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Modeling heterogeneous signaling dynamics
of macrophages reveals principles of
information transmission in stimulus
responses

Xiaolu Guo 1,2, Adewunmi Adelaja 1,2,4, Apeksha Singh 1,2,
Roy Wollman 1,3 & Alexander Hoffmann 1,2

Macrophages initiate pathogen-appropriate immune responses with the acti-
vation dynamics of transcription factor NFκB mediating specificity. Live-cell
imaging revealed the stimulus-response specificity of NFκB dynamics among
populations of heterogeneous cells. To study stimulus-response specificity
beyond what is experimentally accessible, we develop mathematical model
simulations that capture the heterogeneity of stimulus-responsive NFκB
dynamics and the stimulus-response specificity performance of the popula-
tion. Complementing experimental data, extended-dose response simulations
improved channel capacity estimates. By collapsing parameter distributions,
we locate information loss to receptor modules, while the negative-feedback-
containing core module shows remarkable signaling fidelity. Further, con-
structing virtual single-cell networks reveals the stimulus-response specificity
of single cells. We find that despite stimulus-response specificity limitations at
the population level, the majority of single cells are capable of responding
specifically to immune threats, and that the few instances of stimulus-pair
confusion are highly uncorrelated. The diversity of blindspots enable small
consortia of macrophages to achieve perfect stimulus distinction.

As a first-line defense against invading pathogens, immune sentinel
cells can sense pathogen-associated molecular patterns (PAMPs),
damage-associated molecular patterns (DAMPs), or cytokines pro-
duced by first responders. The information from stimuli is captured by
pattern recognition receptors (PRRs) or cytokine receptors and
transmitted to a signaling network whose effectors determine cellular
functions1–4. Upon stimulation, immune sentinel cells initiate cell-
intrinsic defenses, local immune activity, and systemic immune acti-
vation. Immune activation responses must be tailored to the specific
immune challenges, in ensure an effective immune response while

avoiding unnecessary activation of harmful immune effectors. This
suggests that stimulus-response-specificity (SRS), the ability of cells to
mount stimulus-specific immune responses, is a functional hallmark of
healthy immune sentinel cells4–6.

The SRS of immune sentinel cell effectors has been characterized
at the level of gene expression responses7, which are thought to be
controlled by combinatorial and temporal coding of signaling
pathways4,5,8. One of such signaling pathway, the transcription factor
NFκB, is highly dynamic as revealed by early biochemical and imaging
studies9–13; furthermore, these dynamics are stimulus-specific14,15 and
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regulate the stimulus-specificity of immune response gene
expression9,15–19.

At the single cell level however, NFκB dynamics display pro-
nounced cell-to-cell heterogeneity10,12,20 casting doubt on the notion
that such signaling dynamics could transmit stimulus informationwith
fidelity. Only with single-cell trajectory data available, specific dynamic
features within the NFκB activation trajectories could be identified
conveying information about the stimulus16,21,22. These informative
NFκB dynamic features, termed “signaling codons” are Speed, Peak,
Duration, Total Activity, Early-or-Late, and Oscillation. Machine learn-
ing classifiers validated the importance and sufficiency of signaling
codons in driving SRS21,23,24.

The SRS of macrophage signaling dynamics has thus far been
characterized from experimental data that is not only unavoidably
limited in the number of stimuli or doses tested, but also in the kind of
perturbations that can be implemented. Further, while SRS limitations
havebeendocumented7,21,25, it remains unclearwhether assessmentsof
mutual information for the available data may be underestimates of
the true channel capacity of the pathway26,27. Further, for common
signaling motifs, intrinsic noise was not found to limit the channel
capacity28. Most critically, all SRS estimates thus far are at the popu-
lation level as a naïve cell can only be stimulated once, necessitating
different (but analogous) cell populations to assess responses to dif-
ferent stimulus conditions. How population level SRS relates to the
specificities of individual cells (scSRS) remains unclear. While some of
these biological questions driven by cellular heterogeneity may be
challenging to address systematically in experiments, others, such as
scSRS, may be nearly impossible. However, they could potentially be
explored with a mechanistic mathematical model, if it reliably repre-
sents the biochemical regulatory mechanisms and accounts for
experimental stimulus-response data (Fig. 1A).

Mathematical models (composed of Ordinary Differential Equa-
tions, ODEs) of the core NFκB signaling module have aided our
understanding of the regulatory mechanisms that control NFκB
dynamics via the prominent IκBα negative feedback loop29,30. While
A20 is transcriptionally regulated by NFκB it does not regulate NFκB
dynamics in the short term but provides rheostat control upstream of
IKK anddesensitizes the pathway to subsequent signals31,32. In contrast,
short-term regulation of IKK is predominantly governed by non-
transcriptional feedback mechanisms33. The IκB-NFκB signaling mod-
ule receives inputs in the formof IκB kinase (IKK) activities that arefirst
generated by ligand-specific receptor modules. Building on models of
the TNF32,34 and LPS35 signaling modules, a mathematical model of
NFκB activation in response to five pro-inflammatory ligands was
recently established, adding modules for the bacterial PAMPs,
Pam3CSK4 and CpG, and the viral PAMP, poly(I:C)21. Such mechanistic
models for signaling pathways in mammalian systems, for example,
not only NFκB13,21, but p5336,37, and MAPKs38, codify a wealth of bio-
chemical knowledge including the reaction network topology, cellular
abundances of regulators, their half-lives, and interaction constants
and provide simulations of the population average or a stimulus
response that is representative of the population. Several studies
explored potential mechanisms that may account for cell-to-cell het-
erogeneity by distributing parameters or incorporating
stochasticity11,13,35,39–42. However, these models were not fit to and do
not capture the heterogeneity observed experimentally, which limits
their applicability for investigations of information transmission by
heterogeneous cell populations (Fig. 1A).

Cellular heterogeneity among genetically identical cells can arise
fromeither extrinsic or intrinsic noise43. Extrinsicnoise is basedon cell-
to-cell variability in the expression of enzymes controlling key reac-
tions but whose expression is not explicitly represented in the model,
while intrinsic noise refers to the stochasticity of biochemical reac-
tions. Extrinsic noise appears to be the primary source of biological
noise during short time courses as shown by highly correlated cell

death or cell division decisions of sister cells44,45. For NFκB dynamics,
one extrinsic noise source, endosomal maturation, was found to be an
important contributor to LPS-stimulated NFκB signaling
heterogeneity35. Another, TNF receptor abundance, impacts the
oscillatory propensity of TNF-induced NFκB signaling42,46. However, it
remains unclear whether the proposedmodel topology21 coupled with
extrinsic noise is sufficient to recapitulate the heterogeneous NFκB
responses to multiple stimuli and account for the SRS performance
that is experimentally observed in macrophage populations.

Here, we advanced the mechanistic model simulations for the
NFκB signaling pathway from one cell (representative or population
average) to all single cells within the population (Fig. 1A). These
simulations captured not only the stimulus-specific heterogeneous
NFκB dynamics observed experimentally, but also reproduced the
SRS performancemetrics of actual livemacrophages. To achieve this,
we used a nonlinear mixed-effects (NLME) model with stochastic
approximation expectation maximization (SAEM) algorithm to
parameterize the model from extensive, newly generated single-cell
NFκB datasets. Given the reliability of this mechanistic model, it
allowed for forward predictions outside the training range to inves-
tigate how cells respond to finer dose gradations and different gen-
otypes. Furthermore, we developed a denoising strategy to locate
major information loss to receptor modules of the NFκB signaling
network, which is validated by previous experimental studies33,47. We
also designed a workflow to infer the stimulus response specificities
of single cells (scSRS). Our simulations reveal high diversity in scSRS
profiles, enabling potentially perfect stimulus distinction of small
consortia of collaborating cells. These knowledge-basedmechanistic
modeling studies provide insights that were not accessible by direct
experimentation.

Results
Mathematical modeling of heterogeneous single-cell NFκB
dynamics
To develop computational simulations of heterogeneous NFκB
dynamics, we leveraged an established mathematical model of the
signaling network21 in response to five pro-inflammatory ligands:
Tumor Necrosis Factor (TNF), and PAMPs, namely the TLR2 ligand
Pam3CysSerLys4 (Pam), the TLR9 ligand Cytosine-phosphate-Guanine
(CpG), the TLR4 ligand Lipopolysaccharide (LPS), the TLR3 ligand
Polyinosinic:polycytidylic acid (pIC), at several doses (Fig. 1B). The
publishedmodel simulation produces a singleNFκB trajectory for each
ligand and dose that is representative of the observed data21. The
mechanistic model contains 52 species, 101 reactions, and 133 para-
meters (Supplementary Datasets 1 and 2, Eq. 1 to 52 in Supplementary
Notes). It is organized into five receptor modules (Fig. 1B) with each
responding to its cognate ligand. These receptor modules feed via IKK
into a common coremodule, which comprises the NFκB-IκBα negative
feedback loop.

To account quantitatively for the heterogeneous NFκB dynamics
present in the population, distributions of key biochemical reactions
had to be parameterized. Because PAMPs induce the production of
TNF34, the published NFκB trajectories are the result of the combined
action of PAMPs and TNF signaling, especially at low doses21. To
facilitate parameterization of each signaling module, we generated a
new experimental dataset of NFκB dynamic trajectories using a TNF
blocking agent when PAMP ligands are employed (Fig. S1A, Methods –
Experimental data generation). The established live-cell imaging and
analysis workflow enabled the generation of a quantitative dataset
usingfive ligands (TNF, pIC, Pam,CpG, or LPS) at 3 doses (low,medium
and high), with 176 to 744 single cell NFκB trajectories for each con-
dition (Table 1).

We used the non-linear mixed-effects model (NLME) to elucidate
the variations in parameters or initial species values responsible for
generating heterogeneous trajectories. The ordinary differential
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Fig. 1 |Mathematicallymodelingheterogeneous single-cell signalingnetworks.
A Schematic of the goals and scope of the present study and how it builds on
and advances prior work. While prior work established the signaling network
topology that may account for the stimulus-response dynamics of a single cell
representative of the population, the present work aims to identify parameter
distributions that account for the stimulus-responses of all single cells in the
population, via Non-Linear Mixed Effects model (NLME) and Stochastic
Approximation Expectation-Maximization (SAEM) algorithm. Such model
simulations account for the heterogeneity of the stimulus responses and

enable systematic quantitative studies of information transmission by the
population and of single cells. B Schematic of NFκB signaling network model,
consisting of 5 receptor modules (distinguished by different boxes) and the
core module encompassing TAK1, IKK, and NFκB-IκBα feedback. Red arrows
and numbers denote the variable parameters for estimation. The schematic
was adapted from Adelaja et al.21: the box colors have been updated to
enhance visualization; the arrows representing the parameters for model fit-
ting are marked red; and the reaction indexes have been revised.
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equations of the NFκB signaling networkmodel defined the non-linear
function in the NLME, and parameters were subject to both fixed
effects and random effects. To infer a single parameter set for each
cell, we first solved the maximize likelihood estimator (MLE) of the
distributions of selected parameters in the NLME via the stochastic
approximation of expectation-maximization (SAEM) algorithm48–51

given the experimental data (see Methods -- Single-cell model fitting),
due to its excellent performance on benchmarking NLME problems
and the availability of well-developed software52. For each individual
single cell, we applied themaximumaposteriori (MAP) to estimate the
modes of parameter posterior distributions given each its NFκB tra-
jectory and the estimated parameter distribution. To avoid overfitting,
17 parameters were selected, comprising 2 or 3 parameters from each
receptormodule and 4 parameters from the coremodule (Fig. S1B–H).
The selection criteria informed by biological relevance and experi-
mental studies (Methods – Parameter selection and sensitivity analy-
sis), such as receptor synthesis46,53,54, endosomal trafficking35, and
signaling complex degradation55. These parameters were previously
identified as potential drivers of cell-to-cell heterogeneity35,42.

Model simulations recapitulate the stimulus-specificity of NFκB
signaling dynamics
Fitting to the experimental dataset of stimulus responsive single-cell
NFκB signaling trajectories (Table 1), we obtained model-simulated
single-cell NFκB trajectories calculated from the individual parameter
estimates (Methods – Single-cell model fitting). We first assessed the
goodness of fit through visual comparison between heatmaps of
experimental and simulated NFκB trajectories (Fig. 2A). The model
simulation captures key features such as the total activity, as the
exemplified by difference betweenmedium-dose LPS vsmedium-dose
Pam, the speed of NFκB activation, as exemplified by high-dose LPS vs.
high-dose pIC, or the oscillatory content, as exemplified by high-dose
TNF vs high-dose LPS. Further, the heterogeneity within each condi-
tion is also recapitulated well such as the activation speed in the high-
dose pIC condition or the duration in response to high-dose LPS.While
the cell-to-cell heterogeneity of oscillatory dynamics is nicely repre-
sented in the simulations, the simulated data are smoother than the
experimental data,whichare alsoaffectedbymeasurement or intrinsic
noise. We quantified root mean square deviation (RMSD) between the
experimental and simulated NFκB trajectories for every cell (See
Methods Model performance evaluation), revealing RMSD distribu-
tions that ranged from0 to0.06, with amedian between0.01 and 0.03
across the 15 stimulus conditions (Fig. S2A). Between 65% and 90% of
the RMSDs for individual fitted trajectories under each condition are
below the threshold of 0.03 (Fig. S2B).

To determine whether the model recapitulates the dynamic fea-
tures that encode stimulus-specific information of NFκB signaling21, we
decomposed trajectories into signaling codons for both experimental
and simulation data. The six signaling codons are activation speed
(Speed), maximal value (Peak), duration time (Duration), integral or
total activity (Total), early-vs-late activity (EvL), and oscillatory content
(Osc) of the NFκB activation (see Supplementary Notes for
details, Fig. 2B, upper panel). The signaling codons of experimental
and simulated data for different stimulation conditions show similar
distributions (Fig. S2C). We then calculated the average ofWasserstein
distances, across the six signaling codon distributions of the same
stimulus condition or different stimulus conditions (Methods –Model

performance evaluation). The Wasserstein distance measures the cost
of transforming one distribution into another, resulting in larger
values when the distributions are separated further. Most (83%) Was-
serstein distances between experimental stimulus conditions were
greater than 0.1, and 56% were greater than 0.15, similar to computa-
tional simulation data. In contrast, the distance between correspond-
ing simulated and experimental stimulus conditions was generally
(93%) less than 0.1, with 53% of the data being <0.05 (Fig. 2B, lower
panel). Examining the average Wasserstein distances between corre-
sponding experimental and simulation conditions (Fig. 2C, diagonal)
confirmed smaller distances than those between differing stimulus
conditions of the experimental (lower left half) and simulation (upper
right half) data (Fig. 2C). In addition, there is symmetry in the pattern
of Wasserstein distances in the experimental vs simulation halves of
the distance matrix, confirming a good alignment between computa-
tional and experimental signaling trajectories. For example, themodel
simulations recapitulate the similarities among responses to bacterial
PAMPs ligands (Pam, CpG, and LPS) and the specificity of cytokine
(TNF) and viral PAMP (pIC) stimulated condition. This is evidenced by
the small Wasserstein distances among bacterial PAMPs in both
experimental (lower triangular blue matrix among conditions Pam,
CpG, and LPS) and simulation (upper corresponding triangular blue
matrix) data (Fig. 2C). Further examination of individual signaling
codons identified that Total was generally best fit with lowest Was-
serstein distance, but that other signaling codons also showed gen-
erally low values, with Oscillatory content showing low values in the
majority of stimulus conditions (Fig. S2D). Overall, signaling codons of
NFκB responses to five ligands across different dosages showed good
agreement (Fig. S2E).

To quantify if the model simulation possesses the same SRS per-
formance characteristics as live cell macrophages, we appliedmachine
learning random forest classification using signaling codons as inputs
and ligand information (at high doses) as outputs (Methods –Model
performance evaluation). High-dose conditions were selected because
they provide the highest SRS21. We found similar patterns of confusion
between the simulation and the experimental data (Fig. 2D, Fig. S2F, G).
Bacterial PAMPs were more likely to be confused with one another,
whereas the cytokine TNF condition was the most distinguishable,
followed by viral PAMPs, which were also well distinguished. In sum-
mary, quantitative fit assessment via signaling codon decomposition
and SRS performance confirms that themodel simulations capture the
stimulus-specific responses that are hallmarks of macrophage NFκB
signaling. An in-depth analysis of the parameterized model revealed
that signaling codons are co-determined by multiple single-cell bio-
chemical rate constants via highly non-linear, non-monotonic rela-
tionships (Supplementary Notes), consistent with a complex,
feedback-containing dynamical system.

To assess the robustness of the model results across different
sample sizes, we down-sampled the Pam condition dataset to half its
original size and evaluated the model’s performance. The down-
sampled dataset maintained an acceptable goodness-of-fit, exhibiting
similar NFκB trajectories between experiments and simulation
(Fig. S2H), comparable signaling codon distributions (Fig. S2J–I), and
minimal Wasserstein distances between experimental and simulated
data while recapitulating dose differences (Fig. S2K, L). In contrast,
when fewer parameters were included in the estimation the fit quality
suffered (Fig. S2M).

Table 1 | Thenumber of single-cell NFκB trajectories under each experimental condition asdefinedmy ligand identity anddose

Ligand (unit) TNF (ng/mL) Pam (ng/mL) LPS (ng/mL) CpG (nM) pIC (µg/mL)

Dose value 0.1 1 10 10 100 1000 1 3 10 33 100 10 33 100 333 1000 10 33 100

Dose symbol L M H L M H L M H L M H L M H

Number of cells 420 744 645 507 612 596 176 245 437 310 327 258 247 381 308 394 666 540 557
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Extended dose response studies reveal true limits in channel
capacity
We next explored the parameterized model’s utility as a research
tool for generating new datasets in silico to complement and extend
experimental studies and address questions that are not easily
addressed experimentally. We developed a workflow in which
parameter sets are sampled from fitted parameter distributions
(Methods – Generating new dataset of NFκB trajectories). The
reliability of this sampling approach was confirmed by first

simulating stimulus conditions obtained in experiments, showing
good agreement such as in oscillatory patterns, heterogeneity in
total activity, etc (Fig. S3A). Decomposing the trajectories into sig-
naling codons confirmed similar distributions (Fig. S3B) with an
average Wasserstein distance around 0.1 or less (Fig. S3C). Finally,
stimulus-response specificity as ascertained by machine learning
classification showed similar patterns of precision and confusion
scores as the original model and the experimental data with only
minor deviations (Fig. S3D).
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To validate the model’s forward prediction for extended doses,
we compared its predictions beyond the training range with published
experimental data for 33 ng/mL TNF and 333 ng/mL LPS21. The model
predictions align well with experimental NFκB trajectories (Fig. S3E)
and effectively recapitulate Speed, Peak, Total, and Osc signaling
codon distributions, and to lesser extent Duration and EvL (Fig. S3F).
The average Wasserstein distances between model-predicted and
experimental signaling codon distributions were less than the differ-
ences between ligands (Fig. S3G).

A fundamental question in signal transduction is how well sig-
naling pathways are able to discriminate ligand doses, prompting the
recent application of information theoretic approaches25,47. Experi-
mental studies are necessarily limited to a finite number of doses,
and in our current experimental dataset we used three doses for each
stimulus informed by prior studies21. Here, we used the our estab-
lished mathematical model to extend the dose-response studies.
NFκB response trajectories were simulated for 20 doses of each
ligand, ranging from an almost negligible to a supersaturating
amount, spanning five orders of magnitude. The model recapitulates
that with increasing dose, the proportion of activated cells first rises,
exhibiting single-cell heterogeneous activation, and then the
response saturates where neither responder fraction nor intensity
increase further (Fig. 3A).

To determine how much stimulus-dose information is contained
in the NFκB trajectories we calculated the maximum mutual informa-
tion (MI) between dose stimulation and the resulting NFκB signaling
codon distributions (Fig. S3H) (See Methods Maximum mutual infor-
mation calculation), using either experimental or simulated data
(Fig. 3B). For the ligands Pam, CpG, LPS, and pIC, the information
content of the chosen experimental dose was similar (about 1 to 1.2 bit
respectively). The extended set of 20 simulateddose responses didnot
result in higher maximumMI in the case of Pam, CpG and pIC, but did
in the case of LPS. Indeed, previous experimental studies with five or
more doses of LPS resulted in 1.3 bits of information21,25. Interestingly,
in the case of TNF, the maximum MI in simulated 3-dose NFκB trajec-
tories was higher than in the experimental data, and a larger number of
doses further increased themaximumMI values. In simulations of TNF
condition, without technical and intrinsic noise, the EvL codon for low
doses (red distributions in Fig. S3I) can be distinguished from the
unstimulated condition (gray), and medium-dose (green) from high-
dose (blue) conditions, as high-dose cells showmore sustained signals
with higher duration and later activity (small EvL codon) (Fig. S3I).
However, in experimental TNF data, the low dose condition are not
distinguishable from unstimulated condition (Fig. S3J), as the peak
detected in low dose is similar as noise observed in unstimulated
conditions. Medium- and high-dose TNF conditions are also indis-
tinguishable (Fig. S3I). This divergence stems from Duration and EvL
which showhigher distinction between doses in the simulated than the

experimental data (Fig. S3I, J). These two metrics might be more sen-
sitive to technical noise when trajectories are oscillatory.

Locating information loss: the receptor module
Given that NFκB dynamic trajectories do not show perfect stimulus
distinction (Fig. 2D), we asked where information loss occurs within
the signaling pathway that generates NFκB trajectories. Unlike
experimental models, a mathematical model allows us to manipulate
and assess the impact of noise in different modules of the network.
Here, we distinguished the receptormodule, adaptermodule, and IKK-
IκB-NFκB core module (Fig. 4A), and eliminated noise (collapsing the
parameter distribution to a single value) from one or more of these
modules to assess each module’s capacity for faithful signal trans-
duction (Fig. 4B, Methods – Modeling different genotype, Denoise
different modules of NFκB signaling network). We calculated max-
imum MI between the input stimuli (ligands) and the output NFκB
signaling codons in response to five different ligand stimulations,
resulting in 1.2 bits. Denoising the receptor module - collapsing the
associated parameter distributions to a single value - increased the
maximumMI by 0.9 bits to 2.1 bits, whereas denoising adaptormodule
or core module had little effect (Fig. 4C). We tested different single
values and found the conclusions largely unaffected (Figure S4A). To
complement the denoising approach, which tests for requirement, we
asked whether noise in the receptor module is sufficient to degrade
information transmission. To implement this, we started with the
representative cell21, which shows perfect stimulus distinction, and
allowed for parameter variation according to the fitted distributions)
only in one of the three modules (Fig. 4D). Adding extrinsic noise to
either the adaptor or the core module had little impact on the mutual
information, but implementing distributed parameters to the receptor
module degraded the mutual information from >2.3 to 1.4.

Schematizing the information flow through the NFκB signaling
pathway based on the above results (Fig. 4E), we may say that of the
2.32 bits of information associated with 5 ligands (theoretical max-
imum), about 0.9 bits are lost in the ligand-proximal receptor mod-
ules, and only about 0.2 bits are lost in the shared adaptormodule and
almost none in core module. These conclusions align with previous
experimental findings indicating that upstream signaling modules can
be the information bottleneck47 and thatNEMOandRelA dynamics are
highly correlated33. To investigate whether information loss in the
receptor module can be attributed to high parameter variation, we
calculated the coefficient of variation (CV) for each parameter but
found similarly levels of variation (Fig. 4F). This indicates that while
parameters vary similarly the variation in the receptor module is pri-
marily responsible for information loss.

Given the remarkable signaling fidelity of the IKK-IκB-NFκB core
module, we asked whether the prominent negative feedback that IκBα
provides is critical for this. We modeled an IκBα promoter mutant

Fig. 2 | Comparing experimental data andmodel simulations of NFκB signaling
in macrophages. A Heatmap displaying both experimental (left columns) and
simulated (right columns) NFκB signaling in macrophages stimulated by indicated
ligands (rows: TNF, CpG, Pam, LPS, pIC) and doses (columns: low, medium, high).
For each condition, the experimental data (left, exp.) andmodel simulations (right,
sim.) are shown. In each subpanel, y-axis represent single cells, the x-axis indicates
time, the color intensity signifies NFκB abundance according to the color bar.
Experiments used here were a representative of ten replicates, some of them were
published in previous studies5,21,23,24. B Dynamic features of signaling trajectories
(left), that had been identified as being informative of ligand and dose and termed
Signaling Codons21 were used to decompose the NFκB signaling trajectories from
experiments and simulations. Histogram of average Wasserstein 2-distance (a dis-
tance function defined between probability distributions on a given metric space,
the Euclidean space in our case) between distributions of Signaling Codons from
experiments and simulations (right), with distances between different experi-
mental conditions in yellow, between different simulation conditions in orange,

and distances between model simulations and experimental data in blue.
C Heatmap depicting the average Wasserstein distances between Signaling Codon
distributions within and between experiments and simulations across different
conditions. The diagonal elements (mostly blue) represent distances between
corresponding experimental and simulation data for each condition. The lower
triangular matrix illustrates the distances among different experimental condi-
tions, while the upper triangular matrix shows the distances among various simu-
lation conditions. Conditions are specifiedalongboth the x- andy-axes (L: lowdose;
M: medium dose; H: high dose). The color intensity indicates the magnitude of the
average Wasserstein distance. D Confusion matrices illustrating the classification
precision of ligand identity information for experimental data (Experiments), and
for simulated data calculated and from fitted parameters (Simulation). The
machine learningmodel (RandomForest) usesNFκB trajectorySignalingCodons as
input to encode and predict the ligand information. This is evaluated by five-fold
cross-validation.
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(IκBαS/S) by reducing the NFκB-mediated transcription rate of IκBα by
75% (Fig. 5A)23 (Methods – Modeling different genotype, IκBα pro-
moter mutant). The model predicts reduced oscillations, extended
response duration, and increased total activity in IκBαS/S, while sig-
naling codon, Speed, and EvL remain comparable to WT (Fig. S5A, B,
top rows), and analysis of published data21 confirms the predicted
reduction in oscillations with other codons unchanged (Fig. S5A, B,
bottom rows). To evaluate whether the model predictions exhibit
similar stimulus-response specificity (SRS) performance as live mac-
rophages, we applied a machine learning random forest classifier to
model-predicted NFκB signaling codons for WT and IκBαS/S and com-
pared to the experimental dataset. The model predictions revealed
increased confusion patterns for the IκBαS/S compared toWT, aligning
with experimental data (Fig. 5B). These results suggest that the IκBα
negative feedback is not only important for terminating NFκB activity
or generating oscillations29, but is also ameans for faithful information
transmission by minimizing information loss. These studies are yet

another example of the power of a mechanistic model, as knowledge
of the chemical reaction network structure is required to locate where
information loss occurs.

Model reveals the stimulus-response specificities of single cells
The literature of quantifying SRS in cellular signaling has focused on
the population level, either via MI between signaling feature distribu-
tions and stimuli, ormachine learning classification21,23,24,56 (Fig. 6A, left
panel). The population focus is required because experimentally, a
single cell can only be stimulatedwith a single stimulus condition – in a
sequential stimulation regime, the response to the second stimulus is
affected by the response to the first57. However, simulating a mathe-
matical model of a signaling network may be used for obtaining the
signaling responses to different stimulus conditions (Fig. 6A, right
panel). Here, we generated single-cell NFκB signaling networks for
multiple single stimulus-response simulations (Fig. 6A right panel).
The resulting set of stimulus-response trajectories associated with

Fig. 3 | Usingmodel simulations to estimate the channel capacity for encoding
stimulus doses. A Heatmaps of simulated NFκB signaling trajectories in immune
cells stimulated by 21 different doses (columns) of 5 ligands (rows), calculated from
the sampled parameters. Within each heatmap, the x-axes denote time (hours),
while y-axes represent different single cells ordered by Total signaling activity. For
TNF and LPS, the 21 doses span log-linear points from 10−2.5 to 102.5 ng/mL; for CpG,
from 10−0.5 to 104.5 nM; for pIC, from 10−1.5 to 103.5 µg/mL; and for Pam, from 10−0.5 to

104.5 ng/mL. D0 is the lowest dose for each ligand, while D5, D10, D15, and D20
correspond to doses that are 5, 10, 15 or 20 increments higher. Red squares indicate
the approximate doses thatwereused for experiments.BChannel capacity analysis
between ligand and signaling codons, either for the 3 doses or all 20 with unsti-
mulated condition using experimental (exp) or sampled simulated (sim) NFκB
trajectories. The 3 doses of expand sim is indicated inTable 1 and in Fig. 3A redbox,
respectively, where the 3 doses of sim imitate experimental doses.
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each single-cell NFκB signaling network is then assessed for single-cell
SRS (scSRS) by calculating the differences in NFκB signaling codons.
This workflow reveals how individual single-cell NFκB signaling net-
works differ in their capacity to produce stimulus-specific NFκB
responses.

Using the collection of single-cell NFκB signaling networks pro-
duced by combining inferred parameters (Methods – Generating new

dataset of NFκB trajectories), we generated single-cell stimulus
response data for five ligands at high doses. Ordering the data for all
five stimuli based on the TNF response integral revealed that a high
response integral to TNF does not necessarily correlate with a high
response integral to other ligands (Fig. S6A). Hierarchically clustering
the stimulus-responses of a subset of single cell NFκB signaling net-
works illustrated this more generally: a high response to one ligand
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does not necessarily predict a strong response to another (Fig. 6B).
Indeed, we found onlyweak correlations of signaling codons deployed
in response to each stimulus (Fig. S6B).

To assess the scSRS, we calculated the L2 distance between the
signaling codon vectors of each stimulus pair for the collection of
single-cell signaling networks, yielding distributions of L2 distances
(Fig. 6C). Examining these, we found that TNF vs. PAMPs tended to be
more specific that pairs of bacterial PAMPs. Considering a threshold of
1.0 which appears to demarcate stimulus pairs that are distinct vs.
those that are barely distinguishable (Fig. 6D), we asked how many

stimulus pairs each of the 1000 single cell signaling network models
can distinguish. We found that 36.7% of single cells are capable of
distinguishing all 10 stimulus pairs, and another 39.3% can distinguish
9 of the 10. Only 11.8% of single cell networks confuse 3 or more pairs
(Fig. 6E). We found that the most frequent confusion occurs between
LPS vs. Pam (18.6%), and the least confusion frequency is between TNF
vs. CpG (2.8%) (Fig. 6F). Generally, confusion between TNF vs. PAMPs
was less frequent (2.8–8.9%) than confusion among bacterial PAMPs
(15.6–18.6%), with viral vs. bacterial ligands being in between (6.8 and
18.0%). These conclusions are robust across different specificity
thresholds from 0.5 to 1.5 (Fig. S6F).

To investigate the role of the IκBα feedback in scSRS, we simu-
lated single-cell responses of the IκBαS/S promoter mutant cells
(Fig. 5A, S6C). Hierarchical clustering of single-cell stimulus-respon-
ses showed apparently diminished specificity in stimulus responses
(Fig. S6D). By calculating the L2 differences in the signaling codon
space for pairwise stimuli, we found that IκBαS/S cells are more likely
to have lower scSRS than WT counterparts (Fig. S6E). The 50th per-
centile of the L2 distance distributions were diminished for all sti-
mulus pairs; 90th percentiles were lower for 9 pairs; the 10th
percentiles were lower for 6 of 10 pairs. The IκBαS/S genotype
reduced the proportion of cells being able to distinguish all stimulus
pairs by 5% (of 1000 cells) compared to WT (Fig. 6E, G). The L2
differences revealed increased confusion between TNF vs. PAMPs
(7.6% of 1000 cells), among bacterial PAMPs (18.3% of 1000 cells),
and between bacterial and viral PAMPs (1.7% of 1000 cells)
(Fig. 6F, H). Among the cells confusing multiple stimulus pairs in
IκBαS/S, defective distinction occurs concurrently among bacterial
PAMPs, similar as WT. Such confusion between cytokine and PAMPs
may be physiologically particularly consequential5,6,21.

Small consortia of macrophages may achieve perfect stimulus
response specificity
Given the inferred collectionof single-cell NFκB signaling networks, we
asked whether their heterogeneous stimulus-responses are subject to
correlations that may result in patterns in which stimulus-pairs are
confused. To this end, we mapped the instances of stimulus-pair
confusion for each of the 1000 cells generated by the model for the
specificity threshold of 1.0 (Fig. 7A). Consistent with Fig. 6E, we found
that 36.7% of the single-cell NFκB signaling networks showed no con-
fusion, and that 39.3% showed a confusion of a single stimulus pair.
However, which stimulus pair is confused was highly diverse with no
pair being distinguished by all cells. Further, in cells that showed
confusion of two or more stimulus pairs, the instances of confusion
were uncorrelated, such that the Jaccard distances between stimulus
pairs are uniformly high, with stimulus pairs involving Pam or pIC
showing a higher propensity for confusion (Fig. S7A).

This observation led us to the hypothesis that uncorrelated
macrophage stimulus-responses that result in highly diverse
stimulus-pair confusion patterns may allow neighboring cells

Fig. 4 | Information flowwithin the NFκB signaling pathway. A Schematic of the
NFκB signaling network. Extrinsic noise is representedbyparameter variation in the
Receptor, Adaptor, and Coremodules.BWorkflow for identifying information loss
by denoising individual signalingmodules. This involves collapsing the distribution
of the respective parameters to a single value. C Maximum mutual information
(Maximum MI) between the ligands and NFκB signaling codons for the original
network and after denoising the Receptor (rcp), Adaptor (adp), or Core (core)
modules (labeled at the bottom).MI is calculatedfive timesper condition, shown as
individual data points. Data are presented as mean values ±SD. D Maximum MI of
the network under no noise, noise added to the Receptor module (rcp), Adaptor
module (adp), or core NFκB-IκBα module (core) (labeled at the bottom). The no-
noise condition is based on calculations from 1000 identical cells. MI is calculated
five times per condition, shown as individual data points and as mean values ±SD.
E Illustration of the successive information loss along the pathway due to noise in

indicated modules. Blue shade represents information flow, gray shade represents
information loss. F Bar plots of average coefficient of variation (CV) of Receptor
(TNF, LPS, CpG, pIC, and Pam), Adaptor (adp), and Core (core)module parameters,
calculated from 10 permutation-sampled datasets, shown as data points and as
mean values ±SD. ‘r-syn’ is the receptor synthesis rates (k54 for TNFR, k68 for TLR1/
2, k85 for TLR9, k35 for TLR4, k77 for TLR3); ‘C-deg’ is the signaling complex
degradation rate (k58, k61, and k64 for TNF module, k75 for Pam module, k44 for
LPSmodule, k83 for pICmodule); ‘endo’ is the endosomal import rate (k88 for CpG
module, k36 and k40 for LPS module, k79 for pIC module); ‘TAK-ac is the TAK1
activation rate (k52 and k65); ‘time-d1’ and ‘time-d2’ is the time delay parameters in
NFκB mediated transcription of IκBα (k99 and k101); NFκBtot is the total initial
NFκB abundance within single cell. Colored bars indicate receptor modules, gray
bars indicate adaptor and core modules.

Fig. 5 | Model prediction and testing of NFκB responses in Sjögren macro-
phages. A Schematic of the IκBαS/S promotermutation which underlies the Sjögren
macrophages studied previously21. To mathematically model this mutation, the
NFκB-mediated transcription rate of IκBα was reduced four-fold. B Confusion
matrices illustrating the classification precision of ligand identity information for
experimental data (Experiments)21, and for simulated data calculated and from
fitted parameters (Simulation), of thewild type (WT) and testedon IκBαS/S network.
The machine learning model (Random Forest) used NFκB Signaling Codons as
input to encode and predict the ligand information. The classifier was trained on
the WT dataset, and then tested on WT and IκBαS/S datasets.
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Fig. 6 | Model prediction of single-cell stimulus response specificity (scSRS).
A Schematics of how stimulus-response specificity (SRS) is assessed at the level of
populations using experimental data (left), and at the single-cell level (right) as we
propose using the mathematical model. Experimentally, macrophages are stimu-
lated with different ligands in dedicated cultures, resulting in population-level
distributions for each stimulus-condition of single-cell signaling trajectories or
derived dynamic trajectory features. These distributions are then correlated by
information theory or machine learning to the stimulus-identity. The proposed
single-cell SRS (scSRS) is assessed by simulating the samemathematicalmodel with
its cell-specific parameter set with each of the ligands and then assess the pairwise
differences in stimulus-responsive trajectories or derived dynamic trajectory fea-
tures. This approach allows categorization of virtual cells as being able to distin-
guish stimulus pairs or being confused. B Heatmaps show simulated stimulus-
responsive NFκB signaling trajectories in response to 5 ligands for 20 wild-type
(WT) individual NFκB signaling networks (virtual cells). Each heatmap’s x-axis

represents time in hours, and the y-axis lists individual virtual cells, ordered via
hierarchical clustering.C Violin plots depicting the distribution of l2 distance in the
signaling codon space between stimulus pairs (specified in the x-axis) for wild type.
10th, 50th, and 90th percentiles are marked from bottom to top within each violin
plot. Red dashed line indicates the threshold at which the stimulus pair is con-
sidered distinguished or confused. D Representative single-cell trajectories of
distinguished (upper panel) and confused (lower panel) stimulus pairs (Pam: blue,
pIC: red), with L2 distances of 1.5 (>1) and 0.5 (≤1), respectively. E Histogram of
proportions of individual NFκB signaling networks for wild type (WT) that are able
to distinguish the indicated number of stimulus-pairs. FHeatmapof the proportion
of individual NFκB signaling networks that confuse the indicated stimulus pairs
(specified on x-axis and y-axis). The red box highlights TNF-PAMPs confusion, the
pink box indicates bacterial PAMPs confusion, and the blue box represents
bacterial-viral PAMPs confusion. G. Histogram analogous to (G) for IκBαS/S. H.
Heatmap analogous to (F) for IκBαS/S.
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compensate for each other’s blind-spots, thereby resulting in an
effectively enhanced stimulus-response specificity (SRS) of the con-
sortium. The rules that govern the consortium’s decision making are
of course key for this result. To test our hypothesis, we considered
that the consortium is governed by a 2/3 majority rule, and we gen-
erated a synthetic dataset of cells with the same scSRS distribution of
the population (Fig. 6E) but in which the pattern of instances of
stimulus-pair confusion show low diversity (LD) (Fig. 7B). We then
randomly sampled one, two, three, or more cells from the wildtype
(WT) and LD populations to determine the probability that these
small consortia of cells achieve perfect stimulus specificity, i.e., dis-
tinguish all stimulus pairs (Fig. 7C). As expected, sampling just one
cell, the probability is the same for both populations, as 36.7% of cells
perform with perfect stimulus specificity. However, when consider-
ing the small consortia of macrophages, WT populations outperform
LD populations in the probability of achieving perfect stimulus spe-
cificity. In WT consortia the probability of achieving perfect stimulus
specificity increases with the member number (90% for 20 cells),
while it decreases in LD consortia (almost 0% for 20 LD cells). Thus,
WT consortia can generate perfect SRS with a dozen or so cells. We
considered higher or lower stringencies for defining stimulus-pair
distinction (Fig. S7B). The probability of achieving perfect distinction
in WT consortia increases with the number of cells and consistently
outperforms that of LD consortia, regardless of the chosen strin-
gency threshold (Fig. S7C). In sum, our analysis shows that diversity
among single cells in which stimulus pairs they confuse enables
macrophages to complement each other such that small consortia of
macrophages can achieve perfect SRS.

We quantified the minimum number of consortia members
required for a 95% or 99% probability of achieving perfect SRS for
both WT and IκBαS/S genotypes. For the WT consortia, a 95% prob-
ability of perfect SRS was reached with ~10–110 cells, and a 99%

probability with about 20–130 cells, depending on the specificity
threshold (Fig. 7D). In contrast, IκBαS/S consortia required additional
5–10 cells at the default threshold (=1) to achieve the same 95% or
99% probabilities. Even when applying different thresholds, IκBαS/S

consortia consistently required at least as many, and often more,
cells than their WT counterparts. This suggests that although the
IκBαS/S genotype loses scSRS (Fig. 6G, H), the retained diversity
within its single-cell responses still enables small consortia to effec-
tively differentiate stimuli. However, it remains less capable than the
WT genotype at achieving perfect stimulus distinction.

Discussion
In this study, we developed virtual single-cell NFκB signaling networks
that recapitulate the experimentally determined stimulus-response
specificity (SRS) of heterogeneous NFκB responses present within
macrophagepopulations. Thesemathematicalmodels, unlikemachine
learning classifiers, encode a wealth of biological knowledge of mole-
cular mechanisms enabling simulations in conditions that are not
within the range of the training data, thereby leading to insights about
how SRS of NFκB signaling is regulated, and revealing how the popu-
lation level SRS, which is quantifiable from experimental data, is
composed of a diversity of single-cell stimulus-response specificities
(scSRS) of individual macrophages. Our analysis locates primary noise
sources to receptor modules that results in imperfections in stimulus-
distinction of high diversity that may therefore be compensated for
within small consortia of macrophages.

To generate the virtual single-cell NFκB signaling networks we
leveraged an established molecular network model that recapitulates
the signaling dynamics of a representative cell21, and parameterized it
to newly generated single cell experimental data. Prior studies of
parameterizing distributions of biochemical parameters involved
reaction networks with less than 10 dimensions50,51. Given our 52-

Fig. 7 | Heterogeneity in scSRS enables small consortia of macrophages to
achieve perfect stimulus response specificity. A Binary category map indicating
confused stimulus pairs (specified on x-axis) of each individual NFκB signaling
network (virtual cells) for threshold 1.0 (Fig. 6C). Analogous maps for other
thresholds are shown in Fig. S7. These show strikingly uncorrelated patterns of
stimulus-pair confusion. B Binary category map indicating confused stimulus pairs
(specified on x-axis) for a synthetic population of single cell NFκB networks in
which the stimulus-responses are equally heterogeneous but the instances of
stimulus-pair confusion are correlated resulting in a population of cells of lower

diversity (LD).C Line graph of the probability of distinguishing all 10 stimulus pairs
(defined by at least two-thirds of the cells in the consortium distinguishing each
pair) as a function of the number of macrophages in a consortium, comparing cell
populations in which the stimulus-pair confusion pattern has lower diversity (LD,
orange line) than wild-type (WT, blue line).D Barplots of cell numbers required for
the consortia to achieve a 95% (left panel) or 99% (right panel) probability of dis-
tinguishing all 10 stimulus pairs under different distinction thresholds (x-axis), for
cell populations in which the stimulus-pair confusion pattern is wild-type (WT, blue
bars) or IκBαS/S (orange bars).
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dimensional highly nonlinear dynamical system with feedback, we
selected a subset of biochemical constants for parameterization based
on prior studies21,35,42,57, their sensitivity in determining signaling
codons (Fig. S1), while ensuring that analogous parameters were
represented in parallel receptor modules to enable insights based on
comparisons. We used a nonlinear mix-effects model for the estima-
tion of parameter distributions. RMSD of trajectories and Wasserstein
distance of signaling codon distributions revealed simulations well
fitted to the experimental data. However, some imperfections were
noted, particularly in the oscillatoryNFκB response to TNF,whichwere
more pronounced but more heterogeneous in the intra-trajectory
oscillatory period in experiments (discussed below). Additionally, it is
possible that other negative feedback regulators such as IκBε and A20
have an effect in macrophages and that compensatory parameter
values in our model make up for not including them explicitly.

We first employed the model to examine whether prior estimates
of dose-response channel capacity were affected by limited experi-
mental data. Such estimates were based on 3 to 5 doses and yielded
estimates between 1 and 1.5 bits21. Using the model we generated
simulation for 20 doses of each stimulus (Fig. 3), and found that for
CpG, Pam, and pIC the estimates remained at 1.0, and for LPS at 1.3,
suggesting that the channel capacity for stimulus dose transmission is
indeed substantially limited. However, in the case of TNF, our simu-
lation data suggested that the pathway has higher channel capacity
than the 1.0 bit that was previously reported21,25. This may be the result
of having data for more doses available or the simulations being
devoid of technical or intrinsic noise. We note that the experimental
TNF-inducedoscillatory trajectories aremore pronounced and contain
more intra-trajectory variability in period than the simulation data. The
latter may diminish information transmission via Duration and EvL
signaling codons and is due to intrinsic noise within the IκBα feedback
loop. As intrinsic noise in the negative feedback may expand the
resonance frequency and hence the robustness of oscillations58, it
appears that the oscillatory NFκB response to TNF, which avoids
nucleosome eviction and epigenetic reprogramming18,59, has evolved
to be robust even at the expense of the ability to distinguish different
doses of the cytokine.

Based on the parameterized single-cell models, we developed a
workflow of denoise different modules to locate the sources of
extrinsic noise that limit the channel capacity for information trans-
mission. We approached this question, which cannot be addressed
experimentally, by collapsing fitted parameter distributions and
assessing the channel capacity of the signaling network (Fig. 4).
Employing this approach, we located almost all information loss to the
receptor module, aligning with prior studies that implied that an
information bottleneck at the receptor level47. On the other hand, the
common IκB-NFκB coremodule showed high signaling fidelity despite
introducing substantial heterogeneity (Fig. 4). This is also consistent
with previous findings that IKK activity is highly correlated with NFκB,
indicating little information loss for the IκB-NFκB coremodule33. In the
experimental studies, such a denoising strategy is not available, so
measuring two or more species to study information flow within the
network is an alternative approach33,47,60. For the systemswith only one
protein measurement feasible, our modular denoising approach pro-
vides an appropriate and practical method to study the information
flow. This is because the key intermediate signaling molecules can be
inferred from the underlying signaling network structure and single-
cell trajectory data.

Finally, we leveraged the model to decompose the population
level SRS measures into the SRS characteristics of individual cells. By
integrating regulatory modules that were parameterized with datasets
derived fromdifferent stimulus-response experiments, we generated a
collection of single-cell NFκB signaling networks (Fig. 6) – in essence
virtualmacrophages in regard toNFκB signaling. This enables studying
SRS at the single-cell rather than population level, but required the

development of appropriate metrics. To gain detailed insights we
opted for pairwise comparisons rather than a composite measure. We
found that >75% cells are capable of distinguishing either all 10 or 9 out
of 10 stimulus pairs by generating stimulus-specific NFκB dynamics.
And almost no cells are defective in the distinction of half or more
stimulus pairs. By drilling into the scSRS profiles we found that while
bacterial PAMPs are more likely to be confused than other stimulus
pairs, the imperfections in stimulus pair distinctionwerehighly diverse
and uncorrelated. No stimulus pair was distinguished by all cells, and
Jaccard distance analysis between stimulus-pairs that are confused
showed a lack of correlation. Direct experimental validation of this
prediction on diverse scSRS is challenging with available technology.
For example, isolating recently divided sibling cells to stimulate them
with distinct ligands faces the technical challenge of isolating and
moving individual cells without perturbing their cell state61. An alter-
native approach may be to learn how cell responses to a stimulus are
affected by prior stimulation, for example by developing expanded
models to account for adaptive changes. Then by tracking individuals
during repeated stimulation regimes, the appropriate computational
interpretation could approximate scSRS profiles for the tracked cells.

We examined the functional consequence of this remarkable
diversity in single-cell stimulus response specificity characteristics by
constructing an analogous population that showed less diversity and
more correlation in their imperfections in stimulus distinction (Fig. 7).
Sampling from these populations we found that small consortia of
dozens of cells could have a 95–99% chance of perfect stimulus dis-
tinction unlike their less diverse counterparts. This implies, while each
cell may have blindspots, their diversity enables immune response
specificity in the collective. This conclusion may also depend on the
rules governing functions of consortia of cells. We considered that if
majority of cells see distinctions, then they can override minority cells
that do not. Alternatively, cells that confuse stimuli could dilute the
stimulus response specificity of the consortium if they retain a vote.

In summary, using a mechanistic mathematical model carefully
parameterized to a wealth of experimental data allowed construction
of a population single cell NFκB signaling networks, and thereby
deconvoluting population measures of SRS into the collection of
scSRSs.We found that thefidelity of single cells inmountingpathogen-
appropriate responses is higher than what is evident from population
level SRS measures of maximum mutual information or machine
learning classification. Further, we found that we cannot assume that
single cells of the population have the same sensing capabilities27.
Instead, they are highly diverse, enabling even a small consortium of
cells to reach perfect stimulus distinction. These insights support the
emerging view thatmacrophage responses arehighly stimulus-specific
and that their stimulus-response specificity is a hallmark of their phy-
siological function.

Methods
Our research complies with all relevant ethical regulations. The UCLA
Institutional Animal Care and Use Committee approved the protocol
for animal research per guidance from the American Veterinary Med-
ical Association.

Experimental data generation
We used a C57-Bl6 mouse line that expresses mVenus-tagged RelA21

(strain B6(SJL)-Relatm2.1Alex/J) to generate the experimental dataset.
Mice were housed in a dedicated vivarium room in conditions of
ambient room temperature of 20–25 °C and humidity of 40–50% with
a light/dark cycle of 7am–7pm in accordance with Institutional Animal
Care and Use Committee (IACUC) guidelines under approved proto-
cols. Bone marrow cells isolated from the femurs of 8–12-week-old
mice were cultured in L929-conditionedmedium to differentiate them
into bonemarrow-derivedmacrophages (BMDMs)21. On day4, BMDMs
were detached, re-plated in an 8-well ibidi SlideTek chamber to at
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15–20,000 cells/cm2. The culture medium was replaced with fresh
medium on day 6. These BMDMs were then stimulated with specified
concentrations (Table 1) of TNF (TNF-alpha (aa 80–235) protein, 410-
MT-010, R&D Systems), CpG (synthetic CpG ODN 1668, tlrl-1668,
Invivogen), Pam (Pam3CSK4, tlrl-pms, Invivogen), LPS (L6529-1MG,
Sigma-Aldrich), and pIC (polyinosine-polycytidylic acid (Poly(I:C)), tlrl-
picw, Invivogen). To block paracrine feed-forward TNF signaling dur-
ing PAMP responses, we co-treated the cells with 5μg/mL of soluble
TNF receptor II (Recombinant Mouse sTNFRII/TNFRSF1B, 426-R2-050,
R&D Systems). We assigned a coded numbering system to samples to
reduce awareness of sample identities during processing, thereby
achieving a degree of blinding to group allocation. Nuclear NFκB
activity in individual cells was monitored by time-lapse live-cell fluor-
escence microscopy, with images captured every 5min over an 8-h
period. All fluorescence intensity values were normalized to the
background signal and baseline-corrected using the MACKtrack
automated image analysis pipeline (https://github.com/Adewunmi91/
MACKtrack). More details are provided in the Supplementary Notes.

Computational model parameter selection and sensitivity
analysis
We employed 52-dimensional ordinary differential equations (ODE) to
model the NFκB signaling pathway, adapted from prior research21,
which comprises 52 variables (Supplementary Dataset 1), 101 reactions
(see Supplementary Notes for equations), and 120 parameters (Sup-
plementary Dataset 2). The single-cell parameters of the NFκB network
ODEs were inferred based on experimental dataset to recapitulate the
heterogeneity (explained in detail in next section). To avoid over-
fitting, only a limited number of parameters were selected for fitting
based on following four principles: (1) parameters with direct or strong
biological evidence indicating heterogeneous measurements were
prioritized, such as receptor abundances, trafficking capacities; (2)
across different receptor module, consistent parameters are chosen,
such as receptor synthesis rate; (3) redundancy in parameter functions
was avoided—for instance, while both receptor synthesis and degra-
dation rates can regulate receptor abundance, only one of them was
selected, the receptor synthesis rate, as they alter NFκB dynamics in a
similar way; (4) core module parameters were selected based on their
capacity of generating oscillation heterogeneity. All other parameters
werefixed to the values from the literature21. Basedon theseprinciples,
the following parameterswere selected (16 independent parameters in
total): core module parameters, including TAK1 activation (TAK act,
k52, k65), the time delay for NFκB-regulated IκBα transcription (time
delay related rates, k99, k101), and the total abundance of NFκB (tot
NFκB); and receptor module parameters, which consist of receptor
synthesis rates (rcp syn, k54 for TNF, k68 for Pam, k85 for CpG, k35 for
LPS, k77 for pIC), degradation rates of receptor-ligand complexes (C
deg, k56, k61, k64 for TNF, k75 for Pam, k93 for CpG, k44 for LPS, k83
for pIC), and endosomal import rates (endo, k87 for CpG, k36 and k40
for LPS, k79 for pIC). We then conducted a one-dimensional sensitivity
analysis to examine changes in NFκB dynamics due to variations in
these parameters. Compared to the default values within the model
(black curves in Fig. S1G), each parameter is increased or decreased by
10±0.1 to 10±1 times (10 values distributed logarithmically along
increasing or decreasing direction, shown as blue and red curves in
Fig. S1G). The ODE model was solved in MATLAB using the function
‘ode15s’ for each virtual cell across two phases: initially driving the
virtual cell to a steady state, followed by a second phase of adding
specified stimulation. All results were visualized using MATLAB.

Fitting of parameter distributions to single-cell data
Non-linear mixed-effects model (NLME) was applied to estimate the
variations in parameters or initial species values responsible for gen-
erating heterogeneous trajectories. The non-linear function in the
NLME was modeled by the 52-dimentional ordinary differential

equation of the NFκB signaling network (Supplementary Dataset 2),
using the nuclear NFκB activity as the model output f t,ψð Þ, which is
corresponding to the experimental observation Y :

f ti,ψ
mð Þ� �

= IκBαNFκBn ti,ψ
mð Þ� �

+NFκBn ti,ψ
mð Þ� �� �� shif t ð1Þ

for cell m= 1, . . . ,M and time points i = 1, . . . , T. To quantify the dif-
ference between experimental data and simulation data, the experi-
mentally observed NFκB activities (fluorescence intensity) was
rescaled to SI Units. Based on prior models29, the nuclear NFκB con-
centration was assumed to range from 0.04 µM to 0.30 µM, and we
scaled the 90th percentile response to 100 ng/mL LPS to 0.30 µM
nuclear NFκB. This resulted in an NFκB A.U. to S.I. scaling factor of
0.0313 (see Supplementary Notes for details). To avoid overfitting,
within the NFκB network, 6–7 parameter for each ligand pathway were
fitted (Supplementary Dataset 2), which were subject to both fixed
effects and random effects. Logit-Normal distribution is applied to
constrain the parameter distribution to biologically feasible ranges
ðψlower, l ,ψupper, lÞ, l = 1, 2, 3, . . . , 6ð7Þ. For an observation at time ti, we
have

ymi = f ti,ψ
mð Þ� �

+ a+ f ti,ψ
mð Þ� �

a
� �

εmi ð2Þ

εmi is the error term. All individual parameters ψ mð Þ follow the
logit-Normal distribution:

φ mð Þ = log
ψ mð Þ � ψlower

ψupper � ψ mð Þ

 !

i:i:d: � N ðμ,ΩÞ ð3Þ

Where φ mð Þ is the logit transform of ψ mð Þ. The population parameters
for estimation are θ = μ,Ω,a,b

� �
, and note that individual parameters

ψ mð Þ (orφ mð Þ) are latent variables. This model was solved by maximum
likelihood estimation (MLE). The log-likelihood function is given by
(see Supplementary Notes for details):
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After we estimated population-model parameters θ̂= μ̂, Ω̂, â, b̂
n o

,
we then estimated the individual parameters ψ̂

mð Þ
via the Maximum a

posteriori estimation (MAP):

ψ̂
mð Þ

= argmaxψ mð Þp ψ mð ÞjYm; θ̂
� �

ð5Þ

More about the calculationdetails are inSupplementaryNotes. To
solve above MLE and MAP, Software Monolix (https://monolix.lixoft.
com/)was applied tofit themodel to the experimental data. As theTNF
condition is the only one that shows strong oscillations and Pam non-
oscillatory dynamics are representative of the four PAMP ligands, the
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common core module was first parameterized with these two condi-
tions. Then the selected parameters (see method Parameter selection
and sensitivity analysis) in each receptormodulewere estimated using
all doses (3 doses for TNF, Pam, and pIC, 5 doses for LPS and CpG
(Table 1). The sample size for the parameter estimation of five ligands
are: 1809 cells for TNF, 1715 cells for Pam, 1495 cells for LPS, 1558 cells
for CpG, and 1763 cells for pIC. All other parameters are constants and
from literature21. Then each individual parameters were applied to
simulate the single-cell NFκB signaling activities using the 52-
dimensional ODE (see Supplementary Notes for details).

Model performance evaluation
Weemployed threemethods to evaluate the performance of ourmodel
simulations. (1) For each measured cell, we calculated the root mean
square deviation (RMSD) between the model-simulated and experi-
mentally measured NFκB trajectories. (2) We calculated six signaling
codons of NFκB dynamics —Speed, Peak, Duration, Total, EvL, and Osc
—that encode the stimulus information (Adelaja et al., 2021), to serve as
quality control metrics (see Supplementary Notes for details). The
distributions of these codons were computed from both simulated and
experimental datasets to quantify the dynamic features of NFκB activ-
ities across different stimulations. The L2 Wasserstein distance was
used to measure the similarity between the codon distributions of the
model simulations and experimental measurements under the same
conditions. Additionally, the Wasserstein distances among signaling
codon distributions from different conditions in the experiments or
simulations were calculated to assess the stimulus-response specificity.
(3) We applied a random forest classifier using signaling codons to
predict the ligand identity for both experimental data and simulated
data derived from fitted parameters or sampled parameters (See
Method-Generating new dataset of NFκB trajectories). The classifier’s
parameters were optimized through grid searching, and its perfor-
mance was assessed using confusion matrices and five-fold cross-vali-
dation. The RMSD calculations and signaling codon analysis were
conducted in MATLAB, while the random forest classification was
implemented in Python using the class ‘RandomForestClassifier’ within
the ‘sklearn.ensemble’ module of the ‘scikit-learn’ package.

Generating new dataset of NFκB trajectories
Togenerate heterogeneous single-cell NFκB trajectories in response to
extended doses of ligand stimulation, we first sampled single-cell sig-
naling network parameters, then simulatedNFκB trajectories using the
sampled single-cell parameters. Firstly, two parameter sampling
approaches were tested. The first was sampling parameters from the
estimated population-level statistical model:

logit ψð Þ i:i:d: � N ðμ,ΩÞ ð6Þ

We then tested bootstrapping approach: sampling from the non-
parameterized distributionwhich are composed of the inferred single-
cell parameters derived from the experiments:

f ψð Þ=
XM

m= 1

1
M

δ ψ� ψ̂
mð Þ� �

ð7Þ

where M represents the total number of cells across all dosage con-
ditions for that specific ligand. Secondly, the sampled heterogeneous
single-cell parameters were applied to simulate the heterogeneous
single-cell NFκB signaling trajectories using the 52-dimensional ODE
(see Supplementary Notes for details). Simulation results showed that
the bootstrapping approach replicates the experimental NFκB
dynamic feature distributions, while sampling from the parameterized
distribution showed significant discrepancies with the experimental
results (see Supplementary Notes for details). Thus, the bootstrapping
approach was utilized to generate new datasets of NFκB trajectories.

Maximum mutual information calculation
To quantify the signaling pathway channel capacity, the mutual
information between the stimulus condition S (different doses or
ligands) and the NFκB signaling pathway were calculated. For stimu-
lated single cell under condition S, the experimental or simulatedNFκB
trajectories were decomposed into six signaling codonsR (informative
dynamic features). The mutual information between S and R is

I R; Sð Þ=Hdif f Rð Þ � Hdif f ðRjSÞ ð8Þ

where Hdif f Xð Þ= � R +1
�1 f xð Þ log2 f xð Þð Þdx is defined as the differential

entropy. The mutual information were estimated using binless
strategy21,25,47, via k-nearest neighbor estimator for the continuous
variable probability density estimation when calculating the Shannon
different entropy62. Then mutual information was maximized over all
possible stimulus distributions pðSÞ to quantify the Channel Capacity:

C R; Sð Þ= max
pðSÞ

IðR; SÞ ð9Þ

This was implemented by ANN MATLAB Wrapper (ver 1.2) in
MATLAB.

Modeling the IκBαS/S genotype
To model this IκBα promoter mutant, the NFκB-regulated IκBα tran-
scription rate (parameter k), was reduced by a four-fold23. To generate
the heterogeneous single-cell trajectories, the same approach as for a
newdataset forWTwas applied. The first stepwas to sample single-cell
parameters, whose distribution was inferred from the WT dataset.
Then the sampled heterogeneous single-cell parameters, with the
NFkB-regulated IκBα transcription rate reduced by four-fold change,
were applied to simulate the heterogeneous single-cell NFκB signaling
trajectories using the 52-dimensional ODE distribution.

Denoise modules to quantify information gain within NFκB
signaling network
For heterogeneous single cells, 6–7 parameters of the NFκB model
(including receptor, adaptor, and NFκB-IKK core modules) were dis-
tributed from the distributions inferred from the experimental dataset
and then employed to simulate single-cell trajectories. To denoise a
specific module within the NFκB signaling network, the parameters
within the specific module were set to one set of parameters (the
representative cell or a random virtual cell parameter values), i.e.,
collapsing the parameter distribution to single set of parameter values
for the denoised module, while the parameter distributions in other
modules remained the sameas inferred. Suchdenoised-module single-
cell parameters are then applied to simulate heterogeneous single-cell
trajectories. Model simulations were implemented through theMatlab
2020a with the ode15s solver.

The denoised-module NFκB trajectories were decomposed into
six signaling codons, and then applied for calculation of mutual
information between stimuli (S, here representing different ligands)
and the response (R, informative dynamic features of NFκB trajec-
tories) using the same formula as previous section:

I R; Sð Þ=Hdif f Rð Þ � Hdif f ðRjSÞ ð10Þ

Themutual information wasmaximized over all possible stimulus
distributions pðSÞ to quantify the Channel Capacity after denoise spe-
cific modules within the signaling network. Then different denoising-
module results were compared with the channel capacity of the ori-
ginal signaling network (without denoise).
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Simulating heterogeneous single-cell responses to different
stimuli
Based on inferred single-cell parameters (Methods – Single-cell model
fitting), we developed an approach to generate heterogeneous virtual
single-cell NFκB network parameters via bootstrapping sampling and
core-module parameter matching, as described in further detail in the
subsequent paragraphs. The generated heterogeneous single-cell
NFκB network parameters were applied to simulate the hetero-
geneous single-cell NFκB signaling trajectories in response to different
ligands using the ODE.

Since the single-cell parameters inferred from the experimental
dataset include only one receptor module and the core module, the
parameters for the other four receptor modules were missing and
must be inferred to reconstruct the complete NF-κB signaling net-
work for each single cell (Fig. S5A). To generate 1000 heterogeneous
virtual single-cell NFκB networks, our approach began by sampling
200 sets of parameters from those inferred from experimental
dataset for the first ligand and core module. This allowed us to
identify the first receptor module parameters along with the core
module for each virtual single cell. To determine the parameters in
the other four receptor modules for the same individual cell, we
assigned each receptor module parameters from the single cells that
sharing the same core module parameters (or most similar). This
process generated 200 heterogeneous single-cell NFκB signaling
networks. We then repeated this workflow for each receptormodule,
using it as the initial sampling module in turn, until the process was
completed and 1000 virtual single-cell NFκB signaling networks were
generated.

For example, we first sampled 200 single-cell parameters inferred
from TNF-stimulated cells. For each sample of these 200 cells, we
obtained the TNF module parameters along with core module para-
meters, but still needed the parameters for the LPS, CpG, Pam, and pIC
receptors. To assign the LPS receptor parameters to each of these
sampled 200 cells, we calculated the differences between the sampled
core module parameters and the LPS-stimulated single-cell core
module parameters, selecting the LPS-stimulated cell with the smallest
difference and assigning its LPS receptor module parameter value to
the sampled cell. We repeated this process for the CpG, Pam, and pIC
receptors. This approachallowedus to generate 200 virtual single cells
with heterogeneity across all five receptor modules, using TNF as the
first sampled ligand. Then we repeated this for LPS as first sampled
ligand, and so on.

Statistics and reproducibility
Experimental data used for model fitting were representative of ten
replicates, some of which were presented in previous
publications5,21,23,24. The TNF-stimulated samples in this study—
without the soluble TNF receptor II—exhibited NFκB signaling
dynamics consistent with previously published independent data-
sets, including Adelaja et al. 2021 (one biological replicate)21, Singh
et al. 2024 (three biological replicates)24, Rahman et al. 2024 (three
biological replicates)23, and Luecke et al. 2024 (two biological
replicates)5. This agreement among multiple datasets indicates the
reproducibility of the experimental data used for the mathematical
model fitting presented here. Each experimental condition yielded
data for 176–744 cells as indicated in Table 1. The total number of
cells (sample size) processed was constrained by the cell density in
the culture and the number of regions that could be captured with a
5-min imaging interval. No statistical method was used to pre-
determine sample size but the sample size was the result of the image
analysis using MACKtrack (https://github.com/Adewunmi91/
MACKtrack). For the fitting and simulation dataset under TNF con-
ditions, any model simulations exhibiting a low coefficient of
variation (lowest 67% of CV) were excluded from further analysis,
along with their corresponding experimental data, as they did

not reliably capture the noisy sustained oscillations observed
experimentally.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The experimental and simulation data generated in this study have
been deposited in the Dryad database under https://doi.org/10.5061/
dryad.8cz8w9h3d. Source data are provided with this paper.

Code availability
The code used to develop the model, perform the analyses and gen-
erate results in this study is publicly available at GitHub at https://
github.com/Xiaolu-Guo/Virtual_single_cell_NFkB, under MIT license.
The specific version of the code associated with this publication is
archived in Zenodo and is accessible via https://doi.org/10.5281/
zenodo.15062580. The original codes for image analysis, for repre-
sentative cell NFκB simulation and signaling codon calculation is
deposited to GitHub https://github.com/Adewunmi91/nfkb_model
and https://github.com/Adewunmi91/MACKtrack21.
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