the virus can be recapitulated by the model. We also used the
model to study the effects of each parameter on the integration
fraction and time to integration.

2. Methods

We first developed an ODE model to derive kinetic parameters
for key reactions in the HIV life cycle from recent experimental
results of a fine-grained timecourse (Mohammadi et al., 2013). We
then developed the SST model (Fig. 1A) using those parameters.
The overall model development process is shown in Fig. 1B.

2.1. An ODE model to derive parameters

As the in vitro infection experiment (Mohammadi et al., 2013)
VSVg-pseudo-typed virus was used, the receptor and co-receptor
binding, the fusion and uncoating parameters are not relevant to
the in vivo HIV infection. We therefore developed a simplified ODE
model (Fig. S1) to account for the experimental measurement and
derive the useful parameters for the SST model.

dV
dt

¼ θ1 Uθ2 Ue�θ2t�θ11 UV ð1Þ

dERT
dt

¼ θ11 UV�θ3 UERT ð2Þ

dD
dt

¼ θ3 UERTðt�θ12Þ�ðθ4þθ5þθ6þθ7ÞUD ð3Þ

dL1
dt

¼ θ7 UD�θ8 UL1 ð4Þ

dL2
dt

¼ θ6 UD�θ9 UL2 ð5Þ

dI
dt

¼ θ5 UD�θ10 U I ð6Þ

In this model, V is the virion concentration inside the cell; ERT-
early reversible transcription product, D-linear cDNA, L1–1 LTR
circle; L2–2LTR circle. I – integrated provirion.

The virion internalization is assumed to be a first order process
with rate constant θ2 and the initial virus concentration in the
media is θ1. Then the outside virion concentration Vo can be
described by ODE: dVo/dt¼-θ2Vo with initial concentration θ1. So
Vo¼θ1 exp(�θ2t), and the internalization flux in Eq. (1):
θ2Vo¼θ1θ2 exp(�θ2t). The full description of the parameters in
the model can be found in Fig. S1C. The experimental data (Fig. 1A
and Fig. S2 from (Mohammadi et al., 2013)) were measured by
qPCR and normalized to each species’ own specific value at 24 h.
To match such kinds experimental data, scaling parameters have
to be introduced in the model (see θ13–16 in Fig. S1C).

To fit the experimental data, we used RMSD between simula-
tion and data as the objective function and employed nonlinear
least-squares solver -‘lsqnonlin’ function from Matlab to run the
optimization. As ‘lsqnonlin’ can only find the local minimum, we
supplied it with 106 initial parameter values in the parameter
space (10�2 to 102 for non-scale parameters and 10�5 to 10�1 for
the scaling parameter). We recorded the best solution and the 95%
confidence interval for each parameter defined by the boundary of
changing RMSD 5% as well.

2.2. The SST model

The model diagram and reactions are shown in Fig. 1A and Table 1.
The model consists of three parts. The first part includes binding and
unbinding to the CD4 receptor and co-receptor (CCR5 in this study),



Fig. 1. Model overview. (A) Stochastic spatio-temporal (SST) model diagram and illustration of time to integration (TI). (B) Flowchart of integrating ODE and SST models. Bulk
population measurements are taken from Mohammadi et al. (Mohammadi et al., 2013). (C) ODE model’s simulation (lines, upper panel) is compared with experimental data
(circles, upper panel). (D) The average time courses predicted from the SST model by simulating 100,000 infections. The levels are normalized to the values at 24-hour post
infection for each component.
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and fusion. The second part consists of the reaction describing
uncoating, degradation, reverse transcription, nuclear core complex
binding and nuclear importing, along with a spatial transportation.
The last part is the fate decision module: 1LTR or 2LTR circularization
and integration. The life cycle steps are modeled as chemical reactions
by using Gillespie method (Gillespie, 1977), while actin transport is
modeled by amodifiedmethod fromDinh et al. (2005). As a result, the
spatial and temporal parts of the model can be modeled in a uni-
formed stochastic framework enabling studies of the variability of
infection fates.



Table 1
Model reactions and parameters.

# Reactions Description Value References

Set 1 (Virion)freeþ(CD4)pm ¼4 (Virion:CD4)pm HIV binds to the receptor 4.03eþ6 M�1min�1 Table 3 in Myszka et al. (2000)
(Virion:CD4)pm ¼4 (Virion)freeþ(CD4)pm HIV unbinds from the receptor 0.09 min�1 Table 3 in Myszka et al. (2000)
(CCR5)pmþ(Virion:CD4)pm ¼4 (Virion:CD4:CCR5)pm HIV:receptor complex binds to the co-receptor 5.4eþ6 M�1 min�1 Doranz et al. (1999)
(Virion:CD4:CCR5)pm ¼4 (CCR5)pmþ(Virion:CD4)pm HIV:receptor complex unbinds from the co-receptor log(2)/32 min�1 Doranz et al. (1999)
(Virion:CD4:CCR5)pm ¼4(Virion)peripheralþ(CD4)pmþ(CCR5)pm Fusion log(2)/20 min�1 Hulme et al. (2011), Raviv et al. (2002)
(Virion)peripheral ¼4 (RTC)peripheral Uncoating log(2)/23 min�1 Table 1 in Hulme et al. (2011)

Set 2 (RTC) random walk along microtubule (virus trafficking from x¼0 to x¼ length of
microtubule)

Microtubule length 20 mm See the scale bar of Fig. 1 in McDonald
et al. (2002)

Average velocity of directional movements in both direction 6 mm/min Arhel et al. (2006), Arhel et al. (2007)
First order rate constants of characterizing particle's transition to
anterograde movement state

1.1 min�1 Adjusted to fit the ODE model

First order rate constants of characterizing particle's transition to
retrograde movement state

1 min�1 Adjusted to fit the ODE model

First order rate constants of characterizing particle's transition to
static state

1 min�1 Adjusted to fit the ODE model

(RTC)(x) ¼4 (PIC)(x) Reverse transcription 0.0024 min�1 From ODE model (theta3)
(RTC)(x) ¼4 Degradation of RTC (virial RNA) 0.0033 min�1 0.2 h�1 (Table I in Reddy and Yin

(1999))
(PIC)(x) ¼4 Degradation of PIC (virial DNA on the microtubule or in the

cytoplasm or in the nuclears)
0.017 min�1 From ODE model (theta 4)

Set 3 (PIC)perinuc ¼4 (PIC)nuc Nuclear import 0.002 min�1 Reddy and Yin (1999)
(PIC)nuc ¼4 (Provirion)int Integration 0.00053 min�1 From ODE model (theta 5)
(PIC)nuc ¼4 (2LTRcir)nuc Circularization 0.00051 min�1 From ODE model (theta 6)
(PIC)nuc ¼4 (1LTRcir)nuc Circularization 0.015 min�1 From ODE model (theta 7)
(2LTR)nuc ¼4 Degradation of 2LTR circles 0.00065 min�1 From ODE model (theta 9)
(1LTR)nuc ¼4 Degradation of 1LTR circles 0.13 min�1 From ODE model (theta 8)
(Provirion)nuc ¼4 Degradation of Provirion 0.00097 min�1 Equal to the CD4 cell death rate (Ho et

al., 1995)
Initial cell volume (V0) 1e �12 L ID 106314 in Bionumber database
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Table 2
Initial states.

# Biophysical States Values Location Sources

1 (Virion)free Virions in the medium 1 virion/cell Mucosal surface Assumed
2 (CD4)pm CD4 on the plasma membrane 46000 Plasma membrane Poncelet et al. (1991)
3 (CCR5)pm CCR5 on the plasma membrane 10000 Plasma membrane Reynes et al. (2000)
4 (Virion:CD4)pm Virion:CD4 complex on the Plasma membrane 0 Plasma membrane Assumed
5 (Virion:CD4:CCR5)pm Virion:CD4:CCR5 complex on the Plasma membrane 0 Plasma membrane Assumed
6 (Virion)peripheral Fused virion 0 Cytoplasm Assumed
7 (RTC)peripheral or (RTC)(x¼0) Reverse transcription complex (uncoated form) 0 Cytoplasm Assumed
8 (RTC)(x) (0o¼xo¼ lenMT) Microtubule binding state 0 Cytoplasm (microtubule) Assumed
9 (PIC)(x) (0o¼xo¼ lenMT) Docked pre-integration complex 0 Cytoplasm (microtubule) Assumed
10 (PIC)perinuc or (PIC)(x¼ lenMT) Docked pre-integration complex 0 Perinuclear area Assumed
11 (PIC)nuc Imported pre-integration complex 0 Nucleus Assumed
12 (1LTR)nuc 1LTR circle 0 Nucleus Assumed
13 (2LTR)nuc 2LTR circle 0 Nucleus Assumed
13 (Provirion)int Integrated provirion 0 Nucleus Assumed

Fig. 2. SST model tracks viral infections individually. (A) Microtubule (MT) arrive time statistics. Left: scatter plot between virion id (1–200, color-coded) and MT arrive time;
right: histogram of MT arrive time of these 200 infections. (B) Trafficking trajectories along the microtubule for each virion. The x-axis is the trafficking time and y-axis is the
displacement along the MT. The virons that successfully arrived the end of MT are labeled by squares. The same colors as (A) are used to identify virus. (C) Statistics of the
trafficking time. Left: scatter plot between virion id and MT stay time; right: histogram of MT stay time. The squares represent the degraded virions and the circles represent
the ones not degrade.
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Details about the reactions, the parameters and initial states
can be found in Tables 1 and 2, with references for each parameter.
Below we describe the details of the second part of the model,
because the spatial and temporal reactions are mixed at this stage.
2.3. Intracellular trafficking

We focused here on the trafficking along the microtubule,
assuming that other motions make only minor contributions to the



Fig. 3. SST model tracks 200 infections individually (final states). Final fate distribution of all virions (A, same color-coding as Fig. 2; the number of virions in each catalog is
shown in red) and the percentages of fates (B). Histogram of fate decision time for degraded (C) and survived (D) virions. Survived population includes the ones formed 2LTR,
1LTR and proviron.
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relevant intracellular transport of the virion. We assumed trans-
port to begin as soon as the virus uncoated. The viral transporta-
tion along the microtubule is modeled as a one-dimensional ran-
dom walk. At a given point in time, each virus particle occupies
one of the three transport states: forwards move, backwards move
or stall (Dinh et al., 2005). The motion state and the time interval
to make a state transition are determined by random numbers
akin to the Gillespie method, and the virus will be trafficking back
and forth as the simulation goes on. Once the virus reaches the
end of the microtubule, the transportation process will terminate,
and the infection progresses towards the next step, i.e. binding to
the NPC. The model may be used to record the trajectory of each
virus trafficking long the microtubule. To simplify the simulation
process we assume that different viruses do not interfere with
each other in the microtubule. At the population level this
assumption holds true when no cell is infected by more than one
virus. The model results can be considered as the outcome of a
single round of infection.
2.4. Degradation and reverse transcription during the transport

It is reported that during the transportation, the virion can
either go through reverse transcription to form a reverse tran-
scription complex (RTC) and then the pre-integration complex
(PIC) via reverse transcription or is degraded by cellular mechan-
isms (Anderson et al., 2006). In order to model this, we tracked
these two reactions in parallel with the viral particle's trafficking
(Fig. S2). In practice, we first simulate viral trafficking and obtain a
time of arrival. Then, we simulate degradation and reverse tran-
scription, and check if either occurred within the time of arrival
(see Fig. S2). If degradation did occur, the model provides infor-
mation about the location where it gets degraded. Note that the
degradation can even happen when the virion has reached the end
of the microtubule, as long as reverse transcription has not
occurred. The reverse transcription and degradation are the only
reactions that can occur during transport.



Fig. 4. Sensitivity analysis of the integration fraction at 24 h post infection (f24pi). The
sensitivities are sorted from high to low for steps in the SST model.

Fig. 5. Integration fraction is a function of several key parameters. The x-axis is the
multiplier and y-axis is the integration fraction in 5000 simulations of infection.
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2.5. Virion fates

There are three different fates of HIV in this model: degraded
(killed by the cell), LTR circles (non-productive), or integrated
provirus (productive infection). Here, we study the integration
fraction and the time to integration (TI), which is important
because it measures how soon a latency state can be established.
A short TI can also lower the chance to trigger the host immune
system.

2.6. Sensitivity analysis

To quantify how the steps in HIV replication cycle affect the
infection, we calculated the sensitivity of infection fraction at 24-
hour post infection (f24hpi). The sensitivity of parameter pj was
defined as the rate of change in f24hpi divided by the rate of change
in the parameter value.

Sj ¼
∂f 24hpi
f 24hpi
∂pj
pj

¼ ∂ ln f 24hpi
∂ ln pj

ð7Þ

The effect of a 2% change of each parameter value was con-
sidered here. For the SST model, the f24hpi was calculated by
simulating the model 5000 times to get the fraction of the inte-
gration achieved at 24 h post infection. For the ode model, the
f24hpi was directly calculated by one simulation.
3. Results and discussion

3.1. Model validation

With the development of PCR primers specific for viral inter-
mediates, the HIV replication dynamics have been intensively
studied (Brussel and Sonigo, 2003; Butler et al., 2001; Butler et al.,
2002; Mohammadi et al., 2013). Here we used the recent data
from Mohammadi et al. (2013), where the early RT, late RT, 2LTR
circles and the integrated proviron are measured every 2 h in the
first 24 h post infection (h.p.i.). Because the infection in the
experiment used a VSVg pseudo-typed virus, the receptor and co-
receptor binding, the fusion and uncoating information cannot be
extracted from the data and only a fraction of the parameters are
adjusted by the ODE model’s value (see Supplemental tables).
Other parameters of the SST are from the literature.

After obtaining a reasonable fit of the ODE model with the data
(Fig. 1C), we then ran the SST model 100,000 times to mimic a
corresponding number of infections and got the average profiles.
It turned out that average dynamics of the SST model were overall
faster than the experimental data by about 3 h. This was because
the SST model simulations begin with CD4 receptor docking,
ignoring the time taken by virus diffusing to the T cell surface.
After adjusting this initial time difference, the SST model suc-
cessfully recapitulated the experimental observations (Fig. 1C and
D): 1) The late RTC increased faster than the 2LTR, and provirion
and reached a peak around 12 h.p.i. 2) The provirion accumulated
a little slower than the 2LTR. Following successful parameteriza-
tion of the SST model to population measurements, and we then
explored cell-to-cell variability, which remains experimentally
much more challenging.

3.2. Tracking each virion’s state and fate

The model can track the state of each virion. We studied a small
population of 200 viruses infecting an equal number of CD4 T cell
and assumed a synchronized infection. We first focused on the
heterogeneous timing of three HIV infection phases.

The first part of the model was examined by studying how long
it will take for each virus to fuse to the cell and be bound to
microtubules (Fig. 2A). We marked each infection by a unique
color. The distribution for time taken for this part matches a
gamma distribution, which is the consequence of multiple steps
before the virion reaches the microtubule. At this stage, no viral
degradation was considered.

As soon as the virion reaches the microtubule, trafficking may
begin. The model then begins to record the trajectory of each virion
along the microtubule (Fig. 2B and C). Each trajectory is different.
Some viruses may reach the end of the microtubule within 60s, but
others may not complete the journey within the 1200s time win-
dow. The simulated trajectories mimic the 1D random work
towards an absorbing boundary at the nuclear membrane. The
statistics of the time that each virus spends on the microtubule is
plotted in Fig. 2C in two ways: The left panel shows how long each
virus stays and its final fate (with squares indicating surviving and
circles indicating degraded virions); the right panel shows the
histogram of the MT stay time, i.e. trafficking time.



Fig. 6. Time to integration (TI) distribution is a function of the degradation rate. (A) Histogram of TI in 5000 infections in different degradation rates. Red lines are log-normal
distribution fits. Mean (B) and standard deviation (C) of TI distribution vs. the multiplier.

Fig. 7. Provirion dynamics at single cell resolution. The switching dynamics in single
cells for those viruses that successfully integrated into the host genome during 24
h.p.i. The state of the infection is color-coded. Green is not integrated; red is
integrated; and black is dead of the host cell. The blue line is the population
average of provirion dynamics.
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After reaching the end of microtubule, the virus binds the NPC
and is internalized into the nucleus. Fig. 3 summarizes the fates of
the viral population. Among the 200 viruses, the majority is
degraded during transport (44%, Fig. 3A and B). The surviving
viruses form 1LTR, 2LTR circles and provirions in similar propor-
tions (17%, 18% and 22% respectively). We also compared the life-
time of the degraded viruses versus the survivors (Fig. 3C and D).
As expected, the degraded sub-population has a shorter and
tightly distributed lifetime with mean about 100 min. In contrast,
the survival population has a broader distribution with a mean 4 h.
The higher variability viral survivors may be due to a mixture of
three different fates ones (1LTR, 2LTR and provirus).
3.3. Reactions critical for HIV provirus integration

In order to address which steps are critical in the infection, we
employed sensitivity analysis (Fig. 4) (Stelling et al., 2004). The
subject of the sensitivity analysis is the integration fraction at 24 h.
p.i.(f24hpi). We chose 24 h because it is a typical cell cycle period. We
perturbed each parameter 2% to see how f24hpi changes. The most
sensitive parameter is the 2LTR circularization rate; this may be due
to the competition between circularization and integration. Reverse
transcription and degradation are also sensitive, but the least sen-
sitive parameter is the random walk probability constant. Note that
the analysis here is based on a small perturbation around the ori-
ginal value, and so it only reflects the local sensitivity.

In order to see effects of larger perturbations, we chose five
reactions, which are potential drug targets, and used larger mul-
tiplier (1/8 to 8 fold) perturbations to see how they affect the
integration fraction (Fig. 5). The integration fraction here is cal-
culated by simulating 5000 distinct infections to ensure robust
statistics. It is calculated as the fraction of infected virions, which
finally is successfully integrated into the host genome. The fusion
reaction only contributes to the time when the virus enters the cell
and does not affect the final fate of the virion. Thus the integration
fraction is not sensitive to the fusion reaction.

After the virion has entered the cell, the genomic vRNA may
undergo 3 alternate fates: degradation of the vRNA, integration of
the cDNA, or formation of LTR circles. Thus the reactions of
degradation of vRNA, reverse transcription (vDNA is not subject to
degradation), or integration control the integration fraction.
Interestingly, the trafficking does not contribute to the fate deci-
sion; it only determines whether degradation or RT is happening
in the microtubule or at the end of microtubule.

As reverse transcription and degradation are competing pro-
cesses, they have opposite effects on the integration fraction. An
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increase of the degradation rate lowers the chance of integration,
as does a reduction in the reverse transcription rate. A sensitivity
analysis for the ODE model demonstrated that for the 11 common
parameters the results are consistent with the SST model (Fig. S3).

Our analysis indicates that the degradation and the reverse
transcription are key steps contributing to the infection efficiency.
Interestingly, the macrophage, which shows resistance to CXCR4-
ultilizing (X4) strains of HIV due to a low CXCR4 expression level
(Berger et al., 1999), can be infected after increasing RT efficiency
by treatment of exogenous nucleosides (Ana Sanchez et al., per-
sonal communication). This shows that enhancing RT efficiency
can greatly increase the infection efficiency, validating one of our
predictions.

3.4. Reactions critical for the time to integration

Next we focused on the time taken to proviral integration (TI),
which measures how soon a provirus is established. A short TI may
minimize the chance of triggering the host immune system via
cytoplasmic RNA and DNA sensors. Since each virus-cell encounter
is different, the TI actually is different for each infection and we
consider here its distribution. This distribution appears to be log-
normal (Fig. 6A). Interestingly, as the degradation rate is slowed, TI
is longer and also more widely distributed (also can be seen from
the blue lines in Fig. 6B and C). This is presumably because a
slower degradation rate allows more slowly reverse transcribing
virions to reach the nuclear membrane. Although we showed in
the previous section that a slowing of the degradation rate
increases the fraction of successfully established proviruses
(Fig. 5), we suggest here that the concomitant increase in TI may
render virions more likely to trigger host immune responses,
which in turn may reduce their ability to establish a productive
infection. Thus, our results suggest that the susceptibility of the
viral genomic RNA for degradation is subject to competing selec-
tive evolutionary pressures: a long half-life favors integration
efficacy, but a short half-life may be critical for evading cyto-
plasmic pathogen sensors that may trigger an innate immune
response.

Similar conclusions may be drawn from our results of the
altering the reverse transcriptase reaction: although decreased
reverse transcription efficacy reduces integration effectiveness it
also reduces the mean time to integration (Fig. 6B) and thus the
risk of immune detection. Thus one potential effect of therapeutic
compounds that inhibit reverse transcription may be a reduction
in the effectiveness of the innate immune response.

TI is a measure of how long it will take a virion to successfully
integrate into the host cell. Thus, unlike the integration fraction, TI
depends on the fusion rate but not the integration rate. The fusion
rate determines how long it takes for a bound virion to enter the
host cell. The integration rate determines the possibility of inte-
gration as opposed to circularization, and it does not contribute to
TI. Interestingly the trafficking speed also has little impact on the
time to integration, confirming that reverse transcription is largely
rate limiting for allowing integration.

3.5. Provirion fate transition dynamics

The stochastic nature of the SST model allows us to track not
only the fates of individual viral infection events (Figs. 2 and 3),
but also of provirions and the associated fate transitions (Fig. 7).
We selected all infection events that formed the provirion within
24 h.p.i. We sorted the infected cells based on their time to inte-
gration (TI). Many provirions disappeared after 12 h.p.i. due to
death of the host cell, which also causes the drop of the population
average (blue line). The individual fate transition dynamics of each
cell that are not captured by the population average (Fig. 7) or by
the ODE model. The long distribution of the timing in the HIV
infection are confirmed by single cell experimental data (Timm
and Yin, 2012) and are relevant to pharmacological targeting at
each steps (Murray et al., 2011).

In the context of viral infections, stochastic modeling approa-
ches are critical in the context of low multiplicities of infection
(MOI) (Srivastava et al., 2002). Under such condition, fluctuations
in the levels of viral constituents can lead to qualitatively different
behavior by rendering the system deterministically unstable when
considering positive feedback mechanisms (Srivastava et al.,
2002). Although the present model does not have such an unstable
state, the low MOI condition applies and the SST model formula-
tion demonstrates dynamic features that can only be captured by
stochastic models. Thus the present model may function as an
appropriate building block for modeling a larger scope of HIV
infection dynamics at single cell resolution, and/or integration into
immune response models, which often contain positive feedback
amplification motifs.
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