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Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) bacteremia is a common and life-threatening infection that imposes up to 30% 
mortality even when appropriate therapy is used. Despite in vitro efficacy determined by minimum inhibitory concentration 
breakpoints, antibiotics often fail to resolve these infections in vivo, resulting in persistent MRSA bacteremia. Recently, several 
genetic, epigenetic, and proteomic correlates of persistent outcomes have been identified. However, the extent to which single 
variables or their composite patterns operate as independent predictors of outcome or reflect shared underlying mechanisms of 
persistence is unknown. To explore this question, we employed a tensor-based integration of host transcriptional and cytokine 
datasets across a well-characterized cohort of patients with persistent or resolving MRSA bacteremia outcomes. This method yielded 
high correlative accuracy with outcomes and immunologic signatures united by transcriptomic and cytokine datasets. Results reveal 
that patients with persistent MRSA bacteremia (PB) exhibit signals of granulocyte dysfunction, suppressed antigen presentation, and 
deviated lymphocyte polarization. In contrast, patients with resolving bacteremia (RB) heterogeneously exhibit correlates of robust 
antigen-presenting cell trafficking and enhanced neutrophil maturation corresponding to appropriate T lymphocyte polarization and 
B lymphocyte response. These results suggest that transcriptional and cytokine correlates of PB vs. RB outcomes are complex and 
may not be disclosed by conventional modeling. In this respect, a tensor-based integration approach may help to reveal consensus 
molecular and cellular mechanisms and their biological interpretation.
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Significance Statement

Despite laboratory susceptibility, gold-standard antibiotics such as vancomycin often fail to clear MRSA bacteremia in vivo. This phe-
nomenon is termed persistent infection and suggests that host–pathogen–antibiotic interactions are essential to methicillin-resistant 
Staphylococcus aureus (MRSA) bacteremia outcomes. Recent studies have identified genetic, transcriptomic, and proteomic determi-
nants of MRSA persistence. However, independently, these determinants provide insufficient mechanistic insight, and it is unclear 
if they indicate unique or overlapping persistence mechanisms. We use tensor-based decomposition to jointly analyze cytokine 
and transcriptomic datasets from patients with persistent or resolving MRSA bacteremia. Our results reveal diverging host immune 
responses that manifest across mechanistic pathways to influence outcomes. These results may guide treatment and future thera-
peutic discovery by highlighting critical determinants of antibiotic efficacy and protective immunity.

Introduction
Methicillin-resistant Staphylococcus aureus (MRSA) bacteremia is a 
common and life-threatening infection often arising through 
community-acquired or healthcare-associated settings (1, 2). 
These infections are associated with poor outcomes, and up to 
30% of appropriate antibiotic regimens fail to resolve bacteremia 
in vivo despite susceptibility in vitro (3). MRSA bacteremia that re-
solves upon appropriate antibiotic treatment is termed resolving 
bacteremia (RB) whereas cases that do not resolve to blood 
culture-negative status after 5–7 treatment days are termed per-
sistent bacteremia (PB) (4). The limited predictive value of in vitro 
susceptibility (e.g. minimum inhibitory concentration [MIC] lev-
els) for MRSA bloodstream clearance clinically indicates a need 
to better understand the host–pathogen determinants shaping 
antibiotic outcomes in vivo.

Recent progress has been made in identifying determinants of 
PB vs. RB outcomes in MRSA bacteremia (4–6). Host factors appear 
to play an important role in MRSA persistence, as patient outcome 
can be independent of strain susceptibility to vancomycin in vitro 
(3). Persistence factors are distinct from those associated with 
MRSA antibiotic resistance, where the organism is refractory to 
the antibiotic both in vitro and in vivo (7). Thus, advances are ne-
cessary to better discern and predict therapeutic outcomes in vivo 
to prospectively intervene to mitigate persistence. We hypothe-
size that outcomes are determined by the confluence of immuno-
logical responses in an individual host, the infecting MRSA strain, 
and the specific antibiotic and its use in practice.

To address host responses that contribute to such outcomes, 
we have previously undertaken broad molecular profiling to 
measure the molecular differences of MRSA bacteremia response 
(4–6). These systems-level analyses explored genetic (5), tran-
scriptional, and cytokine (6, 8) correlates of MRSA bacteremia per-
sistence outcomes. However, the extent to which these signatures 
operate as distinct molecular mechanisms of phenotypic immune 
response or reflect a shared underlying immune program is yet 
unclear. Therefore, we approached this problem based on the 
premise that shared patterns of molecular and cellular responses 
might improve understanding of the clinical correlates of out-
come if they each reflect integrated immunological mechanisms.

Defining molecular and cellular immune signatures can 
be facilitated by mathematical techniques to identify patterns 
across large-scale datasets. Matrix and tensor factorization 
techniques are especially powerful tools for reducing the 
dimensionality of complex data. Most generally, these methods 
reduce high-dimensional datasets (data consisting of multiple 
dimensions, such as measurements, patients, and time) into 
dimension-specific factor matrices that individually capture pat-
terns across each dimension. These factor matrices individually 
reveal unforeseen relationships among the diverse datasets and, 
when recombined, approximate the original measurements. 

Further, when appropriately matched to the structure of the 
data, these techniques help to visualize its variation, reduce noise, 
impute missing values, and reduce dimensionality (9). For data in 
matrix form, principal components analysis (PCA) and non- 
negative matrix factorization are two widely applied examples 
(10). However, when integrating data of higher dimensionality, 
higher-order generalizations of these methods, tensor factoriza-
tions, can be exceedingly useful (9). A particularly important 
benefit of decomposing data into factor matrices is that it is natur-
ally suited to combining different sources of data, which often de-
rive from diverse biological measurements. Variation along each 
dimension of data in tensor form is effectively separated by these 
techniques (11, 12). When integrating two sources of data, each in 
a matrix or tensor format, coupled matrix-tensor factorization 
(CMTF) allows detection of shared patterns between datasets of 
differing dimensionality (11–13). Coupling shared dimensions 
across datasets provides two distinct benefits; (i) the extent of 
data reduction is increased by using a common set of patterns 
across both datasets; and (ii) patterns distinguished in the shared 
dimension reflect the trends presented in both datasets; thus, 
their definition is better shaped and meaning integrated. 
Consequently, retrospective associations or prospective predic-
tions based on these factorized patterns may be improved through 
more accurate derivation, and interpretation of the resulting pat-
terns may be improved by a more holistic view of the measure-
ments tied to those patterns (11, 14).

In the present study, we applied CMTF to integrate the tran-
scriptional and cytokine responses relative to persistent vs. re-
solving clinical outcomes in two cohorts of patients with MRSA 
bacteremia. Data integration enabled the identification of consist-
ent patterns of immunologic response across cytokine and tran-
scriptomic measurements and revealed patterns distinguishing 
PB from RB outcomes. The combined immunologic patterns ex-
plain outcome better than either data type on its own, with cor-
relative accuracy verified in an independent cohort. These 
associations are shaped by molecular (e.g. cytokine) and cellular 
(e.g. granulocyte, lymphocyte) differentiation patterns that retain 
their correlational accuracy when used alone. Overall, the current 
results demonstrate that robust correlative relationships detected 
by tensor-based modeling reveal integrative immunological sig-
natures of outcomes in human MRSA bacteremia.

Results
A tensor-based strategy for integrating 
heterogeneous clinical measurements
To identify common patterns across cytokine and RNA-seq meas-
urements, we first sought to optimally organize the multiple data-
sets. Three types of measurements were collected—plasma 
cytokines, serum cytokines, and RNA-seq from whole blood 
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samples (Fig. 1A). Known differences exist in cytokine measure-
ments between plasma and serum; however, certain shared vari-
ation across patients is expected and thus the cytokine 
measurements across serum and plasma sources should have 
some matching correspondence. Therefore, while not every pa-
tient had every type of measurement, the study contained two 
types of cytokine measurements, aligned across cytokines and pa-
tients, coupled with RNA-seq measurements that shared a com-
mon patient dimension.

In situations where measurements can be aligned along two or 
more dimensions, the data can be structured into tensor form. A 
generalization of a matrix, which is a two-mode tensor, tensors 
most often refer to organized arrays with three or more dimen-
sions (modes); in the three-mode form, tensors are structured as 
a cube of measurements. The cytokine data was structured into 
a 3-mode tensor, with patient, cytokine, and cytokine source (se-
rum or plasma) axes (Fig. 1B). This tensor was paired with the 
RNA-seq measurements in a matrix containing the shared patient 
axis and a separate gene axis. To integrate both data types, we 
used CMTF (11–13). This method solves for an optimal low-rank 
approximation of both datasets while keeping the coupled dimen-
sion factors (in this case, patients) shared (Fig. 1C). As CMTF max-
imizes the variance explained across both datasets, it is better 
suited here than other approaches that maximize explanation of 
other subsets of variance, including canonical polyadic (CP) de-
composition for just the cytokine tensor, PCA for just the 
RNA-seq matrix, or partial least squares regression in tensor 
form (tPLS) to exclusively examine the shared variance (Fig. 1D).

Tuning dimensionality reduction for accurate 
correlations with MRSA bacteremia outcomes
Dimensionality reduction via CMTF introduces two method pa-
rameters that influence the resulting decomposition. First, decom-
position can be performed using a varying number of components. 
A small number of components effectively explained the data 
variation, with eight components capturing >70% of the total vari-
ance while reducing the data to 16% of its original size (2,192 factor 
values vs. 14,132 nonmissing measurements; Fig. 2A). To compare 
against other dimensionality reduction techniques, PCA was ap-
plied to all measurements concatenated in a single matrix. We 
found that CMTF essentially captured the same amount of data 
variation compared to PCA at an equivalent number of compo-
nents. Second, as CMTF aims to maximize the total variance of 
both datasets explained, the relative numerical scale between 
cytokine and RNA-seq measurements affects the goodness of fit 
for each individual dataset; CMTF prioritizes explaining patterns 
in the dataset with the larger scale. To explore the effect of this 
scaling, we tested a variety of scales; the resulting factors were re-
sponsive to the relative scale of each data type (Fig. 2B). Note that, 
when the emphasis on one dataset is greatly increased, the total 
R2X overlaps with the over-emphasized dataset; this is expected, 
as most of the variance in the two datasets is contained in the over- 
emphasized measurements.

We chose to identify reduced patterns that were optimally able 
to correctly assign PB vs. RB outcomes. To do so, clinical variables 
were correlated with outcome by logistic regression. Assignment 
accuracy was quantified using 10-fold cross-validation. Briefly, 

A

B C D

Fig. 1. Structured data decomposition integrates clinical measurements with varying degrees of overlap. A) General approach description. Patients with 
MRSA bacteremia treated with vancomycin had samples collected at admission and then were monitored 5 days post-admission for clearance of MRSA 
from the bloodstream. Measurements of patient serum cytokine, plasma cytokine, and whole blood transcriptional profiles were assessed. These 
measurements were then reduced into overall factors describing patterns within the data, which in turn were used to assign disease outcomes, defined as 
resolving (RB) or persisting (PB) bacteremia. B) Overall structure of the data. Cytokine measurements from either plasma or serum can be arranged in a 3D 
tensor, wherein each dimension indicates patient, cytokine, or sample source, respectively. In parallel, gene expression measurements are aligned with 
cytokine measurements by virtue of sharing patients. C) Data reduction is performed by identifying additively separable components represented by the 
outer product of vectors along each dimension. The patient factors are shared across both the tensor and matrix reconstruction. D) Venn diagram of the 
variance explained by each factorization method. Canonical polyadic (CP) decomposition can explain the variation present within the cytokines tensor, 
or principal component analysis (PCA) could be used to reduce the gene expression matrix (9). Tensor partial least squares regression (tPLS) allows one to 
explain the shared variation between the matrix and tensor (15, 16). In contrast, here we wish to explain the total variation across both the tensor and 
matrix. This is accomplished with CMTF (11–13).
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10% of the patients were left out from the logistic regression mod-
el, and the remaining 90% were used to learn the relationship be-
tween each component and outcome. Next, the logistic regression 
model was used to assign outcomes for patients held out of the 
model training. This process was repeated until every patient 
was categorized with respect to PB vs. RB based on cytokine and 
transcriptome profiles. Reported accuracies are the balanced ac-
curacy scores observed over this cross-validation process. Using 
this process while varying the settings within CMTF, a peak correl-
ation performance is observed at eight components (Fig. 2C) and 
when the cytokine data were scaled to have a total variance 128 
times larger than the RNA-seq data (Fig. 2D). CMTF’s peak per-
formance exceeded that of PCA over a wide range of scaling values 
and component numbers (Fig. 2C and D).

Coupled factors improve the accuracy 
of discerning MRSA bacteremia outcomes
We next sought to evaluate the extent to which CMTF-derived 
patterns could accurately distinguish MRSA PB vs. RB outcomes. 
We built a regularized logistic regression classifier to assign per-
sistence outcome from the CMTF components and compared its 
performance to those built with a single data source or with an 
eight-component PCA scores matrix derived from all measure-
ments concatenated into a single matrix (Fig. 3A and B). As ele-
vated IL-10 is associated with PB (4, 5), logistic regression models 
were also constructed to assign persistence outcome from IL-10 
measurements alone. Consistently, CMTF-derived factors more 
accurately differentiated PB vs. RB outcomes than matrix-based 
models (Fig. 3A). Note that, because each data source was not 
available for all patients, comparisons were made using the sub-
set of patients having the respective data measurements; the 
CMTF model, however, is the same across patient subsets and 
considered all available measurements for all patients. As further 
validation, model performances were compared for a separate co-
hort that remained blinded during the model assembly process. 
While there was an expected decrease in accuracy overall, 
CMTF-derived factors were again more effective at differentiating 
PB vs. RB outcomes (Fig. 3C and D). Thus, data integration im-
proved the accuracy of PB assignment (Fig. 3A).

We also sought to evaluate any relationships between the 
CMTF-derived components and patient demographic characteris-
tics, specifically biological sex, age, and race (Fig. 3E). MRSA suscep-
tibility is known to vary with each of these parameters, and so we 
surmised that persistence may be influenced by factors that also 
vary with these characteristics (7). However, neither sex, age, nor 
race correlated better than chance, and there were no significant 

associations of the molecular components studied with these demo-
graphic features (Fig. 3E). This lack of association between compo-
nents and such clinical characteristics may be attributed to our 
patients being matched on basis of sex, age, and race; regardless, 
the poor associations of the components with these clinical charac-
teristics indicates their inclusion would not improve recognition of 
persistence-associated molecular patterns in this study.

A benefit of the logistic regression model is its ease of interpret-
ation. As part of the fitting process, the logistic regression model 
assigns a coefficient to each CMTF component (Fig. 3F). These co-
efficients indicate the relative impact of each CMTF component in 
MRSA PB vs. RB outcomes; more influential components have co-
efficients of greater magnitude. Additionally, the sign of the coef-
ficient informs the directionality of the association; positive 
coefficients indicate an association with PB outcomes, while nega-
tive coefficients associate with RB outcomes. Uncertainty in each 
coefficient was quantified by bootstrapping the patient factors 
produced via CMTF (17). CMTF components 1 and 2 strongly asso-
ciated with the PB outcome while components 4 and 6 strongly as-
sociated with the RB outcome (Fig. 3F).

To provide a comparison baseline, alternative matrix-based 
models were built to predict MRSA bacteremia persistence out-
come from a flattened version of our dataset that concatenated 
all available measurements into a matrix (Fig. S3). We applied 
an eight-component PCA to this concatenated matrix to reduce di-
mensionality and impute missing values; logistic regression and 
support vector machine classification models were used to predict 
persistence outcome from the resulting PCA scores matrix and 
PCA-imputed concatenated matrix. CMTF consistently outper-
formed the matrix-based models.

Coupled factors reveal conserved immunological 
responses in MRSA bacteremia
We plotted the composition of each CMTF component against the four 
factor dimensions (patient, cytokine, serum vs. plasma, and RNA ex-
pression) to evaluate the relative biological significance of each com-
ponent (Fig. 4A–D). Factor components were scaled to have a range 
of −1 and 1. Next, gene enrichment analysis was performed on the 
genes most positively and negatively associated with each component 
to identify enriched transcriptomic processes (Fig. 4E).

These factor matrices can be interpreted in two primary ways. 
To interpret the biological significance of a particular CMTF com-
ponent, one can evaluate its composition across the factor matri-
ces. For instance, component 1 corresponded to upregulation of 
IL-17A, G-CSF, IL-10, IL-6, and IL-4 (Fig. 4B) in plasma cytokine 
measurements (Fig. 4C). Component 1 also correlated with the 

A B C D

Fig. 2. CMTF parameter tuning to correlate bacteremia outcome. A) Number of components used in CMTF and PCA decomposition vs. the percent 
variance reconstructed (R2X). B) Percent variance explained upon reconstruction (R2X) of the entire data, RNA, or cytokine measurements with varying 
scaling between the two datasets. C, D) Balanced accuracy in assigning bacteremia outcomes with varying number of components (C) and scaling (D).
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greater expression of genes associated with neutrophil degranula-
tion and inflammation and reduced expression of genes associ-
ated with T cell activation and lymphocyte proliferation (Fig. 4D 
and E). In parallel, one can also compare the differences between 
components by examining each individual factor matrix. 
Components 1 and 2, for example, were mostly similar in their 
RNA-seq gene associations (Fig. 4D) and serum and plasma cyto-
kine sources (Fig. 4C) but were distinct in their association with cy-
tokines like IL-4 (Fig. 4B).

Components 1, 2, 4, and 6 were important correlates of persistent 
MRSA bacteremia outcome (Fig. 3F). Component 2, which correlated 
with PB outcomes, associated with upregulation of plasma IL-17A, 
G-CSF, IL-10, and IL-6 cytokine measurements alongside greater ex-
pression of gene signatures associating with neutrophil degranula-
tion and granulomatosis and lesser expression of CD4+ T-helper 
cell differentiation genes (Fig. 4). Component 4, which associated 
with RB outcomes, associated with upregulation of serum 
IL-12(p40) cytokine measurements, increased expression of genes 
associated with granulocyte granules and hematopoietic stem cells 
(HSPCs), and decreased expression of genes associated with dendritic 
cells and macrophages. Component 6, which also associated with RB 
outcomes, corresponded to downregulation of IL-17A and upregula-
tion of G-CSF across serum and plasma cytokine measurements 
alongside greater expression of genes associated with cardiomyo-
cytes and lesser expression of genes linked to granulocytes.

The remaining CMTF components, 3, 5, 7, and 8, identified bio-
logical processes across RNA-seq and cytokine measurements 
that did not strongly associate with persistent MRSA bacteremia 
outcome. Of these components, component 3 associated strongly 

with IL-5 upregulation and with increased expression of helper 
(CD4+) and cytotoxic T cell (CD8+) genes alongside decreased ex-
pression of genes associated with tertiary granules and HSPC dif-
ferentiation. Component 5 corresponded with the downregulation 
of IL-4 and TNFβ, elevated expression of neutrophil degranulation 
and monocyte genes, and decreased expression of genes associ-
ated with IFNγ signaling and macrophages. Component 7, like 
component 5, associated with greater expression of neutrophil de-
granulation and monocyte genes, but was also associated with 
lesser expression of methylation gene signatures and IL-12(p40). 
Finally, component 8 corresponded to upregulation of IL-1b and 
downregulation of IL-13, greater expression of genes associated 
with plasma and transitional B cells, and reduced expression of 
genes associated with secretory granules and dendritic cells.

Notably, components 3 and 8 appear to be primarily influenced 
by batch effects. The magnitudes of these components were 
distinct between cohorts, suggesting that these components 
identified signals with cohort-to-cohort differences (Fig. 4A). 
Dimensionality reduction techniques, including tensor factoriza-
tion, are routinely used for correcting batch effects (18, 19), and 
these batch-associated components help to capture patterns as-
sociated with batch effects so that the remaining components 
may better associate with persistence-related mechanisms.

A reduced model reveals heterogeneity 
in persistent MRSA bacteremia outcomes
Given that only a subset of components strongly associated with 
MRSA persistence, we next sought to test whether a reduced 

A

C D

B E

F

Fig. 3. CMTF improves assignment accuracy of persistent MRSA bacteremia. A) Balanced accuracy in RB/PB assignment from models trained with CMTF 
components, PCA components, and raw data sources. Accuracy is evaluated using 10-fold cross-validation over the training cohort. Model accuracies are 
evaluated over subsets of patients dependent on their available measurements; the CMTF model considers all available measurements for all patients. B) 
Receiver operating characteristic curves for the models depicted in (A). C) Balanced accuracy in RB/PB assignment from models trained with CMTF, PCA, 
or the raw data sources. Model accuracy is evaluated against a masked validation cohort following training against the training cohort. D) Receiver 
operating characteristic curves for models depicted in (C). E) CMTF model performance in assigning auxiliary demographics. Four unique races were 
reported, so random chance for the “Race” prediction is a balanced accuracy of 0.25. Random chance for all other categorical variables is 0.50. F) Model 
coefficients assigned to each CMTF component. Dots and error bars depict the bootstrapping means and standard deviations of model coefficients, 
respectively.
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model using few components could be equally associative with 
persistence as the full model. To address this, we built logistic re-
gression models that used subsets of components 1, 2, 4, and 6 to 
predict persistence outcome. We compared these reduced models 
to a logistic regression model that used all eight CMTF compo-
nents. In contrast to our earlier analysis, we included all 177 pa-
tients in this analysis. A reduced model trained with only 
component 2 (upregulation of IL-17A, G-CSF, IL-10, IL-6, neutro-
phil degranulation/granulomatosis, and downregulation of 
T-helper cell differentiation) and the sum of components 4 
(upregulation of IL-12(p40), granulocyte granules, HSPCs, and 
downregulation of dendritic cells and macrophages) and 6 (down-
regulation of IL-17A, granulocytes and upregulation of cardio-
myocytes) had equal classification accuracy to the model built 
with all components (Fig. 5A and B), supporting the notion that 
components 2, 4, and 6 are informative of bacteremia persistence 
outcome on their own.

With the reduced model indicating the independent value of 
components 2, 4, and 6, we then plotted the patients within this 
reduced space (Fig. 5C). Here, a clear subset of patients with RB 
is found in the top-left that the model correctly identifies as RB. 
This relationship indicates that higher combined component 4 
and 6 values coupled with lower component 2 values strongly as-
sociated with RB; that is, increases in RB-associated components 4 
and 6 in conjunction with decreases in PB-associated component 2 
associated with RB.

To examine the biological distinctions between components 2, 
4, and 6, we plotted the cytokine (Fig. 5D–F) and RNA-seq 
(Fig. 5G–I) factor values of components 2, 4, and 6 against each 

other. G-CSF is positively associated with each component. The 
RB-associated components 4 and 6, however, were unique in their 
associations to other cytokines; component 4 associated positive-
ly with IL-12(p40) while component 6 associated negatively with 
IL-17A. The PB-associated component 2, conversely, was unique 
from the RB-associated components in its positive correlations 
to IL-17A and IL-10. With regards to transcriptomic associations, 
RB-associated components 4 and 6 had similar RNA-seq associa-
tions as both associated with reduced expression of genes in-
volved in oxidative phosphorylation. Examination of genes 
unique to components 4 and 6, however, found that component 
4 associated with greater expression of neutrophil and 
HSPC-associated genes alongside reduced expression of macro-
phage and dendritic cell genes while component 6 associated 
with greater expression of cardiomyocyte genes and lesser expres-
sion of neutrophil transcriptomic signatures. Components 2 and 6 
showed minimal correlation in their transcriptomic associations 
but, surprisingly, components 2 and 4 demonstrated some simi-
larities in their RNA-seq associations as both components 2 and 
4 associated with increased expression of neutrophil-associated 
genes. Component 2, however, also involved elevated expression 
of myeloid-derived suppressor cell (MDSC) genes and reduced ex-
pression of helper T and NK cell signatures while component 4 as-
sociated with reduced expression of oxidative phosphorylation 
genes and greater expression of HSPC-associated gene patterns.

To further validate these findings, we applied CIBERSORTx to the 
RNA-seq measurements to infer immune cell quantities (20). To as-
sociate these immune cell quantities with our components, CMTF 
patient factors were correlated with the CIBERSORTx-inferred 

A B

C

D E

Fig. 4. CMTF components identify conserved patterns of MRSA immunologic response. A) Component associations with each patient. B) Component 
associations with each measured cytokine. C) Component associations with the two cytokine sources: plasma and serum. D) Component associations 
with the RNA-seq measurements. E) Enrichment analysis for genes associated with elevated and reduced expression for each component. Selected genes 
are representative of their corresponding gene set.
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immune cell quantities (Fig. 5J). Component 2 correlated with 
reduced CD4 TCM1 and double-negative T cells along with in-
creased mucosal-invariant T cells. Component 4, like component 
2, involved reduced double-negative T cells but also correlated 
with reduced CD8 TEM6 cells. Component 6, finally, correlated 
with increased HSPC, CD8 proliferating, CD16 monocyte, type 2 den-
dritic cell, CD4 TCM1, and erythrocyte populations.

Finally, to assess whether the transcriptomic signatures would 
have been revealed through simpler analysis, we compared the 

transcriptomic factors of components 2, 4, and 6 against the genes 

found differentially expressed with PB vs. RB status (Fig. S5) (21). 

Gene enrichment analyses of these differentially expressed genes 

found significantly elevated expression of signatures associated 

with granulocytes, dendritic cells, macrophages, and monocytes 

while genes associated with T-helper cells (including Th2 and 

Th17), B cells (memory, naïve, and double-negative), NK cells, 

and cytotoxic T cells demonstrated significantly reduced expres-

sion. While many of the immune cell signatures were also found 

in components 2, 4, and 6, these components were unique from 

the differential expression analysis as each component high-

lighted different subsets of immune cells.

Discussion
Here, results demonstrate that CMTF can improve the under-
standing of host immune responses correlated with outcomes in 
human MRSA bacteremia. This insight is gained by characterizing 
the host immune response through the integration of multiple 
data types. We find that CMTF captures over 70% of the variation 
observed across clinical RNA expression and cytokine measure-
ments in just 8 components, that these components strongly as-
sociate with MRSA bacteremia persistence vs. resolution (Fig. 2). 
Furthermore, these components more accurately predict persist-
ence outcome than standard matrix-based and single-datatype 
models (Fig. 3). Our prediction model indicates each component’s 
association to persistence, while CMTF supplies information 
about how each component relates to individual measurements. 
Consequently, we can plausibly interpret these components to 
better understand the underlying immunologic mechanisms 
(Fig. 4). We find a subset of components are equally associated 
with persistence as all eight components (Fig. 5). Interestingly, 
examination of this component subset affords more precise delin-
eation of immune heterogeneity in immune responses to MRSA 
bacteremia. This observed heterogeneity in immune responses 

A

D E F

G H I

B C J

Fig. 5. A reduced model visualizes heterogeneity in persistent MRSA bacteremia outcomes. A) Balanced accuracy scores of support vector machine 
classification models trained with subsets of CMTF components. Accuracy is evaluated using 10-fold cross-validation over all patients. B) Receiver 
operating characteristic curves for models depicted in (A). C) Patient factor values for CMTF component 2 vs. the sum of components 4 and 6. Red and 
green shading indicate persister- and resolver-predicted patients, respectively. D–F) Pairwise comparisons between cytokine factor values for CMTF 
components 2, 4, and 6. Cytokine factors with large absolute differences between components are highlighted in orange. G–I) Pairwise comparison 
between RNA expression factors for CMTF components 2, 4, and 6. The top 500 genes most-associated with reduced and elevated expression are 
highlighted in red (component 2), cyan (component 4), and green (component 6). Genes associated with reduced or elevated expression in both 
components are shown in black. J) Component correlations to immune cell quantities inferred via CIBERSORTx. Asterisks indicate significant correlation 
(P < 0.05) between immune cell and component.

Chin et al. | 7
D

ow
nloaded from

 https://academ
ic.oup.com

/pnasnexus/article/3/5/pgae185/7664540 by U
C

LA C
ollege Library user on 12 June 2024

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae185#supplementary-data


and key immunological signatures associated with PB and RB out-
comes are highlighted in Fig. 6.

In integrating the serum and plasma cytokine with whole blood 
RNA-seq measurements, we found that no one data type was con-
sistently most predictive of outcome on its own (Fig. 3). Certain 
data types, such as the plasma cytokines, showed greatest pre-
dictive accuracy within the training cohort, but this did not extend 
to the validation cohort. Thus, one benefit of data integration may 
be to leverage a larger sampling of individuals, resulting in more 
robust associations. Additionally, while previous studies have 
found associations between sex, race, and age with persistent 
MRSA bacteremia (7), the CMTF components were not associative 
with these auxiliary demographics. It is therefore conceivable that 
the molecular and cellular patterns identified in the present study 
associated with persistence through means independent of 
demography.

The observed differences in cytokine profiles typically gener-
ated by distinct CD4+ T-helper cell polarization in response to in-
fection implies T cell responses are integral to shaping outcomes 
in MRSA bacteremia. This concept is consistent with findings re-
garding epigenetic correlates of such outcomes (4). In the present 
study, further interrogation of the cytokine and gene expression 
factors relevant to each component also support and extend 

existing literature in MRSA persistence mechanisms. For ex-
ample, component 2 associated strongly with PB and with 
G-CSF, IL-17A, and IL-10 upregulation. Elevated levels of G-CSF 
and IL-17A are linked to increased quantitative and potent neutro-
phil responses in staphylococcal infection (4, 22), suggesting com-
ponent 2 may correspond to a neutrophil dysfunction. Indeed, 
MRSA has well-documented methods of avoiding neutrophil rec-
ognition (23), and recent reports have associated elevated imma-
ture granulocyte formation in response to MRSA infection with 
PB (4). Alternatively, elevation in neutrophil response could also 
indicate elevated bacterial burden; MRSA elicits neutrophil for-
mation and recruitment, and proliferative neutrophil response 
may correspond to heightened infection severity rather than neu-
trophil dysfunction. However, in PB and other conditions in which 
the immune response is nonprotective, neutrophil count may not 
correspond with pathogen burden. It follows that upregulation of 
IL-10 and IL-17A have been independently linked with persistent 
MRSA bacteremia (4, 5, 24–27). Indeed, the present finding that 
component 2 associated with upregulation of both IL-10 and 
IL-17A in PB suggests the two cytokines share an underlying 
mechanism. Furthermore, component 2 also associated with ele-
vated expression of neutrophil gene signatures and reduced ex-
pression of genes associated with MHC class II and CD4+ 

Fig. 6. CMTF suggests granulocyte maturation, antigen-presenting cell function, and lymphocyte differentiation are determinants in MRSA bacteremia 
persistence. Overview of hypothesized immunological determinants of MRSA bacteremia outcomes from CMTF. Each axis reflects patients’ positive or 
negative association with that component pattern. For instance, PB outcomes are associated with positive weighting along component 2 alongside 
negative weights along components 4 and 6.
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T-helper cell differentiation. This pattern of results implies that 
the upregulation of IL-10 and IL-17A with elevated neutrophil pop-
ulations in context of reduced CD4+ T-helper differentiation po-
tentially follows deviations from protective MHC class II antigen 
presentation.

Intriguingly, component 4 exhibited similar cytokine and tran-
scriptional signatures to component 2 but an opposite association 
with persistence outcome. Both components strongly associated 
with G-CSF upregulation, which promotes neutrophil production, 
maturation, and distribution (28) alongside transcriptomic signa-
tures associated with neutrophils. These findings suggest both 
components corresponded to increases in neutrophil production. 
Unlike component 2, however, component 4 associated with 
elevated IL-12 (p40) that typically associates with antigen- 
presenting cell (APC) response early in the course of infection, 
and subsequent downregulation of IL-10 (29–31). Alternatively, 
elevated IL-12 (p40) could indicate an elevation in IL-23—a 
pro-inflammatory cytokine with an IL-12 (p40) subunit that is pro-
duced by APCs (32). However, in context of component 4’s tran-
scriptomic reduction in APC response and weak association to 
IL-17A, a downstream target amplified by IL-23 expression, it is 
unlikely this component corresponded to elevated IL-23. In com-
paring transcriptomic signatures between components 2 and 4, 
we found further reduction of immunosuppressive signals in 
component 4. While component 4’s transcriptomic factor associ-
ated with reduced dendritic cell and macrophage signatures, this 
component did not associate with reduced CD4+ T-helper differ-
entiation, NK cell response, or MHC class II antigen presentation. 
It is plausible that this pattern is potentially the result of elevated 
IL-12 (p40), a chemoattractant for both dendritic cells and macro-
phages (33, 34). Hypothetically, improved macrophage and den-
dritic cell infiltration may compensate for reduced MHC class II 
antigen presentation by other cell subsets. This rescue of MHC 
class II function may, in turn, be responsible for improved CD4+ 
T-helper differentiation (35) or polarization. Furthermore, the re-
ductions in dendritic cell and macrophage transcriptomic signa-
tures from whole blood supports a plausible hypothesis that 
APCs migrate into infected tissues. These findings are consistent 
with previous reports that found macrophages are integral to 
APC protective immunity against MRSA infections (6, 36–38). 
The present findings offer previously unseen insights, however, 
suggesting that improved trafficking and antigen presentation 
by macrophages may facilitate antigen presentation resulting in 
CD4+ T-helper cell polarization to drive protective immune 
programs.

Like component 4, component 6 was associated with RB; unlike 
components 2 and 4, however, component 6 comprises pathways 
involved with regulation of neutrophil function. For example, 
IL-17A is a pro-inflammatory Th17 cytokine that promotes 
neutrophil-mediated immune responses (39). Reduced expression 
of IL-17A, coupled with reduced expression of granulocyte gene 
signatures, suggests component 6 reflects reduced granulocyte re-
sponse. We note that the cause of this reduced granulocyte re-
sponse is uncertain and could reflect a paradoxical relationship 
in which infection severity and granulocyte response are de-
coupled. Regardless, comparing transcriptomes between compo-
nents 4 and 6 revealed commonality among reduced expression 
of gene signatures associated with oxidative phosphorylation. 
This pattern could indicate reduction in reactive oxygen species 
(ROS) formation among immature neutrophils and may suggest 
a separate mechanism to mitigate suppression of CD4+ T cell po-
larization. Specifically, ROS induce myeloid-derived suppressor 
cells (MDSC) that suppress the immune response (40, 41). Hence, 

impairment of ROS and ensuing MDSC response may avoid sup-
pression of CD4+ response and support RB outcomes. 
Supporting this interpretation, component 6 involved no associ-
ation to MDSCs and its CIBERSORTx correlations indicated upre-
gulation of CD4+ and CD8+ T cell proliferation as well as 
dendritic cell functions, suggesting an immunologic program to 
promote CD4+ T and dendritic cells interactions that were sup-
pressed in component 2. A complementary hypothesis is that re-
duced oxidative metabolism could reflect attenuation of 
mitochondrial ROS and antiapoptotic signaling in neutrophils 
(42, 43). This possibility is supported by neutropenia often ob-
served in PB outcomes. Collectively, the noted differences among 
CMTF components 2, 4, and 6 offer unforeseen insights into im-
mune cell generation, differentiation, and trafficking that collect-
ively shape outcomes in MRSA bacteremia.

We acknowledge that this investigation has limitations. First, 
while this study investigates a well-characterized cohort, it is a 
moderately sized sample of 177 patients collected from a single 
center. Second, while our validation cohort was blinded to inves-
tigators throughout the study, it was a subset of a patient cohort 
used in model training. Thus, the current findings lay an import-
ant foundation for future validation studies in demographically 
and geographically independent patient cohorts. As our dataset 
consisted of patients across two cohorts, however, we believe 
that these findings are likely to reflect generalizable MRSA bacter-
emia persistence mechanisms. Third, while the current study fo-
cused on host response contributions to outcomes, MRSA 
virulence mechanisms are known to vary with the 
route-of-acquisition and MRSA strain (44, 45). Hence, evaluation 
of such variables in ongoing studies may reveal further insights. 
Fourth, cytokine and transcriptomic measurements were col-
lected at a single timepoint, limiting study of longitudinal rela-
tionships of the observed mechanisms. For instance, while our 
findings linked IL-10 and IL-17A upregulation into one 
PB-associated process, it is uncertain if this mechanism is driven 
by IL-10, or if IL-10 upregulation is a regulatory response to 
IL-17A driven inflammation. Similarly, while our findings link 
transcriptomic reductions in T-helper differentiation and MHC 
class II proteins with PB, it is uncertain if reduction in T-helper dif-
ferentiation is a cause or effect of MHC class II protein reduction. 
Finally, this study considered only patients with MRSA bacteremia 
treated with a vancomycin therapy over a 5-day course. While this 
therapeutic regimen reflects the most common real-world clinical 
scenario, whether immunological signatures found translate to 
other antibiotic regimens is unknown. Similarly, it is not yet 
known whether these immunological signatures are unique to 
MRSA bacteremia, extendable to MRSA infections in other tissue 
compartments (e.g. skin infection or organ abscess) or generaliz-
able across other pathogens.

In summary, these results find that an integrated view of cyto-
kine and RNA expression obtained using CMTF may improve 
understanding of the immune response shaping outcomes of 
MRSA bacteremia. Integrating data types to define molecular pat-
terns of immunologic response provides dual benefits. Firstly, in-
terpretation of the resulting patterns is made easier through a 
broader view of the involved molecular factors. Additionally, im-
mune response patterns, especially with data reduction in tensor 
form, are more precisely defined through more unified dimension-
ality reduction. Importantly, immune mechanisms associated 
with outcomes in MRSA bacteremia manifest over multiple bio-
logical modalities as revealed through tensor factorization meth-
ods that may be missed by conventional modeling methods. This 
is a key benefit of tensor factorization methods; opposed to 
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matrix-based methods, like PCA, that can conflate cross-modality 
patterns by concatenating measurements into a single matrix, 
CMTF excels in capturing and revealing MRSA bacteremia persist-
ence mechanisms through dimension-specific component associ-
ations. Thus, these results demonstrate the importance of 
multiomics data profiling and their integration in characterizing 
the human immune response, with coupled tensor factorization 
as a powerful tool for pattern discovery and plausible data 
interpretation.

Materials and methods
Patients and sample collection
This study was conducted in accordance with Good Clinical 
Practice and Human Subjects Research as approved by the Duke 
University Medical Center (DUMC) Institutional Review Board. 
Staphylococcus bacteremia (SAB) patients were evaluated and 
consented for enrollment in the S. aureus Bacteremia Group 
(SABG) repository at DUMC. All patient samples were deidentified 
prior to use in this study. This case-controlled study consisted of 
177 SAB patients (71 PB and 106 RB) propensity matched by sex, 
race, age, hemodialysis status, type I diabetes, and presence of 
an implantable device. These 177 patients consisted of SAB pa-
tients from two cohorts, with 68 patients from cohort 1 (34 PB 
and 34 RB) and 109 patients from cohort 2 (37 PB and 72 RB). 
Both patient cohorts were collected from the same study group 
and underwent the same inclusion criteria and data collection 
procedures outlined below; the only difference between cohorts 
is that cohort 2 samples were analyzed later. Of the 109 patients 
in cohort 2, 27 patients (14 PB and 13 RB) were removed and 
blinded to the investigators as a validation cohort. Details of clin-
ical characteristics of study cohort are presented in Table 1. Of the 
177 patients, 129 had serum cytokine measurements, 115 had 
plasma cytokine measurements, and 88 had RNA-seq measure-
ments. Of the 27 validation cohort patients, 26 had all three meas-
urement types available; the remaining validation cohort patient 
had only serum cytokine and RNA-seq measurements. SAB cases 
were evaluated and consented for enrollment in the SABG biore-
pository at DUMC.

Plasma and/or sera and whole blood Paxgene samples were col-
lected at time of diagnosis of MRSA infection and stored in the 
SABG biorepository. Cases for the current study were carefully se-
lected based on the following inclusion criteria: laboratory con-
firmed MRSA bacteremia; received appropriate vancomycin 
therapy; enrolled in the SABG study between 2007 and 2017 (to en-
sure contemporary medical practices) and had available serum or 
plasma samples. PB was defined as patients had continuous MRSA 
positive blood cultures for at least 5 days after vancomycin anti-
biotic treatment (5); RB patients were positive for MRSA in initial 
blood cultures but then were negative in subsequent cultures.

Molecular analysis
Luminex-based cytokine measurement
Human 38-plex magnetic cytokine/chemokine kits (EMD Millipore, 
HCYTMAG-60K-PX38) were used per manufacturer’s instructions. 
The panel includes IL-1RA, IL-10, IL-1ɑ, IL- 1β, IL-6, IFN-ɑ2, TNF-β, 
TNF-ɑ, sCD40L, IL-12p40, IFN-γ, IL-12/IL-12p70, IL-4, IL-5, IL-13, 
IL-9, IL-17A, GRO/CXCL1, IL-8/CXCL8, eotaxin/CCL11, MDC/CCL22, 
fractalkine/CX3CL1, IP-10/CXCL10, MCP-1/CCL2, MCP-3/CCL7, 
MIP-1ɑ/CCL3, MIP-1β/CCL4, IL-2, IL-7, IL-15, GM-CSF, Flt-3L/CD135, 
G-CSF, IL-3, EGF, FGF-2, TGF-β, and VEGF. Fluorescence was quanti-
fied using a Luminex 200TM instrument. Cytokine/chemokine 

concentrations were calculated using Milliplex Analyst software ver-
sion 4.2 (EMD Millipore). Luminex assay and analysis were per-
formed by the UCLA Immune Assessment Core.

RNA sequencing, mapping, quantification, and quality control
Total RNA was isolated with Qiagen RNA Blood kit, and quality 
control was performed with Nanodrop 8000 and Agilent 
Bioanalyzer 2100. Globin RNA was removed with Life 
Technologies GLOBINCLEAR (human) kit. Libraries for RNA-Seq 
were prepared with KAPA Stranded mRNA-Seq Kit. The workflow 
consists of mRNA enrichment, cDNA generation, and end repair to 
generate blunt ends, A-tailing, adaptor ligation, and PCR amplifi-
cation. Different adaptors were used for multiplexing samples in 
one lane. Sequencing was performed on Illumina Hiseq3000 for 
a single 50M-read run. Each sample generated an average of 15 
million reads. Data quality check was done on Illumina SAV. 
Demultiplexing was performed with Illumina Bcl2fastq2 v 2.17 
program.

Computational analysis
Cytokine normalization
Prior to analysis, the cytokine data were separated into two matri-
ces including the serum and plasma samples each. These cyto-
kine measurements included all the available data from both 
cohorts. For both sets of cytokine measurements, values above 
the upper limit of detection or below the lower limit of detection 
were set to be equal to those limits. IL-12p70 had an unusually 
low limit within cohort 1, and so values were set to the lowest 
measured value to minimize biased results during normalization. 
As each cytokine may span a different range of values, measure-
ments were first log transformed and then mean-centered for 
each cytokine across all patients. Finally, because tensor factor-
ization attempts to explain variation among the data, we divided 
each matrix by its standard deviation to ensure equal overall vari-
ance prior to additional scaling.

RNA processing
To reduce cohort-to-cohort differences, raw gene expression 
measurements were batch corrected via ComBat-seq (46). 
ComBat-seq adjusted gene expression counts were then con-
verted to transcripts per million (TPM). Measured genes with an 
average TPM below 1 were removed. Prior to analysis, the TPM val-
ues for each gene were mean centered and variance scaled.

Enrichment analysis
Enrichment analysis was performed with Enrichr to interpret the 
transcriptomic significance of each component. For each compo-
nent, both the 500 most positively and 500 most negatively 
associated genes were evaluated. Genes were compared against 
the ARCHS4_Tissues, Azimuth_Cell_Types_2021, GO_Biological_ 
Process_2023, GO_Cellular_Component_2023, Jensen_TISSUES, KEGG_ 
2021_Human, PanglaoDB_Augmented_2021, and Reactome_2022 li-
braries. Both the (i) P-value via Fisher’s exact test and (ii) com-
bined score via Enrichr’s rank-correction test were derived for 
each gene set with overlap to a component’s associated genes. 
P-values were corrected for multiple hypotheses via the 
Benjamini–Hochberg procedure. Gene sets with an adjusted 
P-value <0.05 were considered significantly enriched.

CIBERSORTx analysis
CIBERSORTx analysis was performed to correlate components with 
relative immune cell quantities (20). Single cell transcriptomic 
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measurements collected from circulating peripheral blood 
mononuclear cells were used to create a signature matrix (47). 
Following ComBat-seq processing and TPM conversion, gene ex-
pression measurements were provided to CIBERSORTx. As per 
CIBERSORTx recommendations, we enabled batch correction 
and disabled quantile normalization. To evaluate cell-type decon-
volution performance, 1000 CIBERSORTx permutations were per-
formed to derive P-values corresponding to the probability that 
inferred cell type fractions would be due to random chance alone; 
P-values were corrected for multiple hypothesis testing via 
Benjamini–Hochberg. Immune cell quantities were inferred for 
each patient with RNA-seq measurements. To correlate these 
quantities with the CMTF components, we evaluated the 
Pearson correlation between CMTF patient factors and inferred 
cell quantities. Pearson correlations with P-values below 0.05 
were considered significantly correlated.

DESeq2 analysis
DESeq2 analysis was performed to identify differentially ex-
pressed genes prior to CMTF factorization (21). Following 
DESeq2 recommendations, RNA-seq measurements were batch 
corrected via ComBat-seq but not transformed to transcripts-per- 
million prior to differential analysis (46). Log-fold change and 
P-values corresponding to significance of differential in gene ex-
pression were recorded; P-values were corrected for multiple hy-
pothesis testing via Benjamini–Hochberg. Genes with corrected 
P-values below 0.05 were considered significantly differentially 
expressed.

Coupled matrix-tensor factorization
We separated the data into a three-mode tensor organized by pa-
tient, cytokine, and measurement source (serum or plasma) 

Table 1. Demographic and clinical characteristics of the patients with resolving and persistent bacteremia.

Overall (N = 177) Resolving bacteremia (N = 108) Persistent bacteremia (N = 69) P-value

Demographics
Age, mean (median), years 61 (63) 62 (63) 63 (64) 0.38
Sex 0.42

Male 110 (62.1%) 66 (61.1%) 44 (63.8%)
Female 67 (37.8%) 42 (38.9%) 25 (36.2%)

Race 0.36
Black 67 (37.9%) 39 (36.1%) 28 (40.6%)
White 106 (59.9%) 68 (63.0%) 38 (55.1%)
Other 4 (2.3%) 1 (0.9%) 3 (4.3%)

Route of infection 0.03
Hospital acquired 23 (13.0%) 19 (17.6%) 4 (5.8%)
Community acquired, healthcare associated 122 (68.9%) 67 (62.0%) 55 (79.7%)
Community acquired, nonhealthcare associated 32 (18.1%) 22 (20.4%) 10 (14.5%)

Initial source of bacteremia NA
Skin/soft tissue/osteoarticular 51 (28.8%) 36 (33.3%) 15 (21.7%)
Endovasculara 50 (28.2%) 28 (25.9%) 22 (31.9%)
Pulmonaryb 17 (9.6%) 12 (11.1%) 5 (7.3%)
GI/GU 7 (4.0%) 5 (4.6%) 2 (2.9%)
Unknown/other 49 (27.7%) 27 (25.0%) 22 (31.9%)

Metastatic infection 91 (51.4%) 41 (38.0%) 50 (72.5%) <0.01
Apache II, mean (range) 16.6 (2–50) 16.1 (2–50) 17.4 (6–36) 0.90
Length of stay (days) <0.01

<9 30 (16.9%) 30 (27.8%) 0 (0.0%)
9–14 49 (27.7%) 33 (30.6%) 16 (23.2%)
15–20 39 (22.0%) 16 (14.8%) 23 (33.3%)
>20 59 (33.3%) 29 (26.9%) 30 (43.5%)

Procedures
Surgical removal of foreign device 57 (32.2%) 22 (20.4%) 35 (50.7%) <0.01
Surgical debridement 36 (20.3%) 20 (18.5%) 16 (23.2%) 0.37
Surgical insertion of foreign device 18 (10.2%) 8 (7.4%) 10 (14.5%) 0.13
Abscess drainage 25 (14.1%) 11(10.2%) 14 (20.3%) 0.07
Line removal 18 (10.2%) 14 (13.0%) 4 (5.8%)
Other 54 (30.5%) 30 (27.8%) 24 (34.8%) 0.31

Comorbidities
Neoplasm 28 (15.8%) 24 (22.2%) 4 (5.8%) <0.01
Diabetes mellitus 85 (48.0%) 47 (43.5%) 38 (55.1%) 0.10
Dialysis dependence 37 (20.9%) 16 (14.8%) 21 (30.4%) 0.01
HIV 4 (2.3%) 2 (1.9%) 2 (2.9%) 0.51
Organ transplant recipient 15(8.5%) 10 (9.3%) 5 (7.2%) 0.43
Intravenous drug use 9 (5.1%) 6 (5.6%) 3 (4.4%)
Steroid use in previous 30 days 44 (24.9%) 30 (28.0%) 14 (20.3%)
Surgery in previous 30 days 44 (24.9%) 29 (26.9%) 15 (21.7%)

Outcome, 90 days 0.15
Cure 139 (78.5%) 90 (83.3%) 49 (71.0%)
Recurrent SA infection 12 (6.8%) 7 (6.5%) 5 (7.3%)
Death due to SA infection 17 (9.6%) 6 (5.6%) 11 (15.9%)
Death due to other causes 6 (3.4%) 3 (2.8%) 3 (4.4%)
Unknown/otherc 3 (1.7%) 2 (1.9%) 1 (1.4%)

aEndovascular source includes catheters, LVADs, pacemaker/defibrillator, and gortex graft source of infection. 
bPulmonary source of infection includes pneumonia and empyema. 
cOutcome, 90 days, unknown/other includes discharge to hospice, lost to follow-up, and missing.
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coupled with a matrix of RNA-seq measurements for each patient 
(Fig. 1B). Tensor operations were performed using Tensorly (48). 
Here, we reduced the molecular measurements into the sum of 
R Kruskal-formatted components:

Xcytokine ≈
R

r=1

ar ◦ br ◦ cr = Xcytokine 

XRNA ≈
R

r=1

ar ◦ dr =XRNA 

where ar, br, cr, and dr are vectors indicating variation along the 
patient, cytokine species, cytokine sources (serum or plasma), 
and RNA-seq modes, respectively, and “◦” indicates vector outer 
product. Concatenating all R vectors for each mode, we have their 
factor respective matrices, A, B, C, and D.

As we have reported elsewhere (13), tensor factorization was 
performed via an alternating censored least squares method (9). 
Each factor matrix was first initialized with imputed singular val-
ue decomposition of the unfolded tensor along its respective 
mode. Randomized SVD solving was used for sufficient perform-
ance given the large size of the dataset when unfolded and includ-
ing RNA-seq measurements. With each iteration, least squares 
solving is performed separately for each mode with the missing 
values ignored. The cytokine factor matrix (B) is updated to the 
least squares solution of the Khatri-Rao product (indicated by 
“⊙”) of the cytokine source (C) and patient (A) factors and the cyto-
kine tensor unfolded along the cytokine mode (Xcytokine, (2))

min
B
‖Xcytokine, (2) − B(C ⊙ A)T

‖2, 

and the cytokines source matrix is updated in a similar fashion, 
with the unfolding performed along the source mode (Xcytokine, (3))

min
C
‖Xcytokine, (3) − C(B ⊙ A)T

‖2.

For the RNA-seq matrix, the RNA factor matrix (D) is updated 
to the least squares solution of the patient factors and RNA-seq 
matrix

min
D
‖XRNA − ADT‖2.

Finally, to enforce that the patient factors explain the variance 
across both datasets, the unfolded cytokine tensor is concaten-
ated with the RNA-seq matrix

min
A
‖[Xcytokine, (1) XRNA] − A[(C ⊙ B)T DT] ‖2, 

where Xcytokine, (1) indicates the tensor unfolding of Xcytokine along 

its patient mode, and “[ ]” indicates the concatenation of two ma-
trices within the bracket. Similarly, the Khatri-Rao product of the 
cytokine (B) and cytokine source (C) factors is concatenated with 
the RNA-seq factors (D) and the least squares solution is derived 
using these concatenated matrices, leading to patient factors 
that minimize squared error overall. Iterations were repeated un-
til the variance explained (R2X) improved by less than 1 × 10−6 be-
tween iterations.

Reconstruction fidelity
To evaluate the fidelity of our factorization, we calculate the per-
cent variance explained, R2X. First, the total variance is derived as 
the sum of the Frobenius norms squared of the cytokine tensor 
and RNA-seq matrix: Vtotal = ‖Xcytokine‖

2 + XRNA‖
2. We then calcu-

late the Frobenius norms squared of the difference between the 

cytokine tensor and RNA matrix and their reconstructed versions: 
Vr, cytokine = ‖Xcytokine −Xcytokine‖

2 and Vr, RNA = ‖XRNA −XRNA‖
2. The 

variance explained is then calculated as

R2X = 1 −
Vr,cytokine + Vr,RNA

Vtotal 

Missing values are ignored in all calculations.

Balanced accuracy
To address class imbalances in our dataset, we used the balanced 
accuracy instead of accuracy to evaluate model performances 
against categorical variables (49). To derive balanced accuracy, 
we first calculate the recall, or sensitivity, for each discrete class; 
balanced accuracy is the arithmetic mean of recall scores across 
classes.

Prediction models
We used scikit-learn’s logistic regression classifier to predict cat-
egorical clinical variables from molecular measurements (50). 
Data are regularized via elastic-net regularization with an 0.8 L1 
ratio. Regularization strength was fitted via grid search using a 
stratified 10-fold cross-validation to evaluate prediction accuracy. 
Age, a continuous variable, was predicted using scikit-learn’s lin-
ear regression model.

Support vector classification models used scikit-learn’s imple-
mentation with a radial basis function (RBF) kernel. Data were 
regularized using L2 regularization; regularization strength and 
RBF complexity (gamma) were fit to optimize balanced accuracy 
on stratified 10-fold cross-validation.

Principal component analysis (PCA) models used statsmodels’s 
implementation (51); PCA models considered all measurements 
(serum and plasma cytokines, RNA-seq) concatenated into a sin-
gle wide matrix. Prior to concatenation, cytokine and RNA-seq 
measurements were scaled to match variance scaling in the 
CMTF model. Missing values were imputed via statsmodels’s 
PCA “fill-em” option. Each measurement was set to have zero- 
mean but not variance scaled to preserve variance scaling be-
tween cytokine and RNA-seq measurements. Unless otherwise 
noted, PCA models used eight components.

Acknowledgments
The MRSA Systems Immunobiology Group (MSIG): Rajesh Parmar, 
Richard Ahn, Arnold S. Bayer, Liana Chan, Yu-Ling Chang, Scott 
G. Filler, Vance G. Fowler, David Gjertson, Alexander Hoffmann, 
Felix Medie, Simon Mitchell, Elaine F. Reed, Maura Rossetti, 
Felicia Ruffin, Yan Qin, Batu Sharma, Katherine Sheu, Joshua 
Thaden, Alan J. Waring, Yan Q. Xiong, Ying Zheng, and Michael 
R. Yeaman.

This manuscript was posted as a preprint: https://doi.org/10. 
1101/2022.12.28.521386

Supplementary Material
Supplementary material is available at PNAS Nexus online.

Funding
These studies were supported in part by National Institutes of 
Health Grants U19-AI172713 (to A.S.M., E.F.R., V.G.F. and M.R.Y. 
[PI]), U01-AI124319 (to E.F.R., V.G.F. and M.R.Y. [PI]), 
R01-AI068804 (to V.G.F.), R33-AI111661 (to M.R.Y.), U01-AI124319 

12 | PNAS Nexus, 2024, Vol. 3, No. 5

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/3/5/pgae185/7664540 by U

C
LA C

ollege Library user on 12 June 2024

https://doi.org/10.1101/2022.12.28.521386
https://doi.org/10.1101/2022.12.28.521386
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae185#supplementary-data


(to E.F.R.), U19AI128913 (to E.F.R.), and UCLA CTSI 
KL2-TR001882-05 (to L.C.C.).

Author Contributions
J.L.C., Z.C.T., S.D.T., and A.S.M. conceived, designed, and per-
formed analysis; J.L.C., L.C.C., A.H., E.F.R., M.R.Y., and A.S.M. per-
formed data interpretation; F.R., R.P., R.A., A.S.B., and V.G.F. 
collected and contributed data; J.L.C., Z.C.T., E.F.R., M.R.Y., and 
A.S.M. wrote the article.

Data Availability
The code used to perform these analyses is available on GitHub at 
https://github.com/meyer-lab/tfac-mrsa. This repository also in-
cludes all the cytokine and RNA-seq count measurements, as 
well as the enrichment results for genes most positively and nega-
tively associated with each component. RNA-seq read measure-
ments are deposited within the Sequence Read Archive, NCBI 
project PRJNA914756.

References
1 Borgundvaag B, Ng W, Rowe B, Katz K. EMERGency Department 

Emerging Infectious Disease Surveillance NeTwork 
(EMERGENT) Working Group. 2013. Prevalence of methicillin- 
resistant Staphylococcus aureus in skin and soft tissue infections 
in patients presenting to Canadian emergency departments. 

CJEM. 15:141–160.
2 Landrum ML, et al. 2012. Epidemiology of Staphylococcus aureus 

blood and skin and soft tissue infections in the US military health 
system, 2005-2010. JAMA. 308:50–59.

3 Fowler VG, Jr., et al. 2004. Persistent bacteremia due to 
methicillin-resistant Staphylococcus aureus infection is associated 
with agr dysfunction and low-level in vitro resistance to 
thrombin-induced platelet microbicidal protein. J Infect Dis. 190: 
1140–1149.

4 Yu-Ling C, et al. 2021. Human DNA methylation signatures differ-
entiate persistent from resolving MRSA bacteremia. Proc Natl 
Acad Sci. 118:e2000663118.

5 Mba Medie F, et al. 2019. Genetic variation of DNA 
methyltransferase-3A contributes to protection against persist-

ent MRSA bacteremia in patients. Proc Natl Acad Sci USA. 116: 
20087–20096.

6 Chan LC, et al. 2018. Protective immunity in recurrent 
Staphylococcus aureus infection reflects localized immune signa-
tures and macrophage-conferred memory. Proc Natl Acad Sci 
USA. 115:E11111–E11119.

7 Blot SI, Vandewoude KH, Hoste EA, Colardyn FA. 2002. Outcome 
and attributable mortality in critically ill patients with bacter-
emia involving methicillin-susceptible and methicillin-resistant 
Staphylococcus aureus. Arch Intern Med. 162:2229.

8 Matzaraki V, et al. 2021. Inflammatory protein profiles in plasma 
of candidaemia patients and the contribution of host genetics to 
their variability. Front Immunol. 12:662171.

9 Kolda TG, Bader BW. 2009. Tensor decompositions and applica-

tions. SIAM Rev. 51:455–500.
10 Hastie T, Tibshirani R, Friedman JH, Friedman JH. 2009. The ele-

ments of statistical learning: data mining, inference, and predic-
tion. New York (NY): Springer.

11 Acar E, et al. 2014. Structure-revealing data fusion. BMC 
Bioinformatics. 15:239.

12 Acar E, Kolda TG, Dunlavy DM. 2011. All-at-once Optimization 
for Coupled Matrix and Tensor Factorizations. arXiv, 
arXiv:1105.3422, preprint: not peer reviewed.

13 Tan ZC, Murphy MC, Alpay HS, Taylor SD, Meyer AS. 2021. 
Tensor-structured decomposition improves systems serology 
analysis. Mol Syst Biol. 17:e10243.

14 Acar E, Bro R, Smilde AK. 2015. Data fusion in metabolomics us-

ing coupled matrix and tensor factorizations. Proc IEEE. 103: 
1602–1620.

15 Chitforoushzadeh Z, et al. 2016. TNF-insulin crosstalk at the tran-
scription factor GATA6 is revealed by a model that links signaling 
and transcriptomic data tensors. Sci Signal. 9:ra59.

16 Zhang X, Li L. 2017. Tensor envelope partial least-squares regres-

sion. Technometrics. 59:426–436.
17 Efron B. 1981. Nonparametric estimates of standard error: the 

jackknife, the bootstrap and other methods. Biometrika. 68: 
589–599.

18 Alter O, Brown PO, Botstein D. 2000. Singular value decompos-
ition for genome-wide expression data processing and modeling. 
Proc Natl Acad Sci USA. 97:10101–10106.

19 Luo J, et al. 2010. A comparison of batch effect removal methods 

for enhancement of prediction performance using MAQC-II 
microarray gene expression data. Pharmacogenomics J. 10: 
278–291.

20 Newman AM, et al. 2019. Determining cell type abundance and 
expression from bulk tissues with digital cytometry. Nat 

Biotechnol. 37:773–782.
21 Love MI, Huber W, Anders S. 2014. Moderated estimation of fold 

change and dispersion for RNA-seq data with DESeq2. Genome 
Biol. 15:550.

22 Forlow SB, et al. 2001. Increased granulopoiesis through 
interleukin-17 and granulocyte colony-stimulating factor in 
leukocyte adhesion molecule-deficient mice. Blood. 98: 

3309–3314.
23 Rigby KM, DeLeo FR. 2012. Neutrophils in innate host defense 

against Staphylococcus aureus infections. Semin Immunopathol. 34: 
237–259.

24 Wang J, Roderiquez G, Norcross MA. 2012. Control of adaptive 
immune responses by Staphylococcus aureus through IL-10, 
PD-L1 and TLR2. Sci Rep. 2:606.

25 Volk CF, et al. 2020. Interleukin (IL)-1β and IL-10 host responses in 
patients with Staphylococcus aureus bacteremia determined by 
antimicrobial therapy. Clin Infect Dis. 70:2634–2640.

26 Guimaraes AO, et al. 2019. A prognostic model of persistent bac-
teremia and mortality in complicated Staphylococcus aureus 
bloodstream infection. Clin Infect Dis. 68:1502–1511.

27 Minejima E, et al. 2016. A dysregulated balance of proinflamma-

tory and anti-inflammatory host cytokine response early during 
therapy predicts persistence and mortality in Staphylococcus aur-
eus bacteremia. Crit Care Med. 44:671–679.

28 Roberts AW. 2005. G-CSF: a key regulator of neutrophil produc-
tion, but that’s not all!. Growth Factors. 23:33–41.

29 Ashour D, et al. 2020. IL-12 from endogenous cDC1, and not vac-
cine DC, is required for Th1 induction. JCI Insight. 5:e135143.

30 Koch F, et al. 1996. High level IL-12 production by murine dendrit-
ic cells: upregulation via MHC class II and CD40 molecules and 
downregulation by IL-4 and IL-10. J Exp Med. 184:741–746.

31 Liu G, et al. 2015. Dendritic cell SIRT1–HIF1α axis programs the 
differentiation of CD4+ T cells through IL-12 and TGF-β1. Proc 
Natl Acad Sci USA. 112:E957–E965.

32 Tang C, Chen S, Qian H, Huang W. 2012. Interleukin-23: as a drug 

target for autoimmune inflammatory diseases. Immunology. 135: 
112–124.

Chin et al. | 13
D

ow
nloaded from

 https://academ
ic.oup.com

/pnasnexus/article/3/5/pgae185/7664540 by U
C

LA C
ollege Library user on 12 June 2024

https://github.com/meyer-lab/tfac-mrsa


33 Khader SA, et al. 2006. Interleukin 12p40 is required for dendritic 

cell migration and T cell priming after Mycobacterium tuberculosis 

infection. J Exp Med. 203:1805–1815.

34 Ha SJ, et al. 1999. A novel function of IL-12p40 as a chemotactic 

molecule for macrophages. J Immunol. 163:2902–2908.
35 Holling TM, Schooten E, van Den Elsen PJ. 2004. Function and 

regulation of MHC class II molecules in T-lymphocytes: of mice 

and men. Hum Immunol. 65:282–290.
36 Krysko O, et al. 2011. Alternatively activated macrophages and 

impaired phagocytosis of S. aureus in chronic rhinosinusitis. 

Allergy. 66:396–403.
37 Hanke ML, Heim CE, Angle A, Sanderson SD, Kielian T. 2013. 

Targeting macrophage activation for the prevention and treat-

ment of Staphylococcus aureus biofilm infections. J Immunol. 190: 

2159–2168.
38 Maher Belinda M, et al. 2013. Nlrp-3-driven interleukin 17 produc-

tion by γδT cells controls infection outcomes during staphylococ-

cus aureus surgical site infection. Infect Immun. 81:4478–4489.
39 Yeaman MR, et al. 2014. Mechanisms of NDV-3 vaccine efficacy in 

MRSA skin versus invasive infection. Proc Natl Acad Sci USA. 111: 

E5555–E5563.
40 Dietlin TA, et al. 2007. Mycobacteria-induced Gr-1+ subsets from 

distinct myeloid lineages have opposite effects on T cell expan-

sion. J Leukoc Biol. 81:1205–1212.
41 Gabrilovich DI, Nagaraj S. 2009. Myeloid-derived suppressor cells 

as regulators of the immune system. Nat Rev Immunol. 9:162–174.

42 van Raam BJ, Verhoeven AJ, Kuijpers TW. 2006. Mitochondria in 
neutrophil apoptosis. Int J Hematol. 84:199–204.

43 Willson JA, et al. 2022. Neutrophil HIF-1α stabilization is aug-
mented by mitochondrial ROS produced via the glycerol 3-phos-
phate shuttle. Blood. 139:281–286.

44 King JM, Kulhankova K, Stach CS, Vu BG, Salgado-Pabón W. 2016. 
Phenotypes and virulence among staphylococcus aureus 
USA100, USA200, USA300, USA400, and USA600 clonal lineages. 
mSphere. 1:e00071-16.

45 Otto M. 2013. Community-associated MRSA: what makes them 
special? Int J Med Microbiol. 303:324–330.

46 Zhang Y, Parmigiani G, Johnson WE. 2020. ComBat-seq: batch ef-
fect adjustment for RNA-Seq count data. NAR Genom Bioinform. 2: 
lqaa078.

47 Hao Y, et al. 2021. Integrated analysis of multimodal single-cell 
data. Cell. 184:3573–3587.e29.

48 Kossaifi J, Panagakis Y, Anandkumar A, Pantic M. 2019. Tensorly: 
tensor learning in python. J Mach Learn Res. 20:1–6.

49 Brodersen KH, Ong CS, Stephan KE, Buhmann JM. 2010. The bal-
anced accuracy and its posterior distribution. In: 20th inter-
national conference on pattern recognition. Washington (DC): 
IEEE. p. 3121–3124.

50 Pedregosa F, et al. 2011. Scikit-learn: machine learning in python. 
J Mach Learn Res. 12:2825–2830.

51 Seabold S, Perktold J. 2010. Statsmodels: econometric and statis-
tical modeling with python. SciPy 2010. Austin (TX): SciPy. p. 10– 
25080.

14 | PNAS Nexus, 2024, Vol. 3, No. 5

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/3/5/pgae185/7664540 by U

C
LA C

ollege Library user on 12 June 2024


	Tensor modeling of MRSA bacteremia cytokine and transcriptional patterns reveals coordinated, outcome-associated immunological programs
	Introduction
	Results
	A tensor-based strategy for integrating heterogeneous clinical measurements
	Tuning dimensionality reduction for accurate correlations with MRSA bacteremia outcomes
	Coupled factors improve the accuracy of discerning MRSA bacteremia outcomes
	Coupled factors reveal conserved immunological responses in MRSA bacteremia
	A reduced model reveals heterogeneity in persistent MRSA bacteremia outcomes

	Discussion
	Materials and methods
	Patients and sample collection
	Molecular analysis
	Luminex-based cytokine measurement
	RNA sequencing, mapping, quantification, and quality control

	Computational analysis
	Cytokine normalization
	RNA processing
	Enrichment analysis
	CIBERSORTx analysis
	DESeq2 analysis
	Coupled matrix-tensor factorization
	Reconstruction fidelity
	Balanced accuracy
	Prediction models


	Acknowledgments
	Supplementary Material
	Funding
	Author Contributions
	Data Availability
	References




