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SUMMARY
The genomic positions of nucleosomes are a defining feature of the cell’s epigenomic state, but signal-
dependent transcription factors (SDTFs), upon activation, bind to specific genomic locations and modify
nucleosome positioning. Here we leverage SDTFs as perturbation probes to learn about nucleosome dy-
namics in living cells. We develop Markov models of nucleosome dynamics and fit them to time course
sequencing data of DNA accessibility. We find that (1) the dynamics of DNA unwrapping are significantly
slower in cells than reported from cell-free experiments, (2) only models with cooperativity in wrapping
and unwrapping fit the available data, (3) SDTF activity produces the highest eviction probability when its
binding site is adjacent to but not on the nucleosome dyad, and (4) oscillatory SDTF activity results in high
location variability. Our work uncovers the regulatory rules governing SDTF-induced nucleosome dynamics
in live cells, which can predict chromatin accessibility alterations during inflammation at single-nucleosome
resolution.
INTRODUCTION

Nucleosomes are critical for packaging the eukaryotic genome

into the nucleus: 2 m of human DNA must be packed into a

1-mm nucleus (Alberts et al., 2002). As a consequence of pack-

ing, access to the DNA is limited, but selective access is

important for gene expression (Allfrey et al., 1963). Hence, nucle-

osomes have evolved to be highly dynamic. Dynamic nucleo-

some repositioning, including histone assembly, disassembly,

and eviction, are important for generating dynamic chromatin

states that are ultimately permissive or non-permissive to gene

expression (Lee et al., 2004; Shivaswamy et al., 2008).

Early biophysical in vitro studies of histone octamer-DNA inter-

actions focused on high-resolution studies of static interactions

(culminating in X-ray or cryoelectron microscopy [cryo-EM]

structures) as well as dynamic interactions of nucleosomal

DNA sequences bound to reconstituted histones in cell-free

experimental systems (Zhou et al., 2019). High-resolution struc-

tures elucidated the interaction points between the histone oc-

tamer (H2A-H2B pairs and H3-H4 pairs) and the DNA wrapped

around it (Luger et al., 1997). In vitro studies of nucleosome un-

wrapping and rewrapping determined with a variety of methods,
This is an open access article under the CC BY-N
including fluorescence resonance energy transfer (FRET), re-

vealed quantities such as the average time taken for sponta-

neous DNA unwrapping (Li et al., 2005), the differences in

timescales of dissociation and reassociation of the different

DNA-histone contact regions on the nucleosome (Tims et al.,

2011), and a fundamental asymmetry in the process so that the

unwrapping of one side helped to stabilize the other side (Ngo

et al., 2015).

Mathematical models have explored the dynamic behavior of

nucleosomes and their role in chromatin biology, including the

effect of chromatin remodeling proteins on nucleosome sliding

(Chou, 2007) and the deposition of histone marks along nucleo-

some arrays for epigenetic memory (Dodd et al., 2007). Nucleo-

somes have also been modeled with biophysical accuracy by

incorporating the nucleosomal structure of 14 DNA-histone con-

tact points and describing how DNA unwrapping/rewrapping

depends on particular rate parameters (Cheng et al., 2021; Do-

brovolskaia and Arya, 2012; Möbius et al., 2006). These theoret-

ical approaches show that mathematical models, especially

those involving Markov chains and Brownian motion, can be

used to reproduce in vitro experimental measurements and to

provide insights such as an analytic form of the mean DNA
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detachment time, DNA bending angles, and bistability in histone

modifications.

However, little is known about nucleosome dynamics as they

occur on native chromatin in living cells. These ‘‘in vivo’’ dynamics

are likely markedly different from dynamics measured in cell-free

systems ‘‘in vitro’’ because the interactions between DNA poly-

mer and histone octamer are constrained and because additional

protein factors that are not present in biochemical studies may

further stabilize or destabilize the nucleosome. For example,

linker histones present in vivo also bind to nucleosomal core par-

ticles close to the DNA entry and exit sites, and enzymatic ma-

chines such as SWI/SNF (SWItch/Sucrose Non-Fermentable)

(Dechassa et al., 2010) or FACT(FAcilitates Chromatin Transcrip-

tion) complexes facilitate nucleosome repositioning (Chen et al.,

2018; Liu et al., 2020). However, we know little about these dy-

namics quantitatively because there has not been a straightfor-

ward way to measure nucleosome positioning in vivo and no

controlled way to perturb steady-state positions.

Two recent advances have allowed us to probe nucleosome

dynamics. First, next-generation sequencing (NGS) has pro-

videdways tomeasure nucleosome accessibility and positioning

with DNase1 and, more recently, with the assay for transposase-

accessible chromatin (ATAC-seq). These genome-wide mea-

surements revealed that nucleosome positions in vivo are to a

large degree determined by DNA sequence (Segal and Widom,

2009; Segal et al., 2006). Second, identification of DNA-binding

proteins called pioneer factors, which may displace nucleo-

somes by competing with histones for DNA contacts, provides

a means to perturb nucleosomes. The discovery that stimulus-

induced signal-dependent transcription factors (SDTFs) may

also initiate nucleosome re-positioning now allows them to be

used as a probe to study in vivo dynamics because they provide

a trigger to perturb DNA-histone interactions within the cell at

controllable start times (Ostuni et al., 2013; Sen et al., 2020;

Weinmann et al., 1999). In particular, the dynamics of inflamma-

tion-activated SDTF activity has been shown to determine the

propensity for nucleosome repositioning in macrophages and fi-

broblasts (Cheng et al., 2021; Sen et al., 2020). This suggests

that SDTF activation with stimulus-specific dynamics may be

used as a probe to study the histone-DNA interaction dynamics

in the nucleosome via NGS measurements at stimulus start and

endpoints.

Here we present stochastic models for epigenetic remodeling,

which, in this paper, refers to changes in chromatin accessibility.

These math models are based on structural features of the

nucleosome to investigate the regulatory rules behind nucleo-

some eviction. Using probability theory, we calculated the prob-

ability of histone eviction and the resulting mean chromatin

accessibility under various dynamical SDTF signaling patterns.

We report that oscillatory SDTF signals potentially induce greater

variability of cell fate in heterogeneous cell environments than

constant SDTF signals. Then, by experimentally tracking nucle-

osomes at different genomic locations and counting the number

of nucleosome evictions between two time points, we found that

optimal eviction takes place when the SDTF binds adjacent to

the dyad, defined as the center position of nucleosomal DNA,

rather than directly on top of it, indicative of the cooperativity

of histone-DNA contacts. Thus, our modeling approach allows
2 Cell Reports 40, 111076, July 12, 2022
us to derive quantitative insights from NGS chromatin accessi-

bility data; provides a framework for understanding location-

specific, SDTF-induced chromatin accessibility changes in

different cellular contexts; and constitutes a tool to predict evic-

tion probability for single nucleosomes in live cells responding to

inflammation.

RESULTS

A stochastic model accounts for nucleosome dynamics
upon SDTF binding in vivo

When SDTFs bind to DNA, their stimulus-specific temporal dy-

namics disrupt the resting state distribution of nucleosomes,

affecting chromatin accessibility (Figure 1A). Epigenetic dy-

namics can be modeled as a continuous system; for example,

deterministic ordinary differential equation models describing

chromatin accessibility in bulk have been used to describe chro-

matin opening steps that result in enhancer formation (Cheng

et al., 2021). However, DNA unwrapping/rewrapping of individual

nucleosomes is subject to molecular stochasticity. The binding

of SDTFs to DNA can be regarded as a time-dependent on/off

switch dramatically influencing chromatin dynamics; this binding

is discrete and stochastic. To incorporate such noisy behavior

and discreteness, we used a continuous-time, discrete-state

Markov chain to model chromatin accessibility with time-depen-

dent SDTF binding. This model is time inhomogeneous because

the transitions given by SDTF binding/unbinding are time depen-

dent (STAR Methods).

To reflect the biophysical structure of the nucleosome, we

assumed that each nucleosome consists of 14 stepwise un-

wrapping and rewrapping transitions, consistent with structural

data on the number of contact points between the histone and

DNA (Luger et al., 1997), as well as previous nucleosome

unwrapping models (Figure 1B; Cheng et al., 2021; Mobius

et al., 2013). Approximately 147 bp of DNA wrap one and

three-quarter times around the core histone octamer (Luger

et al., 2012), resulting in 14 main non-covalent DNA-histone

contact points (Luger et al., 1997). To fully displace the nucle-

osome from any particular genomic location, multiple steps

may be required. Hence, based on structural and biophysical

measurements performed on single nucleosomes in vitro, we

used a coupled stochastic process ðXðtÞ;NðtÞÞ, where XðtÞ rep-
resents the number of disassembled DNA-histone contact re-

gions, and NðtÞ takes either 0 or 1 to represent the on/off state

of the SDTF binding (Figure 1C). We considered the sponta-

neous, stepwise unwrapping behavior of DNA from a single

histone, which originates at the locations furthest from the

nucleosome dyad (state 7).

Regarding the symmetry of the model, we assumed a one-

sided unwrapping model where DNA unpacks from state 0. Prior

experimental cryo-EM or atomic force microscopy studies have

investigated whether the nucleosome unwraps from one side at

a time or two sides simultaneously. The results suggested that

one-sided unwrapping is more likely because opening of one

nucleosomal end stabilizes the other end (de Bruin et al., 2016;

Konrad et al., 2021; Mauney et al., 2018). In addition, structural

studies of the H1 linker histone have shown that the H1 globular

domain bound directly on the dyad and associated with both
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Figure 1. A stochastic model accounts for nucleosome eviction by dynamic SDTF activity

(A) Immune responses activate SDTFs with different temporal dynamics, ultimately affecting chromatin accessibility.

(B) Schematic for the unwrapping/rewrapping model for nucleosome dynamics under SDTF signaling dynamics.

(C) State configuration of the stochastic nucleosome model, where ai ; bi ; ci ; di represent rate parameters.

See also Figures S1 and S7.
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sides of the linker DNA, whereas the H1 C-terminal domain

attached to just one of the two linker DNA segments (Bednar

et al., 2017). We surmised that the asymmetry of linker histones

may also further promote one-sided asymmetrical unwrapping

in vivo. Although unwrapping and wrapping of the nucleosome

is primarily unidirectional (Bilokapic et al., 2018; Li et al., 2005;

Ngo et al., 2015), we also considered and analyzed the possibility

that it takes place simultaneously at both ends of the DNA (STAR

Methods; Figure S1), and we found that the qualitative behavior

of 1-sided and 2-sided stochastic models were similar. Hence,

we settled on using the 1-sided model in the main results of

this paper.

The amount of energy released by re-establishing hydrogen

bonds between histone and DNA is greater than the energy

released by the straightening of the DNApolymer during unwrap-

ping, so the rates of rewrapping exceed that of unwrapping,

which, in our model, corresponds to setting ai < bi (Tims et al.,

2011). We set the unwrapping/rewrapping parameters as an =

a1h
n� 1½min� 1� and bn = b1h

� n+1½min� 1� with a cooperativity

constant h so that DNA unwraps more easily the more unwrap-

ped it already is. Biophysical and structural measurements on

single nucleosomes support the cooperative and multistep tran-

sitions in DNA unwrapping from the histone (Li et al., 2005; Po-

lach and Widom, 1995; Tims et al., 2011), but the extent of

such cooperativity remains a free parameter that can be later

fit to data. We note that evidence of cooperativity in the literature

is measured in isolated nucleosomes in vitro, whereas our mea-

surements were carried out in the full cellular chromatin

environment.
We then considered the effect of a dynamic signaling protein

that competes for DNA binding with the histone core octamer.

Short periods of DNA accessibility may be stabilized by the bind-

ing of transcription factors when their cognate binding sequence

is present in that stretch of DNA and they are present at suffi-

ciently high concentrations (Klemm et al., 2019). Spontaneous

nucleosome dynamics, also known as nucleosome breathing,

allow transient exposure of nucleosomal DNA, and the binding

of SDTFs provides steric hindrance that occludes the rewrap-

ping of DNA-histone contacts in the nucleosome. The on-state

of the SDTF makes the nucleosome rewrapping parameter dn

much less than bn around the SDTF binding site (Figure 1C),

whereas cn is set to be identical to an. When a histone is fully

evicted, it detaches entirely from the DNA and might not dock

again to the same genomic location. Thus, we assumed that

b14 = d14 = 0 so that state 14 is an absorbing state of XðtÞ.
That is, if XðsÞ = 14 for some s, then XðtÞ = 14 for all t > s. We

also analyzed the alternative assumption that state 14 is non-

absorbing, which represents reattachment of an evicted histone,

and found that the models produced similar behavior (STAR

Methods).

It is known that transcription factor binding operates at a faster

timescale than DNA wrapping or unwrapping (Callegari et al.,

2019). Hence for a given SDTF concentration fðtÞ, we used the

SDTF binding rate konðtÞ = cfðtÞ with a large constant c, and

the unbinding rate koff is proportional to konð0Þ. Indeed, the sto-

chastic system behaves almost identically with any choice of

large c, and this is shown in the STARMethods using a timescale

decomposition argument. For large values of c, the ratio
Cell Reports 40, 111076, July 12, 2022 3
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BF = koff=ðkon + koff Þ approximately determines the fraction of

time the SDTF is unbound. The ratio BF could depend on time

when the SDTF signal is oscillatory, and it can also depend on

the strength of the SDTF input.

In another difference from previous models, we considered

the SDTF binding position in relation to the original nucleosome

dyad. Because the nucleosome encompasses �147 bp of

DNA, and SDTF binding motifs typically stretch 8–10 bp (Stew-

art et al., 2012), the stochastic binding and unbinding of the

SDTF from DNA at the site of its motif is modeled with genome

location-specific resolution by incorporating the relative loca-

tion of binding motifs from the nucleosome dyad. When the

SDTF binds to its cognate motif, it tends to disrupt DNA-his-

tone contacts in its vicinity. The effect of SDTF binding on

the rewrapping parameter is highest near the SDTF binding

site and decreases with distance. See STAR Methods and

Table S1 for a mathematical derivation of statistical quantities,

the definition of the parameters, and the choice of parameter

values of the stochastic process ðXðtÞ;NðtÞÞ

Periodicity of SDTF oscillations affects DNA
accessibility
In inflammation signaling, the importance of signaling dynamics

is well appreciated (Behar and Hoffmann, 2010; Purvis and La-

hav, 2013; Werner et al., 2005). A prominent SDTF that is acti-

vated during immune responses is nuclear factor kB (NF-kB).

For NF-kB signaling, the amplitude (Lee et al., 2014) and duration

(Hoffmann et al., 2002; Sen et al., 2020) of the signal controls

which genes are activated. However, only recently has the

importance of oscillatory versus non-oscillatory signaling been

revealed in remodeling the epigenome (Cheng et al., 2021) rather

than in primary response gene expression (Barken et al., 2005).

Previously published experimental systems involving mutations

of NF-kB feedback regulators allowed comparison of oscillatory

(wild-type [WT]) and non-oscillatory (Mut) NF-kB activity after tu-

mor necrosis factor (TNF) stimulation ofmacrophages (Figure 2A;

Adelaja et al., 2021; Cheng et al., 2021), but there is currently no

experimental system that allows altering the period of NF-kB os-

cillations (Longo et al., 2013). Thus, we used the stochastic

model to examine how the period of SDTF oscillations alters

chromatin accessibility; we analyzed the results of numerical

computations with the probability distribution of the full histone

eviction time.

The period of the oscillation quantitatively affects the time-

course dynamics of chromatin accessibility. We set the cooper-

ativity constant h = 1:3; and we set the unwrapping/rewrapping

parameters as an = 0:2hn� 1; bn = 3h� n+1 for each state n in the

stochastic nucleosome model. For simplicity, we used zero re-

wrapping rates under the SDTF binding, meaning dn = 0 at

each state n. We considered two oscillatory SDTF inputs of

10 min and 60 min half-periods, respectively, that have the

same aggregate signal within the time interval ½0;500� min (Fig-

ure 2B). We sampled 50 time courses of our stochastic model

under each of these two oscillatory inputs, using the Extrande

method (Voliotis et al., 2016), which is a stochastic simulation al-

gorithm for Markov chains with time-dependent transition rates.

The rapid oscillatory SDTF signal with a half-period of 10 min un-

wrapped the nucleosome completely in 19 of 50 samples within
4 Cell Reports 40, 111076, July 12, 2022
500 min, whereas 40 of 50 samples were fully unwrapped by

500 min when the half-period was 60 min (Figure 2C). This result

reflected experimental results where SDTF dynamics of longer

continuous duration resulted in increased nucleosome eviction

(Cheng et al., 2021).

To further analyze this systemmodeled under the two different

dynamic SDTF signals, we described the DNAwrapping process

as a ‘‘success or failure game’’ (Figures S2A–S2C), which can be

analyzed with a geometric distribution. In the case of a cooper-

ative system with h = 1:3, when XðtÞ reaches state 6 or above,

the unwrapping parameters an+1 are greater than the rewrapping

parameters bn so that XðtÞ can easily reach state 14 (state of full

eviction) even without the support of SDTF binding. Hence, suc-

cess ofXðtÞ is reaching state 6, andwe used the probability of the

success to analyze the distinct behaviors of DNA under two

oscillatory inputs.

If nucleosomes are exposed to an SDTF signal at amplitude

10 for 10 min, then only about 2. 5% of nucleosomes reach

state 6 (Figure S2C). Hence, during the on-phase (i.e., SDTF

signal at amplitude 10), nearly 2.5% of DNA segments can suc-

cessfully unwrap from the entire histone octamer under this

rapid oscillation. After the first 10 min of oscillation, when the

SDTF signal is turned off, most remaining nucleosomal DNA

that failed to reach state 10 during the previous on-phases,

rapidly rewraps around the histone because the rewrapping

parameter bn is much greater than the unwrapping parameter

an for n< 6, likely returning back to state 0. Therefore, in the

next on-phase, about 2.5% of the remaining free DNA can be

fully unwrapped, and DNA undergoes this process 25 times

by 500 min. This ‘‘success or failure game’’ under the oscilla-

tory SDTF signal can be described using the geometric distri-

bution Geoð0:025Þ with a success probability of 0.025

(Figures S2A and S2B). Similarly, the full eviction probability

by 500 min under the SDTF signal of 60 min half-period can

be estimated with Geoð0:24Þ because the success probability

is about 24% during the 60 min on-phase. The full eviction

probabilities computed with the geometric distributions

Geoð0:025Þ and Geoð0:24Þ are about 0.47 and 0.7, respec-

tively, which closely estimate the actual eviction probabilities

shown in Figure 2D. The detailed computations of the full evic-

tion probabilities using these two geometric distributions are

shown in STAR Methods.

In our simulations, very fast oscillations of the SDTF signal

did not necessarily render the DNA less accessible. Indeed,

when the half-period was 0.3 s, the SDTF signal is interpreted

as a constant signal with half the amplitude. Therefore, despite

the extremely short on-phase of the oscillation, about 50% of

DNA temporal trajectories were fully unwrapped by 500 min

(Figure 2C bottom), which is higher than when the half-period

was 10 min. Intuitively, this phenomenon occurs because the

optimal scenario for the least unwrapping is based on the

SDTF oscillation frequency matching the relative unwrapping/

rewrapping frequency of the nucleosome. The time evolutions

of histone eviction probability under these three different

SDTF signals are displayed in Figure 2D. See STAR Methods

and Figure S2 for more detailed mathematical analysis about

the full eviction probability under different frequencies of the

SDTF signal.
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Figure 2. Periodicity of SDTF oscillations affects DNA accessibility

(A) Experimental knowledge of SDTF signaling dynamics in single cells (left: two individual single cells; right: hundreds of single cells). Color bar represents

fluorescence of nuclear NF-kB. WT and Mut cells activate NF-kB with different temporal dynamics (Adelaja et al., 2021).

(B–D) Chromatin response to oscillatory SDTF dynamics with different frequency.

(B) SDTF dynamics with rapid (top) or slow oscillation (bottom).

(C) 50 sample traces of DNA dynamics under the oscillatory SDTF inputs of half-period = 10min (top) and 60min (bottom). Red traces reach the fully evicted state,

and black traces do not.

(D) Time evolution of histone eviction probability.

(E–G) Parameter sensitivity under oscillatory versus constant SDTF signals.

(E) Oscillatory and constant SDTF signal inputs.

(F) Full eviction probability versus unwrap parameter cooperativity ðh = 1:3Þ: m represents the fold change increase in unwrapping/rewrapping parameters.

(G) Mean chromatin accessibility distribution at t = 500 min with the oscillatory or constant SDTF dynamics. To model heterogeneous cell environment, we

randomly perturb the system parameters. Coefficient variation (standard deviation/mean) of the distributions under oscillatory SDTF and constant SDTF is 0.35

and 0.12, respectively.

See also Figure S2.
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Oscillatory SDTF inputs can lead to heterogeneous
chromatin accessibility responses
Although our computational investigation of different SDTF

oscillatory frequencies cannot be tested in experimental

systems (because the period is hardwired by the IkBa-NF-kB
negative feedback loop; Longo et al., 2013), we now considered

that the same oscillatory SDTF dynamics may affect different

nucleosomes in a cell differently because of differences in

kinetic parameters determined by location-specific molecular

mechanisms.
Cell Reports 40, 111076, July 12, 2022 5



Article
ll

OPEN ACCESS
To explore the capacity for differential responses of various

chromatin regions to the same dynamic signal, we scanned

the nucleosome unwrapping/rewrapping parameters and

computed the probability of histone eviction using the stochastic

model under non-oscillatory or oscillatory inputs with a fixed

period (Figure 2E). We found that the system was more sensitive

to the unwrapping/rewrapping parameters under oscillatory than

non-oscillatory SDTF dynamics (Figure 2F). We used the same

parameters as used in previous simulations, and they are shown

in Table S1.

Under oscillatory and constant SDTF dynamics, we calculated

the probability of histone eviction at T = 360 min after multiplying

each of the unwrapping/rewrapping parameters an and bn by a

fold change parameterm (Figure 2F). Under oscillatory SDTF dy-

namics, the full DNA eviction probability rapidly grows for m ˛
½2;4�. In fact, this graph has a sigmoidal shape, indicative of a

higher sensitivity with respect to fold change increases, so that

the same oscillatory input can lead to widely different responses

for different parameter values. In the STAR Methods, using sim-

ple matrix exponentials, we explored sensitivity analysis with our

stochastic model under constant transition rates and time-

dependent oscillatory transition rates.

We may speculate that the greater variability of chromatin

accessibility under an oscillatory SDTF input allows more cell-

to-cell variability of cell fate decisions. For instance, if the cell

type is determined by a thresholdmean accessibility at particular

chromatin regions, then an oscillatory SDTFmay produce type A

and type B, whereas a non-oscillatory SDTF may more consis-

tently convert cells to type B (Figure 2G).

Eviction probability profiles characterize the in vivo

nucleosome unwrapping process
We next sought to use the nucleosomemodel to investigate how

the location of the SDTF binding site relative to each nucleosome

might affect nucleosome eviction. We utilized ATAC-seq data

from an IkBa knockout mutant macrophage experimental sys-

tem (Cheng et al., 2021) at a 0-h baseline and 4 h after NF-kB

had been activated by TNF stimulation. Using paired-end

ATAC-seq to separate nucleosomal read fragments from nucle-

osome-free read fragments, we calculated nucleosome dyad

positions across the genome (Schep et al., 2015; Figure S3).

We assessed nucleosome dyad locations relative to kB sites

before and after stimulation and observed a reduction in the

number of kB site-associated nucleosomes after NF-kB activa-

tion, but this reduction depended on the distance between the

kB site and the nucleosome dyad (Figure 3A).

To understand why the location of the binding motif relative

to nucleosome dyad position affects nucleosome eviction, we

added mechanistic detail to the nucleosome model. We al-

lowed the rewrapping parameters to depend on the SDTF

binding site location along the 147-bp stretch of DNA that en-

compasses the nucleosome. Hence, DNA locations within a

certain range around the SDTF binding site have a rewrapping

parameter dn that is smaller than bn. For simplicity we used a

Gaussian formula, which allowed us to center the effect at

the SDTF binding site and control the range of its influence.

We used the formula dn = bnð1 � expð� ðs � nÞ2 =2s2ÞÞ,
where s is the SDTF binding location, and the standard devia-
6 Cell Reports 40, 111076, July 12, 2022
tion s represents the SDTF effect range (Figure 3B). In this way,

dnzbn for a state n far from the binding site s, and dnz0 when

n is close to s (Figure 3C).

In the nucleosomemodel, the unwrapping and rewrapping pa-

rameters may describe cooperativity within the unwrapping

mechanism, meaning that every unwrapping step facilitates

further unwrapping (i.e., an increases and bn decreases in n). If

the system is non-cooperative, then each state n has constant

parameters an and bn. Prior evidence suggests that the unwrap-

ping process may be highly cooperative, either because of an

inherent cooperativity of contact points within the nucleosome

or because of the collaborative mechanism between DNA bind-

ing proteins that promote nucleosome eviction (Miller and Wi-

dom, 2003). To achieve such behavior, the unwrapping and

rewrapping parameters were modeled as an = a1h
n� 1 and

bn = b1h
� n+1 for each n with cooperativity constant h. The spe-

cial case of h = 1 indicates non-cooperative behavior.

Although the unwrapping parameters are increasing, the

average timescales for site exposure from state n to state n+ 1,

or from state 0 to state n, still become progressively longer, as

observed experimentally (Tims et al., 2011). This is because the

opening process from state n to state n+ 1 could involve multiple

steps of unwrapping and rewrapping. For example, one possible

trajectory of DNA from state 5 to state 6 consists of the path 5/

4/ 3/ 4/ 5/ 6 (STAR Methods).

We then tested which binding location is optimal for nucleo-

some eviction under constant SDTF activity. SDTF binding mo-

tifs were distributed across the DNA strand in the range

[�100 bps, 100 bps] centered at the histone dyad (state 7 in

Figure 3B). We assumed that the SDTF binds at one of the

states s in {�3,�2, .,16,17}, which is an extended range

from the original state space {0,1, .,14} (Figure 1C), so that

we can consider SDTF binding motifs lying slightly outside

the nucleosome. Then, for each distance relative to the nucle-

osome dyad, computed as j7 � sj310 (bp), we calculated the

full eviction probability. The resulting behaviors under various

levels of cooperativity of the parameters an and bn are distinct

because the optimal binding site is either in the center of the

nucleosome or toward the extremes. Under non-cooperative

rates ðh = 1Þ, the optimal binding site is at the nucleosome

dyad so that the full eviction probability is symmetric about

the relative distance between the SDTF binding site and dyad

(Figure 3D). In contrast, when the parameters model coopera-

tive behavior ðh > 1Þ, the optimal site is closer to the unwrap-

ping edge, and, hence, the full eviction graph has a peak close

to this edge (Figure 3E left). This is because when the first few

contacts between DNA and histone are unwrapped, the coop-

erativity of the system facilitates unwrapping of the remainder.

After averaging multiple cells, because of the symmetry of nu-

cleosomes unwrapping from either end, the probability-binding

site plot has a center dip (Figure 3E, right). Given such different

patterns of eviction probability versus the distance of the SDTF

binding site from the dyad, we termed the graph the ‘‘eviction

probability profile’’ and concluded that it may be used to char-

acterize the in vivo nucleosome unwrapping process. In STAR

Methods and Figure S4, we provide a mathematical analysis

of the effect of the SDTF binding site on the probability of

nucleosome eviction.



-100-80 -60 -40 -20 0 20 40 60 80 100
0

50

100

150

200

250

-100 -80  -60  -40  -20 0 20 40 60 80  100
0

50

100

150

SDTF effect with different range parameter 

2 4 6 8 10 12
0.2

0.4

0.6

0.8

1
2 4 6 8 10 12

0.2

0.4

0.6

0.8

1

-100 -50 0 50 100
0.2

0.4

0.6

0.8

1

Pr
on

(X
(T

)=
14

)
-100 -50 0 50 100

0.2

0.4

0.6

0.8

1

Pr
on

(X
(T

)=
14

)

D

A

Unwrap from the left edgeE
Average

50%

50%

Histone

DNA

Histone

DNA

Full eviction probability under cooperative unwrapping/rewrapping rates

Unwrap from the right edge

-100 -50 0 50 100
Relative distance to dyad(bps)

0.2

0.4

0.6

0.8

1

Pr
ob

(X
(T

)=
14

)

Full eviction probability under non-
cooperative unwrapping/rewrapping rates

State 0

State 14Pr
ob

(X
(T

)=
14

)

State n

Relative distance to dyad(bps)

B C

R
ew

ra
pp

in
g 

ra
te

 

I B mutant – 0hrs I B mutant– 4hrs

cl
os

es
t m

ot
if 

pe
r n

uc
le

os
om

e

NF B motifs

N
uc

le
os

om
e 

co
un

t

Relative distance to dyad(bps) Relative distance to dyad(bps)

-100 -50 0 50 100
Relative distance to dyad(bps)

0

0.1

0.2

0.3

0.4

histone 
dyad

43 5 6 7 8
3 4 5 6 7 8 9 10… 3 4 5 6 7 8 9 10

3 4 5 6 7 8 9 10
SDTF

…

43 5 6 7 8 9
3 4 5 6 7 8 9 10histone 

dyad

Relative distance = |7-binding site|× ( bps)

9

……

: SDTF effect

1 3 5 7 9 11 13
0

0.2

0.4

0.6

0.8

1

 with       =5
 with      =0.5

State

   

dyad dyad

Figure 3. Modeling SDTF binding sites, range of SDTF effect, and cooperativity in unwrapping steps reveals potential eviction probability
profiles

(A) Summary of NF-kBmotifs adjacent to nucleosome dyads. Shown are NF-kBmotifs in relation to each nucleosome dyad called by NucleoATAC (Schep et al.,

2015) 0 h and 4 h after TNF stimulation in male mouse bone marrow-derived macrophages (BMDMs) (no replicates used, n = 1 for each time point, validation

experiment performed in Figure 6). Locations shown have an NF-kB motif ±100 bp of the nucleosome dyad.

(B) SDTFs locally affects the DNA-histone contact regions near the SDTF binding site.

(C) The range parameter s determines how widely the SDTF affects the rewrapping parameters.

(D) Computation of the full eviction probability via the stochastic model shows that motifs at the dyad promote greater nucleosome unwrapping probability under

a non-oscillatory SDTF signal and non-cooperative open/close parameters.

(E) The full eviction probability ismaximal at the SDTF binding location between the edge and dyad under cooperative unwrap/rewrap parameters. Assuming 50%

of right edge unwrapping and 50% of left edge unwrapping, the average full eviction probability displays a center valley.

See also Figures S3, S4, and S6.
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The model predicts cooperativity based on eviction
probability profiles
The shape of the eviction probability profile is altered not only by

wrapping cooperativity (parameter h) but also by the range of the

SDTF binding effect (parameter s), which is likely to be SDTF

specific. If the range is wider, then all rewrapping parameters

dn are equally affected so that the probability plot becomes

more flattened. We first examined computationally how different

values of the cooperativity parameter h and the SDTF range

parameter s could alter chromatin accessibility (Figure 4A). We

tested multiple potential values of this range parameter as well

as cooperativity parameters h = 1 (non-cooperative), 1.1, and

1.2 (high cooperativity). We also used s2 = 2:5; 10 and 50 for

the range of the SDTF binding effect. It is notable that, for higher

cooperativity and narrower SDTF binding effect range, the plot of

full DNA eviction probability displays a clearer center valley.

Using this relation between the model parameters and the

eviction probability profile, we next compared these computa-

tional results with experimental measurements. We fit model pa-

rameters to data on nucleosome eviction probabilities given the

SDTF bindingmotif location relative to the dyad. The parameter s
corresponds to the standard deviation of the Gaussian curve

describing the influence of the SDTF binding, in units of number

of binding sites. Because these binding sites are approximately

10 base pairs away from each other, a value of s = 2 would

correspond to a standard deviation of around 20 bp or a range

of 40 bp around the SDTF binding site.

We returned to the time-course experimental data from mac-

rophages responding to TNF stimulation (Figure 3A). Because

ATAC-seq data can provide an estimate of the nucleosome po-

sitions, we assigned nucleosomes to their nearest TSS at the

baseline time point 0 h and tracked whether the nucleosomes

matching the same TSS changed in position or disappeared at

the later time point of 4 h, quantified by having fewer or no nucle-

osomes mapping to that TSS (STAR Methods). Using the differ-

ence of the nucleosome counts between two time points, we

computed experimental full nucleosome eviction probability for

each relative motif distance by 240 min after TNF stimulation as

ProbðXð240Þ = 14Þ = 1� ProbðXð240Þ<14Þz1

� # of nucleosome at 4hr

# of nucleosome at 0hr
:

Cell Reports 40, 111076, July 12, 2022 7
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Figure 4. Fitting the model eviction probability profiles to SDTF binding location data provides evidence of cooperativity and estimates

model parameters
(A) Probabilities of full eviction with respect to relativemotif position from the nucleosome dyad and SDTF binding effect range for themacrophage system under a

non-oscillatory NF-kB signal. Three different ranges (s2 = 1:5; 10; and 50) and cooperativity parameters (h = 1; 1:1 and 1:2) are chosen.

(B) Left: nucleosome counts from male mouse BMDM ATAC-seq samples under non-oscillatory TNF-induced NF-kB activity at NF-kB motifs at 0 h and 4 h

(no replicates used, n = 1 for each time point, validation experiment performed in Figure 6). Right: full eviction probability versus SDTF binding locations. Shown

are the experiment-based eviction probability profile (red curves) and model-based eviction probability profile before and after parameter fitting by gradient

descent (blue curves).

(C) Full DNA eviction probability under a steady NF-kB input signal of different durations. Red: experimental measurements shown in Cheng et al. (2021). Blue:

simulated values using the stochastic model with the fitted parameters in Table S1.

(D) Left: fold change (WT/Mut) of resulting chromatin accessibility after activation of SDTFs with different dynamics. Two biological replicates were used for each

genotype (n = 2). Right: reproduction of the experimental measurements using the stochastic nucleosome model under the fitted parameters listed in Table S1.

Counts are converted to proportion because of simulation of a different number of nucleosome locations.

(E) Left: variance in chromatin accessibility across genomic locations at 4 h in WT and Mut cells, as measured by bulk ATAC-seq. Two biological replicates were

used for each genotype (n = 2). Right: reproduction of the experimental measurements using the stochastic nucleosome model.

See also Figure S5.
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We used these data to fit values of the different parameters in

our model by approximating an initial set of parameters, followed

by gradient descent (Courant, 1994) to find the optimal param-

eter set. Fitted parameters included the cooperativity parameter,

SDTF range parameter, unwrapping/rewrapping parameters,

and SDTF binding/unbinding rates. For IkBa knockout macro-

phages treated with TNF for 4 h (Cheng et al., 2021), fitting these

parameters resulted in the best-fit eviction probability profile

(Figure 4B; see STAR Methods for additional details and

Table S1 for the resulting parameter values.) Based on the

shape of the fitted eviction probability profile, we found that

the nucleosome unwrapping/rewrapping parameters are likely

cooperative. The range of SDTF effect was fitted at s = 2:1,

which corresponds to a radius of around 20 bp from the SDTF

binding site or 40 bp around the binding site. The initial unwrap-

ping parameter a1 = 0:16 indicates that the first DNA unwrap-

ping from the fully wrapped configuration takes approximately
8 Cell Reports 40, 111076, July 12, 2022
1=0:161 = 6:25 min on average. See Figure S5 for an analysis

of the error between the eviction probability profiles of the data

and the model. Recent studies have shown that nucleosome

eviction is likely to take place under a long NF-kB signal pulse

of approximately 120min but that it rarely occurs under a shorter

NF-kB signal pulse of less than 45 min (Cheng et al., 2021), and

similar observations have been made in fibroblasts after 60 min

and 150 min, respectively (Sen et al., 2020). These observations

can be reproducedwith our stochasticmodel under the fitted pa-

rameters (Figure 4C).

To further compare the model with experimental data, we

examined several properties of the chromatin locations. We hy-

pothesized that the ATAC-seq distributions across genomic lo-

cations in WT and Mut macrophages could be reproduced by

simulating the stochastic model using the fitted parameters.

Indeed, under fitted parameter values (Table S1), simulations

of the stochastic model reproduced two experimental findings



A

C D

B

Figure 5. Consistency of the eviction probability profiles under more general parameter settings
(A) Generalization of the model where SDTF binding rate konðsÞ is a function of the binding location s.

(B) Resulting eviction probability profiles based on the binding rates illustrated in (A).

(C) Generalization of the model where the SDTF binding rate konðnÞ is a function of the DNA opening state n.

(D) Resulting eviction probability profiles based on the binding rates illustrated in (C).

See also Figure S6.
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(Figures 4D and 4E). First, comparing the two systems, WT and

Mut, allowed us to assess the distribution of stimulus-induced

fold changes for each genomic location that are attributable to

differences in signaling dynamics (Figure 4D). Second, the two

experimental systems displayed differences in the amount of

post-stimulation chromatin accessibility among genomic loca-

tions, which was recapitulated by the model (Figure 4E). We

also computed the total variation distance, one of the most com-

monmeasurements for similarity of given distributions (Levin and

Peres, 2017), between the two experimentally measured distri-

butions (STAR Methods) and found it to be 0.25. The distance

between the two modeled distributions was 0.22, showing that

modeled difference between the DNA accessibility under WT

and Mut signals was similar to that from experiments. This com-

parison with experimental data helped validate the dynamic

rates of DNA wrapping and unwrapping in the model.

Eviction probability profiles under more general
parameter settings
We next found that the eviction probability profiles showed

consistent shapes even under more biophysically nuanced

SDTF binding parameters kon. We first allowed konðsÞ to vary

as a function of the binding location s. We set konðsÞ to be small-

est at the most inaccessible site, the nucleosome dyad (Fig-

ure 5A). Under such spatially inhomogeneous SDTF binding

rates, the full eviction probability profile has the same character-

istic shape as before; in the cooperative case, one can see two

peaks, and in the non-cooperative case, there is only a single

peak (Figure 5B). Second, we assumed that the SDTF binding

rate konðnÞ depends on the state n of the nucleosome for a fixed

SDTF binding location s. It is reasonable to assume that, when

the SDTF binding location is exposed by DNA unwrapping, the
SDTF has a higher binding rate than when the binding site is

buried by wrapped DNA (Figure 5C). Under this general setting,

the eviction probability profile robustly showed the characteristic

shapes for he cooperative and non-cooperative cases (Fig-

ure 5D). The consistency of the model predictions to different

parameter assumptions supports the robustness of the behav-

iors generated by our stochastic epigenome model as shown

in Figure S6 and is mathematically verified in the STARMethods.

Fitting the model to a different dataset results in
consistent behavior
We hypothesized that the model parameters associated with

nucleosome dynamics should be consistent in a second experi-

ment with the same SDTF activated but by a different ligand.

We thus stimulatedwild-typemacrophageswith lipopolysaccha-

ride (LPS) for 4 h to generate non-oscillatory NF-kB dynamics

(Figure 6A), analogous to the non-oscillatory NF-kB dynamics

generated by TNF stimulation in IkBa knockout mutant macro-

phages. We again performed paired-end ATAC-seq and identi-

fied the location ofNF-kBbinding sites relative to the nucleosome

dyad (Figure 6B). Comparing nucleosome positions at 0 h and 4 h

resulted in the experimental eviction probability profile, and the

mathematical model was again fit to these data.

All experimentswere performed inmacrophages, but LPS stim-

ulation may activate greater amounts of NF-kB than TNF. Hence,

we first fit the model to the LPS-stimulated dataset with all of the

same parameters obtained from the previous fit to TNF-simulated

data but slightly adjustedSDTF unbinding fraction (BF) reflecting a

greater amount of NF-kB. Remarkably, the model closely repro-

duced the eviction probability profile given by the LPS-stimulated

dataset (Figure6C).Wenextfit theevictionprobability profile to the

LPS-stimulated data using gradient descent, and the resulting
Cell Reports 40, 111076, July 12, 2022 9
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Figure 6. Stimulation of macrophages with LPS leads to consistent modeling results

(A) Schematic of SDTF activation in response to TNF or LPS. TNF stimulation results in NF-kB activity, whereas LPS stimulation results in NF-kB and IRF activity.

(B) Top: experimental and simulated nucleosome counts after LPS stimulation for NF-kB-associated nucleosome locations after 0 h and 4 h (no replicates used, n

= 1 for each time point). Bottom: analogous counts for IRF-associated nucleosome locations (n = 1 for each time point).

(C) Eviction probability profiles associated with LPS-induced NF-kB activity, using the same model parameters as the TNF-induced data (green) and direct

fit (blue). *All parameters are the same as the fitted parameters with the TNF data (Figure 4) except for the SDTF unbinding fraction, BF.

(D) Eviction probability profiles associated with LPS-induced IRF3 activity.

See also Figure S5.
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parameters closely matched the parameters obtained from fitting

to the TNF-stimulated dataset (Figure 6C; Table S1). We found a

remarkable similarity in the estimated nucleosome unwrapping

and rewrappingparameters aswell as in the rangeofNF-kBeffect.

For example, the cooperativity constant is estimated at h = 1:4

with these new data, whereas it was measured at h = 1:35 with

the previous TNF-stimulated data. This value is exponentiated to

specify the unwrapping parameters at each step, and even at

step 13, this difference gives a fold change in parameters of only

ð1:413 3 0:15Þ=ð1:3513 3 0:16Þ = 1:48.

The unwrapping/rewrapping parameters and the cooperativity

may be specific to a set of nucleosomes, but the range of the

SDTF effect may be SDTF specific. We therefore next asked to

what extent the eviction probability profiles remained consistent

under another SDTF. Interferon-regulatory factors (IRFs) are also

activated by LPS (Figure 6A), affecting chromatin accessibility

and enhancer formation at genomic positions containing IRF

binding motifs (Cheng et al., 2021). We mapped the locations

of IRF motifs in relation to the nucleosome dyads estimated
10 Cell Reports 40, 111076, July 12, 2022
from ATAC-seq data (Figure 6B), and we plotted the eviction

probability profile by comparing nucleosomes before stimulation

and 4 h thereafter. We again noted a double-peaked profile sug-

gestive of cooperativity in nucleosome unwrapping/rewrapping

parameters. To quantify this, we fit the stochastic model to the

profile and obtained new parameter estimations for these IRF-

affected epigenomic regions (Figure 6D; Table S1). A key differ-

ence between the parameters previously fit to NF-kB data was

the unwrapping parameter an = 0:07; compared with an = 0:15

for the previousmodel. Because NF-kB and IRF bind to their mo-

tifs with distinct biophysical characteristics, stereochemistries,

and to different locations of the genome, our results suggest

that such differences also determine their nucleosome eviction

characteristics.

The eviction probability profile is a fingerprint for kinetic
features of nucleosome dynamics
We asked how different model parameters might affect the fea-

tures of the eviction probability profile, and we found that



Figure 7. The eviction probability profile is a fingerprint for kinetic features of nucleosome dynamics

The geometric characteristics of the eviction probability profile has one-to-one correspondence to the parameters of the stochastic epigenome model. For a

given location-specific nucleosome eviction profile, this correspondence can be used to identify epigenetic features such as the DNA unwrapping parameter, the

SDTF binding fraction, and cooperativity.

See also Figure S5.
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changes in model parameters could be directly mapped to

changes in particular geometrical characteristics of the eviction

probability profile (Figure 7). The unwrapping and rewrapping

rates vertically translate the eviction probability profile because

larger unwrapping parameters lead to larger eviction probabili-

ties. Adjusting the SDTF unbinding fraction BF stretches the

peaks up and down because the strength of the SDTF binding ef-

fect is determined by the SDTF binding fraction parameter (see

STAR Methods and Figure S7 for a mathematical proof for this

fact). More DNA-histone contact regions are influenced when

the range of the SDTF binding effect is wide. Hence, the range

parameter s changes the depth of the center dip in the eviction

probability profile. The other parameter, BF, controls the depth

of the center dip as well, but a small s particularly can create pla-

teaus at both ends because the DNA around ± 100 relative bp is

never affected by the SDTF binding when the effect range is nar-

row. The optimal SDTF binding location tends to shift toward the

edges under strong cooperativity so that the distance between

two peaks in the eviction probability profile increases as the co-

operativity parameter h increases. Based on this one-to-one cor-

respondence, we can systematically find a good initial prediction

for the parameter fitting to given data, and this prediction can be

used as an initial condition of the gradient descent searching al-

gorithm for finer parameter fitting.

DISCUSSION

Our study pairs stochastic modeling and epigenomic chromatin

accessibility measurements from primary cells to investigate the

biophysical regulatory rules of histone octamer-DNA interactions

that determine nucleosome positioning. Using probability the-

ory, we described nucleosome eviction as a ‘‘success or failure

game’’ scheme because DNA has a chance of full eviction only

under the on-phase of the SDTF signal. This scheme revealed

the role of oscillatory inputs in nucleosome eviction and hetero-

geneity in DNA accessibility under oscillatory SDTF dynamics.

Nucleosome positioning data provided the nucleosome eviction
probability profile as a function of SDTFmotif location, and fitting

model parameters to the eviction probability profile revealed

quantitative features of nucleosome dynamics: (1) 30–40 bp of

DNA-histone contacts around the SDTF binding site are disrup-

ted, (2) the expected initial DNA unwrapping time from the fully

wrapped state is about 7 min, and (3) evidence of cooperativity

in the DNA unwrapping steps. Supportive of this model, these

quantitative features of our model are consistent with previous

experimental observations (Cheng et al., 2021).

Naturally, as with all mathematical models, the in vivo cellular

system is more complex than the model describes, and our

model is necessarily an abstraction describing one aspect of

the dynamic epigenome that results when mammalian cells

encounter an inflammatory threat. Nucleosome dynamics at

each location along the genome are influenced by multiple fac-

tors, including, but not limited to, the stiffness of the local

DNA, the histone marks or histone variants that are present,

the density of nucleosomes at that region, and the binding motif

location in relation to the position of the nucleosome (Brahma

and Henikoff, 2020). However, our model is able to assess

several characteristics of nucleosome dynamics that may

govern the rules and parameter rates at which nucleosomes

are evicted across the epigenome. These predictions help

formulate hypotheses that are comparedwith time course epige-

nomic sequencing data, which allows selection of one of the hy-

potheses or establishment of parameter ranges.

Notably, the model can be used to evaluate numerous

different stimulus-response systems, including those with

different SDTFs activated (Calderon et al., 2019), or different

cell types and genomic locations that may have different kinetic

rates governing the unwrapping and rewrapping of the nucleo-

some. Here we focused on immune responses and the resulting

epigenome of innate immune macrophages, but the modeling

approach can be applied to other contexts as well where cells

encounter an inflammatory signal that produces stimulus-

induced epigenomic changes (for example, cancer cell plasticity

during immunotherapy). For innate immune responses in
Cell Reports 40, 111076, July 12, 2022 11
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particular, the variation in the baseline epigenome that results

from a prior exposure, rather than variation in genetically

encoded receptors like for T and B cells, may be a critical

component of innate immune memory and response to future

inflammatory threats (Netea et al., 2016). Thus, a predictive

mechanistic understanding of howSDTF activity can evict nucle-

osomes can guide further investigation into epigenomic reprog-

ramming events induced by inflammation.

The development and parameterization of this mechanistic

model has several implications. First, the model may allow pre-

dictions of nucleosome eviction probabilities in response to

any SDTF and any activation dynamics. Second, because the

relationship of the motif location and nucleosome dyad corre-

lates with eviction probability, the model can make a prediction

on the probability for nucleosome eviction in a location-specific

manner. Third, the model arrives at biological insights related to

the nucleosome parameters themselves; by comparing pre- and

post-stimulation nucleosome distributions, we can calculate

experimental nucleosome eviction probabilities and fit themodel

to estimate the degree of cooperativity within the nucleosome

and the range of effect of SDTF binding on disrupting nucleo-

somal contact points.

This stochastic model describes the nucleosome, which is the

fundamental unit of chromatin containing multi-step dynamic

processes, and serves as a starting point for describing other ep-

igenomic features (Bilokapic et al., 2018; Eslami-Mossallam

et al., 2016; Hall et al., 2009; Henikoff, 2016). Future work incor-

porating other key elements of nucleosome dynamics, such as

the structure of nucleosome arrays and the effect of histone

modifications, or behaviors such as nucleosome sliding or roll-

ing, which we have not yet considered here, may reveal further

insights. Although here we use an optimization approach to

analyze this model topology and initial conditions with respect

to the data, model parameters can also be further trained with

machine learning approaches that incorporate additional layers

of epigenomic data as training data for the parameters to incor-

porate more elements of the epigenomic complexity that exists

in vivo. Our modeling framework and these further possibilities

support the feasibility of combining biophysically detailed mech-

anistic models of epigenetic processes, with NGS epigenome-

wide measurements to characterize kinetic rules controlling

cellular responses to inflammation.

Limitations of the study
Our stochastic model describes one process of how epigenomic

statesmay be altered: through activation of SDTFs and the effect

of their DNA binding in disrupting the positions of nucleosomes.

Within cells, however, other proteins and enzymes also play key

roles in how readily nucleosomes are evicted; for example,

deposition of histone modifications, the presence of histone

chaperones, or histone variants substituting for canonical his-

tone subunits. The activity of these other processes likely varies

across different cell types and different cell states; for example,

in cancer cells versus immune cells versus epithelial cells. The

models we present here, although biophysically detailed, still

represent an abstraction of a more complex interplay among

many chromatin remodeling proteins. In another system, an in-

crease in the estimated cooperativity, or range of SDTF effect,
12 Cell Reports 40, 111076, July 12, 2022
may suggest not simply a direct biophysical change in the

modeled components but could also indicate the activity of un-

modeled proteins. Using mathematical models such as those

described here to estimate such parameters across different

experimental systems will suggest further hypotheses that moti-

vate continual inclusion of additional mechanisms in future

models.
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derived frommale C57BL/6 mice, in DMEM/10% FBS +30% L929 supernatant for a total of 10 days. BMDM data was obtained from
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paired-end resequencing of the same libraries that had been sequenced single-ended in Cheng et al. (2021), so no additional mice

were used for this paper. As described in Cheng et al. (2021), sex-matched bone marrow-derived macrophages (BMDMs) were pre-

pared by culturing bone marrow monocytes from femurs of 8-12-week-old mice in DMEM/10% FBS +30% L929 supernatant me-

dium using standard methods (Cheng et al., 2021; Adelaja et al., 2021). BMDMs were re-plated in experimental dishes on day 4,

and stimulated on day 7 with 10ng/mL murine TNF (Roche 11271156001) for 4 h. For iMP-derived macrophages (iMPDMs), cells

were replated into 6cm plates with new media on day 7, at a density of �20k cells/cm2. On day 10, cells were stimulated 100ng/

mL lipopolysaccharide (LPS, Sigma Aldrich) for 4 h.

METHOD DETAILS

ATAC sequencing
Control and stimulated immortalized myeloid progenitor derived macrophages (iMPDMs) were dissociated with Accutase (Thermo

Fisher Scientific), and 50,000 cells were used per sample. Cell membranes were lysed using cold lysis buffer (10mM Tris-HCl pH7.5,

32 3mMMgCl2, 10mMNaCl and 0.1% IGEPAL CA-630). Nuclei were pelleted by centrifugation for 10 min at 500 x g and suspended

in transposase reactionmixture (25 mL of 2X TDBuffer (Illumina), 2.5 mL of TD Enzyme 1 (Illumina), and 22.5 mL of nuclease-free water),

and the transposase reaction was performed for 30 min at 37C in a thermomixer shaker. DNA was purified using MinElute PCR pu-

rification kit (QIAGEN, Hilden, Germany). Libraries were prepared for sequencing using Nextera DNA Library Preparation Kit (Illumina,

FC-121). The libraries were purified usingMinElute PCRpurification kit (QIAGEN) and quantified using KAPA Library Quantification Kit

(KAPA Biosystems). Libraries were sequenced paired end 2 3 100 on Illumina Novaseq.

Stochastic model for nucleosome accessibility
Stochastic modeling

Chromatin accessibility under a signal dependent transcription factor (SDTF) signal can be modeled as a non homogeneous time

Markov process.

ð0;0Þ !
b1

a1
ð1;0Þ !

a2

b2
/!

ar

br
ðr;0Þ !

ar + 1

br +1

/!
a13

b13
ð13; 0Þ /

a14 ð14;0Þ

konY[koff !
c1

d1
konY[koff !

c2

d2
/!

cr

dr
konY[koff !

cr + 1

dr +1

/!
c13

d13
konY[koff /

c14
konY[koff

ð0;1Þ ð1;1Þ ðr;1Þ ð13; 1Þ ð14;1Þ

(Equation 1)

where kon = konðtÞ is a function of time, which is proportional to the concentration of the SDTF at time t.

Let ðXðtÞ;NðtÞÞ be a 2-dimensional Markov process defined on the state spaces shown in (Equation 1). XðtÞ ˛ f0; 1;.;14gmodels

the chromatin accessibility as state 14 represents the fully unwrapped nucleosome, while state 0 represents the fully wrapped nucle-

osome. The status of SDTF is modeled with NðtÞ ˛ f0;1g as NðtÞ = 1 means an SDTF binds to DNA, and otherwise NðtÞ = 0 means

that no SDTF is bound to DNA at time t. We enumerate the state space as

fð0;0Þ; ð1; 0Þ;.; ð14; 0Þ; ð0; 1Þ;.; ð14; 1Þg;
so that for i ˛ f1; 2.; 15g the i th state is ði � 1; 0Þ and i + 15 th state is ði � 1;1Þ. The infinitesimal probability change is described as

for n ˛ f1;2;.;14g,
PðXðt + DtÞ = njXðtÞ = n � 1; NðtÞ = 0Þ = an;
PðXðt + DtÞ = njXðtÞ = n � 1; NðtÞ = 1Þ = cn; and

for n ˛ f0;1;.;13g,
PðXðt + DtÞ = n � 1jXðtÞ = n; NðtÞ = 0Þ = bn
PðXðt + DtÞ = n � 1jXðtÞ = n; NðtÞ = 1Þ = dn:

Probability density function, average, and the full eviction probability. Let fðtÞ be the SDTF dynamics. Suppose that the SDTF

binding rate konðtÞ = cfðtÞ for some constant c> 0. We first assume that konðtÞhkon is a constant function. LetQ be the transition rate

matrix of the process ðXðtÞ;NðtÞÞ. Let states n andm be such that n = ðn1;n2Þ andm = ðm1;m2Þwhere the first entry is the state of X

and the second entry is the state of N. Then
e2 Cell Reports 40, 111076, July 12, 2022
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QnmðtÞ =

8>>>>>>>>><
>>>>>>>>>:

an1 when n1 + 1 = m1 and n2 = m2;

bn1 when n1 � 1 = m1 and n2 = m2 = 0 for n1 < 14;

dn1 when n1 � 1 = m1 and n2 = m2 = 1;

kon when n1 = m1;n2 = 0 and m2 = 1;

koff when n1 = m1;n2 = 1 and m2 = 0;

�
X
ksn

Qn;k when n = m;

0 otherwise:

(Equation 2)

Then the joint probability density pðtÞ of ðXðtÞ;NðtÞÞ satisfies the master equation

d

dt
pðtÞ = pðtÞQ; (Equation 3)

regarding pðtÞ as a row vector. Hence pðtÞ = meQt where m is the initial distribution, and eQt is the matrix exponential defined as

eQt =
PN

n = 0
Qntn

n! . Let U be the matrix each column of which is a right eigenvector of Q and let D be the diagonal matrix such that

Dii = � li where � li is the i th eigenvalue of Q. By Perron-Frobenius theorem, � 1% � lk %0 for each k. Then Q is diagonalized

as Q = UDU� 1. Then

pðtÞ = UeDtU� 1 = Udiag
�
e� l1t; e� l2t;.; e� l30t

�
U� 1:

We assume that m = ð1;0;.; 0Þ as the process is supposed to start at ðXð0Þ;Nð0ÞÞ = ð0; 0Þ. Then for a state i, the probability den-

sity pði; tÞ can be represented as

pði; tÞ =
X
k

U1kU
� 1
ki e� lk t (Equation 4)

If konðtÞ is a binary oscillation function with the half-period T such as

konðtÞ =

�
kon if t ˛ ½2nT ; ð2n+ 1ÞTÞ for some n
0 if t ˛ ½ð2n+ 1ÞT ; ð2n+ 2ÞTÞ for some n;

then the transition matrix Q can be defined differently on each period. Let Qon and Qoff be the transition matrix corresponding to the

interval ½2nT ; ð2n + 1ÞTÞ and ½ð2n + 1ÞT ;ð2n + 2ÞTÞ, respectively. Then for t ˛ ½2nT ;ð2n + 1ÞTÞ, the probability density function pðtÞ is
given as

pðtÞ = meQonTeQoffT/eQonTeQoffTeQonðt� 2nTÞ = m
�
eQonTeQoffT

�n
eQonðt� 2nTÞ: (Equation 5)

If t ˛ ½ð2n + 1ÞT ; ð2n + 2ÞTÞ, then
pðtÞ = meQonTeQoffT/eQonTeQoffðt�ð2n+ 1ÞTÞ = m

�
eQonTeQoffT

�n
eQonTeQoffðt�ð2n+ 1ÞTÞ: (Equation 6)

Hence the full eviction probability by time T is PðXðTÞ = 14Þ = pð15; TÞ+pð30; TÞ, and the mean accessibility at time T isP15
i = 1ði � 1Þðpði;TÞ +pði + 15;TÞÞ.
To incorporate the effect of SDTF binding, we set the rewrapping parameter with SDTF binding as dn = bn

�
1 � exp

�
� ðn� sÞ2

2s2

��
,

where s is the position of the binding motif and s represents the range of SDTF effect. This similarity between the structure of the

stochastic model and what can be measured in biological experiments allowed us to evaluate theoretical predictions using genomic

sequencing data of in vivo cellular immune response systems.

Since XðtÞ represents the accessibility state at any time t; the mean nucleosome accessibility can be computed asP14
n = 0nProbðXðtÞ = nÞ. Also, since full eviction is reached at state 14, we could compute the probability of eviction by time T by

calculating Prob ðXðTÞ = 14Þ.
Model reduction. In this section, we show that the behavior of the SDTF binding, NðtÞ, in the stochastic model (1) is almost

determined by BF = koff
kon + koff

provided that kon and koff are much bigger than an and bn. We assume that konðtÞhkon for some positive

constant kon and show that our model can be approximated with a simplified system, which only depends on an;bn;dn and the ratio

BF. With this approximation, we conclude that the original system (1) depends on the ratio BF, not individual values of kon and koff.

Because of the separation of the timescales, the probability of NðtÞ is stabilized quickly at a stationary distribution pN such that

pNð0Þ = koff
kon + koff

and pNð1Þ = kon
koff + kon

. Therefore we can reduce the model assuming that the state of NðtÞ is determined with the prob-

ability rule pN. Then the transition probability PðXðt +DtÞ = i � 1jXðtÞ = iÞ for XðtÞ can be simply calculated. We prove this rigorously

by using quasi-stationary distribution of the coupled process ðX;NÞ.
For a small scaling parameter 0< e< 1, we scale the DNA unwrapping and rewrapping rates as aen = ean, b

e
n = ebn and de

n = edn,

where an, bn and dn are constant in e. We also assume that kon and koff are constant in e. Under this parameter scaling, to approximate

the transition probabilities, we first note that
Cell Reports 40, 111076, July 12, 2022 e3
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PðXðt +DtÞ = n � 1jXðtÞ = nÞ
= PðXðtÞ = n � 1jXðtÞ = n;NðtÞ = 0ÞPðNðtÞ = 0jXðtÞ = iÞ
+PðXðtÞ = n � 1jXðtÞ = n;NðtÞ = 1ÞPðNðtÞ = 1jXðtÞ = iÞ
= be

nDtPðNðtÞ = 0jXðtÞ = nÞ+de
nDtPðNðtÞ = 1jXðtÞ = iÞ

= be
nDt

PððXðtÞ;NðtÞÞ = ðn;0ÞÞ
PðXðtÞ = nÞ +de

nDt
PððXðtÞ;NðtÞÞ = ðn;1ÞÞ

PðXðtÞ = nÞ

(Equation 7)

for n ˛ f0;1;2;.;13g. As (4) indicates, the probability vector pðtÞ is expressedwith eigenvalues ofQ. By using this fact, we show that

the probabilities

PððXðtÞ;NðtÞÞ = ðn;0ÞÞ
PðXðtÞ = nÞ and

PððXðtÞ;NðtÞÞ = ðn;1ÞÞ
PðXðtÞ = nÞ

are approximately BF and 1 � BF, respectively. We first investigate the eigenvalues of Q with respect to e.

Lemma 1.1 Each eigenvalue � lk of the transition rate matrix Q in (Equation 2) is either Oð1Þ or OðeÞ.
Proof. Let � lk be the eigenvalues of Q. By definition of the transition rate matrix Q (2), the trace of Q is ae+ b for some constants

a and b. Since the trace of a matrix is the sum of all eigenvalues, we have

�
X
k

lk = �
X

lk = Oð1Þ
lk �

X
lksOð1Þ

lk = ae+ b:

This implies that �P
lksOð1Þlk = ae. Since lk R 0, the result follows.

We denote � lk in OðeÞ by �lkðeÞ. We assume that li is inOðeÞ for i = 1;2;.;m for somem. By Lemma 1.1 and (4), the probability

vector pðtÞ can be decomposed as

pðtÞ = p+
Xm
k = 1

qkh
ke� lk ðeÞt +

X29
j = m+ 1

ujz
je� lk t; (Equation 8)

where hk and zj are the left eigenvectors of Q, qk and uj are some constants, and p is a stationary distribution of ðX;NÞ. Note that

since the process ðX;NÞ eventually absorbs at the 15 th and 30 th states (i.e. states ð14;0Þ and ð14;1Þ), it follows that pðnÞ = 0

for each n = ðn1;n2Þ such that n1 %13. Thus to approximate PðXðtÞ = n1Þ and PðNðtÞ = n2Þ for each ðn1;n2Þ such that n1 % 13,

we need to calculate the entries of hk , which are dominating term in (Equation 8).

To do that, we use a singular perturbationmethod. In (Al-Radhawi et al., 2019), this approach was employed to study asymptotic of

the stationary distribution of stochastic systems admitting multi-modes. Let Q = Q1 + eQ2 where Q1 and Q2 correspond to the tran-

sitions ofN and the transitions of X, respectively. In the following lemma, we approximate the left eigenvector associated with lkðeÞ by
using a singular perturbation method.

Lemma 1.2 For each left eigenvector hk of Q associated with lkðeÞ, we have

lim
e/0

hkði + 15Þ
hkðiÞ =

kon

koff
as long as hkðiÞ = Oð1Þ for i = 1; 2;.;13: (Equation 9)

Furthermore there exists a hk such that hki = Oð1Þ for each i.

Proof. For each k = 1;2;.;m, we define hk = hk + e~hk + hkðeÞ where hk and ~hk are constant in e and hkðeÞ represents the higher

order term. Then we have

lkðeÞhk = hkQ = hkQ1 + e
�
hkQ2 + ~hkQ1

�
+HkðeÞ

where HkðeÞ also represents the higher order term. Hence we have

hkQ1 = 0 and
�
hkQ2 + ~hkQ1

�
= lNk hk ; (Equation 10)

where lNk = lime/0
lk ðeÞ
e
. This implies that hk ˛ nullðQ1Þ, and hence we have hk =

P15
[ = 1c

k
[n

[ for some constants ck[ , where n[ ˛ R30
R 0

are the basis vectors of nullðQ1Þ such that

n[ ð[ + 15Þ
nð[ Þ =

kon

koff
and n[ ðiÞ = 0 for each i;[ ; [ + 15: (Equation 11)

Hence (9) holds.

Nowwe show that there exists hk such that ck[ > 0 for each [ so that hkðiÞ = Oð1Þ for each i = 1;2;.;13. Note that the biggest non-

zero eigenvalue should be one of the lkðeÞ’s for sufficiently small e because lkðeÞ/0, as e/0 and all the eigenvalues are non-positive.

Since ðX;NÞ admits absorbing states, Theorem 8 in Méléard and Villemonais (2012) implies that the eigenvector hk associated with

the biggest non-zero eigenvalue lkðeÞ is the quasi-stationary distribution such that hkð15Þ = hkð30Þ = 0,
P30

i = 1h
kðiÞ = 1, hkðiÞR 0

for each i, and for any initial distribution m
e4 Cell Reports 40, 111076, July 12, 2022
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hkðiÞ = lim
t/N

PmððXðtÞ;NðtÞÞ = nj t > tÞ for the i th state n;

where t is the first absorption time of ðX;NÞ.
Without loss of generality, we let h1 be the left eigenvalue of Q associated with the biggest non-zero eigenvalue. Then h1 = h1 +

e~h1 + h1ðeÞ and h1 =
P15

[ = 1c
1
[ n

[ for some c[ as we showed above. To show that h1ðiÞ = Oð1Þ for each i = 1; 2;.;14, it is now sufficient

to prove that c1[ > 0 for each [ becasue of (Equation 11). Let E be a 30330 such that for 15315 identity matrix I,

E =

�
I I
I I:

�

Then Q1E = 0. By multiplying E to the second equation in (Equation 10) from right, we have

h1
�
Q2E � lN1 E

�
= 0:

Let Q = Q2E � lN1 E. By investigating the entries of h1Q, it follows that

Q1;1h
1
1 +Q2;1h

1
2 = 0

Qi� 1;ih
1
i� 1 +Qi;ih

1
i +Qi +1;ih

1
i + 1 = 0 for each i = 2;3;.; 14;

(Equation 12)

whereQ2;1 > 0 andQi� 1;i > 0 andQi + 1;i > 0 for i = 2;.;14. Suppose h1i = 0 for some i ˛ f1; 2;.;14g. Then we can derive recursively

that hi = 0 for all i ˛ f1;2;.; 14g because of Equation (12), and thus h1 = ~h1 + h1ðeÞ. This contradicts to h1ð15Þ = h1ð30Þ = 0 andP30
i = 1h

1
i = 1. Consequently, h1i > 0 for all i = 1;2;.; 15 and in turn c1[ > 0 for all [ = 1; 2;.;14:

In the same way, we can prove the same result in Lemma 1.2 for right eigenvectors of Q. This implies that q1 > 0 in (Equation 8)

because qk are the first entries of the right eigenvectors of Q as shown in (Equation 4). Therefore, letting l1ðeÞ denote the

biggest non-zero eigenvalue of Q, we apply the result of Lemma 1.2 to the decomposition (8). Then assuming t is large, we have

by (Equation 11) that for i ˛ f1; 2;.;14g

lim
e/0

pði + 15; tÞ
pði; tÞ z lim

e/0

Pm
k = 1qkh

kði + 15Þe� lk ðeÞtPm
k = 1qkhkðiÞe� lk ðeÞt

= lim
e/0

Pm
k = 1qkh

kði + 15ÞPm
k = 1qkh

kðiÞ
Pm P15 k [
= lim
e/0

k = 1qk [ c[ v ði + 15ÞPm
k = 1qk

P15
[ ck

[ v
[ ðiÞ = lim

e/0

Pm
k = 1qkc

k
i v

iði + 15ÞPm
k = 1qkck

[ v
[ ðiÞ
=
kon

koff
;

where the limit is well-defined because q1 > 0 and c1[ > 0 for each [. For n ˛ f0;1;.;13g, let ðn;0Þ and ðn;1Þ be the i th and i + 15 the

states, respectively. Then we finally have that for e small enough

PðXðtÞ;NðtÞÞ = ðn;0ÞÞ
PðXðtÞ = nÞ =

pðn; tÞ
pðn; tÞ+pðn+ 15; tÞ z

1

1+ kon
koff

= BF;

and

PðXðtÞ;NðtÞÞ = ðn;1ÞÞ
PðXðtÞ = nÞ =

pðn+ 15; tÞ
pðn; tÞ+pðn+ 15; tÞ z

1

1+ koff
kon

= 1 � BF:

Therefore, by Equation (7)

PðXðt + DtÞ = n � 1jXðtÞ = nÞzðbnBF + dnð1 � BFÞÞDt: (Equation 13)

Note that bnBF +dnð1 � BFÞ ˛ ½dn;bn�. The similarity of the original and the reduced models are exhibited in Figure S7.

Comparison of one-sided and two-sided nucleosome unwrapping models

In the main text, we mainly consider the stochastic nucleosome model with single-sided unwrapping, based on previously reported

evidence in the literature. Here, we analyze a similarity between the original one-sided unwrapping model 1 and the two sided un-

wrapping model (Figures S1A and S1B). Let XðtÞ and ~XðtÞ = ð ~X1ðtÞ; ~X2ðtÞÞ be the stochastic DNA dynamics of the one-sided and

two-side unwrapping models, respectively. The entries ~X1ðtÞ and ~X2ðtÞ represent the number of dissembled DNA-histone contact

sites unpacked from the left edge and the right edge, respectively as XðtÞ in the one-sided unwrapping model. Recall that for the

one-sided model, when XðtÞ = n, the unwrapping and the rewrapping rates are an = a1h
n� 1 and bn = b1h

� n+ 1, respectively. In

the same way, when ~X1ðtÞ = n and ~X2ðtÞ = m, the unwrapping rate from the left edge and the right edge are aleftn = aleft1 hn� 1 and
Cell Reports 40, 111076, July 12, 2022 e5
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arightm = aright1 hm� 1, respectively. Similarly, the rewrapping rate from the left edge and the right edge are bleft
n = bleft

1 h� n+ 1 and bright
m =

bright
1 h�m+ 1, respectively. When the total number of the unwrapped regions is 14, that is ~X1ðtÞ+ ~X1ðtÞ = 14, the process stops. In

summary,

Pð ~X1ðt + DtÞ = n + 1j ~X1ðtÞ = nÞ = aleftn 1f ~X1ðtÞ+ ~X2ðtÞ< 14g
~ ~
PðX1ðt + DtÞ = n � 1jX1ðtÞ = nÞ = bleft
n 1f ~X1ðtÞ>0g
Pð ~X2ðt + DtÞ = m + 1 j ~X2ðtÞ = mÞ = arightm 1f ~X1ðtÞ+ ~X2ðtÞ< 14g
Pð ~X2ðt + DtÞ = m � 1j ~X2ðtÞ = mÞ = bright
m 1f ~X2ðtÞ> 0g

See Figures S1A and S1B for a description of the Markov chain associated with the two sided model.

Similarity in qualitative behaviors of the one-sided model and the two-sided model. In this section, we compare the two proposed

models and prove mathematically that the two-sided model has qualitatively the similar behavior to the one-sided model. The main

idea is that the left edge ~X1 and the right ~X2 are independently unwrapping and rewrapping until the nucleosome is fully evicted. This

implies that ~X1ðtÞ+ ~X2ðtÞ behaves in the same way as the one-sided model does given the event of full nucleosome eviction has not

yet occurred.

We prove this idea rigorously by using the random time representation proposed in (Kurtz, 1980). The Markov models XðtÞ, ~X1ðtÞ
and ~X2ðtÞ can be represented with independent Poisson processes as

~X1ðtÞ = ~X1ð0Þ + Y3

�Z t

0

aleft~X1ðsÞ+ 1
1f ~X1ðsÞ+ ~X2ðsÞ< 14gds

�
� Y4

�Z t

0

bleft
~X1ðsÞ1f ~X1ðsÞ> 0gds

�
;

�Z t
~X2ðtÞ = ~X2ð0Þ + Y5
0

aright~X2ðsÞ+ 1
1f ~X1ðsÞ+ ~X2ðsÞ< 14gds

�
� Y6

�Z t

0

bright
~X2ðsÞ1f ~X2ðsÞ> 0gds

�
;

where Yi’s are independent unit Poisson processes. To fairly compare the two models, we set aleftn = aleftn = an=2 as ~X1ðtÞ and ~X2ðtÞ
can simultaneously unwrap. In the same sense, we set bleft

n = bleft
n = bn=2. By combining two independent Poisson processes we

obtain

~X1ðtÞ + ~X2ðtÞ = ~X1ð0Þ + ~X2ð0Þ+Y7

�Z t

0

�
aleft~X1ðsÞ+ 1

+ aright~X2ðsÞ+ 1

�
1f ~X1ðsÞ+ ~X2ðsÞ< 14gds

�

�Z t
�Y8
0

Wbleft
~X1ðsÞ1f ~X1ðsÞ> 0g + bright

~X2ðsÞ1f ~X2ðsÞ>0gds

�
:

Recall that an = a1h
n� 1 and bn = b1h

� n+ 1. We suppose that h = ð1 + eÞwith a small constant e> 0 to consider mildly cooperative

rates. Then for ~X1ðtÞ = n and ~X2ðtÞ = m, we can approximate the sum of two rates as

aleftn + arightm =
an + am

2
z a1 + a1ðn + m � 2Þ e

2
z a1 ~h

n� 1+m� 1
;

bleft
n + bright

m =
bn +bm

2
zb1 � b1ðn + m � 2Þ e

2
z b1

~h
� n+1�m+ 1

;

where h = 1+ e
2. Therefore given ð ~X1ðtÞ; ~X2ðtÞÞ;fðn;mÞ : nm = 0;n +m = 14g, the total number of the dissembled contact sites

~X1ðtÞ+ ~X2ðtÞ can be approximated with a one-sided model

XðtÞ = Xð0Þ + Y1

�Z t

0

aXðsÞ+ 11fXðtÞ<14gds

�
� Y2

�Z t

0

bXðsÞ+11fXðsÞ> 0gds

�
;

where the unwrapping rate an = a1h
n� 2

and the rewrapping rate bn = b1h
� n+2 Thus the two models have a similar qualitative

behavior. Note that if e = 0, the both models have the same representation as long as the nucleosome has not been fully evicted

and either edge is fully wrapped. This similarity is displayed in Figures S1C and 4A in the main text as we can see the similar full evic-

tion probability profiles of both models.

Quantitative difference between the one-sided model and the two-sided model. However, even if two models have similar quali-

tative dynamical behaviors, the mean of XðtÞ and ~XðtÞ are notably different as shown Figure S1D. This difference is mainly caused

by the boundary effect. From the fully wrapped state (Xð0Þ = 0 and ~X1ð0Þ+ ~X2ð0Þ = 0), two models have the same probability to

unwrap by one step. After one step unwrapping, the one-sidedmodel is at state 1, and the two-sidedmodel is at either ð1; 0Þ or ð0;1Þ.
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At those states, the closing probabilities for X and ~X1 + ~X2 are b1 and
b1

2 , respectively. This slight disparity in the closing probability is

present whenever a single edge is closed, and the other side is open for the two-sided wrapping model, i.e. ~X1 + ~X2 = n with

ð ~X1; ~X2Þ = ðn;0Þ or ð0;nÞ. This disparity causes a longer time for the one-sidedmodel to fully open than for the two-sided model. Even

for higher fold change between two models such as ~an = an
4 and ~bn = bn

4 , the two-sided model has a greater mean accessibility after

t = 500 as shown in Figure S1D.

Mathematical analysis for chromatin responses to different SDTF dynamics

In Section 3.1 and 3.2 of the main text, we described the dynamics of DNA with a success-failure game under oscillatory SDSTF in-

puts to show that various responses of DNA can be induced with different SDTF input dynamics and the system parameters. In this

section, we provide more details of this description and analyze the various responses of the system under different SDTF inputs.

Rapid oscillation vs. slow oscillation. In this section, we study the response of our stochastic nucleosome model to an oscillatory

SDTF signal with different frequencies. As in STAR Methods Section 1.1, we assume that the SDTF dynamics is a binary oscillation

with the half-period T0 as shown in Figure 2B of the main text so that

konðtÞ =

�
kon if t ˛ ½2mT0; ð2m+ 1ÞT0Þ for some m
0 if t ˛ ½ð2m � 1ÞT0;2mT0Þ for some m;

(Equation 14)

and we set kon = 100 and koff = 42:85 so that BF = koff
koff + kon

= 0:3.

For simplicity, we first consider the case that the cooperativity constant h = 1. We also assume that bn = can with c> 1 large and

dn = 0 for each n, which means that DNA rarely unwraps without SDTF binding as bn is much greater than an for all n. Let Ton;m =

ð2m � 1ÞT0 and Toff;m = 2mT0 for m = 1; 2;.. Then by considering conditional probabilities, we have

P
�
XT0 ðToff;nÞ = 14

�
= P

�
XT0ðToff;nÞ = 14

		XT0 ðToff;n� 1Þ = 14
�
P
�
XT0 ðToff;n� 1Þ = 14

�
+P

�
XT0 ðToff;nÞ = 14

		XT0 ðToff;n� 1Þ < 14
�
P
�
XT0 ðToff;n� 1Þ < 14

� (Equation 15)

To simplify (15), we approximate two quantities. First, due to bn > an the DNA dynamics XT0 ðtÞ rarely reaches state 14 during the off-

phase ½Ton;m;Toff;m�where konðtÞ = 0. Hence PðXT0
ðToff;n� 1Þ = 14ÞzPðXT0

ðTon;n� 1Þ = 14Þ. Secondly, for the same reason the DNA

dynamics XT0
steps back to state 0 during the off-phases with high probability as described in Figure 2C of the main text. Therefore

we have approximately that

P
�
XT0 ðToff;nÞ = 14

		XT0 ðToff;n� 1Þ < 14
�
zP

�
XT0 ðToff;nÞ = 14

		XT0 ðToff;n� 1Þ = 0
�

�

= P XT0 ð2T0Þ = 14

�
zP

�
XT0ðT0Þ = 14

�
:

Finally, since state 14 is an absorbing state, the probabilityPðXT0 ðToff;nÞ = 14jXT0
ðToff;n� 1Þ = 14Þ is 1. DenotingPðXT0

ðT0Þ = 14Þ =

rT0
, therefore, we approximate PðXT0

ðToff;nÞ = 14Þ as
P
�
XT0 ðToff;nÞ = 14

�
zP

�
XT0 ðToff;n� 1Þ = 14

�
+ rT0P

�
XT0 ðToff;n� 1Þ < 14

�

� �
= rT0 + 1 � rT0 P
�
XT0 ðToff;n� 1Þ = 14

�
Hence we inductively derive that

P
�
XT0 ðToff;nÞ = 14

�
z

Xn

i = 1

rT0

�
1 � rT0

�i� 1
= P

�
Geo

�
rT0

�
% n

�
; (Equation 16)

whereGeoðrT0
Þ is a random variable following the geometric distribution with success probability rT0 . Therefore the full eviction prob-

ability can be described as a success-failure game (Figure S2A).

The full eviction probability by 500 min under the rapid oscillation is approximately

ProbðXð500Þ = 14ÞzProbðGeoð0:025Þ % 25Þ =
X25
i = 1

0:025ð1 � 0:025Þi� 1 = 0:47:

Hence for an SDTF signal that turned on and off repeatedly every 10 min, about 47% of chromatin became accessible at 500 min

(Figures 2B and 2C).

On the other hand, if the SDTF signal was maintained for 60 min, about 24% of DNA reached state 6 (Figure S2C). Although DNA

rapidly rewraps over the next off-phase of the SDTF signal, once the SDTF is active again for the next 60 min, about 24% of remain-

ing DNA became unwrapped. Through the success-or-failure game 4 times within [0.500] min, about 70% = ProbðGeoð0:24Þ % 4Þ3
100% =

P4
i = 10:24ð1 � 0:24Þi� 13100% of DNA became fully unwrapped (Figures 2B and 2C).

For h> 1, the rates an and bn are cooperative so that there existsN such that an+1 Rbn for each nRN. In this case, we consider the

probability of reaching a stateRN by time Toff;n instead of state 14 because once XT0
reaches stateN or goes further, then XT0

ðtÞ likely
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reaches state 14 quickly even thoughNðtÞ = 0 due to an+ 1 is much bigger than bn for nRN. Hence we let tN be the first hitting time of

stateN, and let also rN;T0
= PðtN <T0Þ. That is, rN;T0

means the probability of hitting stateNwithin ½0;T0Þ. As shown above, hence, we

approximate the full eviction probability as

P
�
XT0 ðToff;nÞ = 14

�
zP

�
XT0ðToff;n R NÞ = PðtN < Toff;nÞ
= PðtN < Toff;n� 1Þ+ rN;T0PðtN > Toff;n� 1Þ
Xn
=
i = 1

rN;T0

�
1 � rN;T0

�i� 1
= P

�
Geo

�
rN;T0

�
% n

�
;

Figure S2B illustrate this approximation under oscillatory inputs with various half-periods. The quantify rN;T0 can be easily

computed with meQonT0 as shown in Equation (5). We display the plot of rN;T0
as a function of T0 in Figure S2C.

The success-failure game scheme is valid due to bn > an for most states with large constant c such that b1 = ca1. Therefore when

the constant c is small, the approximation (16) may be inaccurate as shown in Figure S2D. Furthermore, if the oscillation is too fast,

DNA cannot read the oscillation so that the success-failure game scheme is also invalid because the approximation scheme relies on

the oscillation of konðtÞ (Figure S2E). In the same sense, if the rates an and bn are too small, then the expected transition time of XðtÞ is
too long so that the success-failure scheme does not accurately approximate the full eviction probability (Figure S2F).

As described in Section 3.1 of themain text, if the SDTF oscillation is extremely fast, the oscillatory input is approximately decoded

as a constant signal. This can be simply shownwith the probability density functions. LetN[ðtÞ andNNðtÞ be continuous-timeMarkov

chain defined on f0;1g. For N[ðtÞ, the transition rate from 0 to 1 is konðtÞ defined in (Equation 14) with T0 = 1
[. For NNðtÞ, the transition

rate from 0 to 1 is constant at k=2. For both processes, the transition rate from 1 to 0 is koff. These processes represent the SDTF

binding and unbinding under an oscillatory signal and a constant signal, respectively. Note that the temporal average of the oscillatory

signal is 1
t

R t
0 konðsÞds = k=2. Since the state space consists of only two states, we can explicitly find the probability density function

for N[ðtÞ and NNðtÞ. Let p[ðtÞ and pðtÞ be the probability of N[ and NN being at state 1 at t, respectively. Then assuming both pro-

cesses starting at 0, we have

pðtÞ =
k

2k+ koff

�
1 � e�ðk=2+ koffÞt�;
�Z t
p[ ðtÞ =
1

eðk=2+ koffÞt
0

eðk=2+ koffÞsk =2ds +

Z t

0

eðk=2+ koffÞsðkonðsÞ � k =2Þds
�

Z t
= pðtÞ+
0

eðk=2+ koffÞsðkonðsÞ � k =2Þds;

Since the integration
R t
0 e

ðk=2+ koffÞsðkonðsÞ � k =2Þds tends to 0, as [/N, we have lim
[/N

p[ðtÞ = pðtÞ for each t. Hence for an extremely

fast oscillation of the SDTF inputs, the SDTF binding/unbinding can be approximated with the constant SDTF signal whose input level

is the temporal average of the oscillation. Figure S2G is the full eviction probability as a function of T0 in a log scale.

Chromatin dynamics with cell heterogeneity under oscillatory SDTF signals. Cells are often heterogeneous so that the same system

in different single cells admits various range of parameters. Depending on the system structure, the outcome can be robust to the

parameters and inputs (Kim and Enciso, 2020; Shinar and Feinberg, 2010; Shoval et al., 2010; Stelling et al., 2004). On the contrary,

the output can be significantly influenced by even tiny change of system parameters or inputs. This refers to sensitivity of the system.

In Section 3.2 of the main text, we showed that the stochastic epigenome model is sensitive to the unwrapping/rewrapping

parameters, and the sensitivity can be amplified by an oscillation of the SDTF input signal. In this section, we show that how this

sensitivity can be caused by oscillation with more detailed analysis.

As in STAR Methods Section 3.1, we set b1 = ca1 with c> 1 large. We further assume that the cooperativity constant hR 1 is

close to 1. For the given unwrapping/rewrapping parameters an and bn, we consider x-fold change as anðxÞ = anx and bnðxÞ =
bnx to explore the sensitivity of the system in x. Let XosðtÞ be the DNA dynamics under the oscillatory signal konðtÞ defined in

Equation (14). Let ros = PðXosðT0Þ = NÞ where N is the state such that an+ 1 Rbn for all nRN. Then as described in STAR Methods

Section 3.1, for T = 2mT0 the full eviction probability is

PðXosðTÞ = 14Þz ros + rosð1 � rosÞ+/+ rosð1 � rosÞm� 1 = PðGeoðrosÞ % mÞ;
where each term rosð1 � rosÞ[ is the probability of X reaching state 14 within the phase ½2[T0; ð2[ + 1ÞT0� after [ times failures in the

previous on-phases. On the contrary to the case of oscillatory SDTF signals, for the DNA dynamics XconstðtÞ under a constant signal

kon = 50, the probability of reaching state 14 at T = 2mT0 can be express as a single success-failure game for a longer time as

PðXconstðTÞ = 14ÞzPðXconstðTÞ = NÞ = rconst = PðGeoðrconstÞ = 1Þ:
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The polynomial fmðrÞ =
Pm

i = 1rð1 � rÞi� 1 have distinct sensitivity to the value of r (Figure S3H) for each m. Note that

PðXosðTÞ = 14ÞzfmðrosÞ and PðXconstðTÞ = 14Þzf1ðrconstÞ. This describes how the oscillation causes the sensitive response of

the DNA full eviction to the parameter change.

In Figure 2F of the main text, we showed that the sensitivity is induced by an oscillatory input under cooperativity h = 1:3 when
b1

a1
= 15. If this ratio is not that big, for example b1

a1
= 7, then although the system is mildly cooperative with h = 1:1 the sensitivity

is still induced with the oscillatory inputs as shown in Figure S2I.

Studying the system parameters with the SDTF binding site effect

In this section, we explore the optimal binding site of SDTF for unwrapping DNA from a nucleosome under different cooperativity

relationship among the unwrapping and rewrapping rates. For simplicity, we assume that the SDTF signal konðtÞ is constant.

Binding site effects with cooperative and non-cooperative rates. To study how the full eviction probability varies by the SDTF

binding sites, we simplify the stochastic epigenome system (1) with discrete-time random walks as shown in Figure S4. To intuitively

find the optimal SDTF binding site, we use the expected number of steps to reach state 14 instead of the full eviction probability at a

fixed time T. Let X be an 1-dimensional randomwalk defined on the state space f0;1;2;.;Ngwith the transition probabilities p and q

of the right-steps and left-steps, respectively. ForX, letKn;m be the expected number of transitions to reach statem from state n. Then

we can derive the following recursive relations with Markov properties:

Kn� 1;n = 1+qKn� 2;n = 1+qðKn� 2;n� 1 + Kn� 1;nÞ:
This implies that

Kn� 1;n =

�
q

p

�n� 1�
K0;1 � 1

p � q

�
+

1

p � q
=

�
q

p

�n� 1�
1 � 1

p � q

�
+

1

p � q
;

since K0;1 = 1. Finally we have

K0;n =
Xn

i = 1

Ki� 1;i =
2r

r � 1

rn � 1

r � 1
� nðr + 1Þ

ðr � 1Þ; (Equation 17)

where r = q
p. We use this calculation to derive the expected number of transitions of the random walks in Figures S4A and S4B.

First, we find the optimal SDTF binding site under cooperative rates (i.e. both an and bn are constants in the stochastic epigenome

model). Under this setting, the stochastic epigenomemodel can be simplified as the randomwalks in Figure S4A where the transition

probabilities p and q are constants. Each random walk has a designated state from where the backward transition is prohibited. This

setting is analogous to the SDTF binding sites of our stochastic epigenome model. Let Tn;m be the expected number of transitions to

reach statem from state n of the randomwalks in Figure S4with the designate state. Note that Tn;m andKn;m represent different quan-

tities as Tn;m indicates the expected number of transitions with the designated state, while Kn;m is defined for the random walk X

without a designated state. We further assume that r = q
p = 2 to replicate the assumption that the rewrapping rate is higher than

the unwrapping rate.

The random walk model in Figure S4A top has no backward step from state 4. Then

T0;14 = T0;4 + T4;14 = K0;4 +K0;10 = 4110;

wherewe note that T4;14 = K0;10 as the transition from state 4 to state 14 is equivalent to the transition from state 0 to state 10 of X. The

random walk in Figure S4A bottom has no backward step from state 7, which corresponds to the SDTF binding at dyad. Then

T0;14 = T0;7 +T7;14 = 2 � K0;7 = 974:

In the sameway, we can compute T0;14 with different SDTF binding sites as shown in Figure S4C,which indicates that binding at the

center more efficiently help unwrapping DNA than binding at the edge.

Now, we consider the random walks in Figure S4B that estimate the behavior of the stochastic epigenome model under

cooperative parameters. For simplicity, we assume that there are two types of unwrapping and rewrapping rates such that for

some [ ˛ f0;1; 2;.;14g
qi = rpi for i% [ and qi = r0pi for i > [

with some r and r0. To replicate the cooperativity assumed in the main text, we suppose that r = 2 and r0 = 0:5 so that the random

walker steps forward more easily around the right-edge than around the left-edge. As we define previously, for the random walks in

Figure S4B, we define Tn;m as the expected number of transitions to statem from state n. We also assume that [ = 7 and hence the

unwrapping rate is greater than the rewrapping rate for all states in f7;8;.;14g.
For the random walk in Figure S4B top, we can compute T0;14 by decomposing it as T0;14 = T0;4 +T4;7 +T7;14. Computing T7;14 is

complicated as we need to consider the mixture of the transition probabilities qi = 2pi and qi = 0:5pi. By using the same recursive

relation shown above, we have

T7;8 = 1+q6T6;8 = 1+q6ðT6;7 + T7;8Þ:
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This implies that p6T7;8 = 1+q6T6;7 and hence T7;8 = 28, where we note that T6;7 = K2;3 = 13. By doing so, we can recursively

compute T8;9 = 16;T9;10 = 9:5;T10;11 = 6:25;T11;12 = 4:625;T12;13 = 3:8125 and T13;14 = 3:40625 in the same way. Therefore T7;14 =P14
i = 8Ti� 1;i = 2:59375 and hence

T0;14 = T0;4 +T4;7 +T7;14 = K0;4 +K0;3 +T7;14 = 139:59375:

In the same way, we compute T0;14 of the random walk in Figure S4B bottom as

T0;14 = K0;7 +T7;14 = 504:03125;

which is greater than T0;14 of the SDTF binding site at state 4. On contrary to the case of non-cooperative rates, therefore, when the

unwrapping and rewrapping rates are cooperative as we assumed above, the SDTF binding at dyad is not the optimal binding site for

full eviction.

We can generalize the computation of T0;14 with different values of [, and we can use this to test how the optimal SDTF binding sites

vary with the degree of cooperativity. The solid and dotted plots in Figure S4D show that T0;14 under highly cooperative rates ([< 6)

and mildly cooperative rates ([R7), respectively. As the plots show, the optimal binding sites are located toward the left-edge when

the rates are more cooperative.

Predict the system parameters. By using the randomwalkmodels to simplify the original stochastic epigenomemodel, we proved in

STARMethods Section 4.1 that the full eviction probability of DNA varies in the SDTF binding sites so that the full eviction probability

profile exhibits a special pattern as shown in Figure 4A of the main text. We further showed that this pattern can be considerably

varied under different degree of cooperativity and the range of the SDTF binding effect.

This probability profile allows us to predict the system parameter by comparing the computational results to the experimental loca-

tion-specific measurements. Let x be the relative distance between the SDTF binding site and dyad. Let further pðxÞ be the average

full-eviction probability for the distance x. First of all, as the optimal binding sites vary in different degree of cooperativity, we recog-

nize that the width of the center dip appearing in the probability profile differs in the cooperativity parameter h. Since the optimal

binding sites tend to move to the edges (state 0 or state 14), the width of the center dip increases as h increases in the plot of

pðxÞ (Figure S5A the 1st panel).

We can also predict the effects of other parameters. As the opening rate a1 increases, pðxÞ across all the range of the distance x

translates up. Similarly, as the close rate b1 decreases, pðxÞ also translates up (Figure S5A the 2nd panel). The parameter BF =
koff

koff+ kon
, the ratio of the SDTF binding and unbinding rates, controls the magnitude of the SDTF binding effect. The rewrapping rates

lying the range of the SDTF effect decreases whenBF increases as shown in (Equation 13), which in turn induces sharper peaks in the

probability profile (Figure S5A the 3rd panel). Range of the SDTF effect, determined with the constant s in dn = bn

�
1 � e

1
2ðn� s

s Þ2
�
, is

also one of the critical parameters for special pattern in the plot of pðxÞ. For short range of the SDTF effect, the full eviction probability

dramatically changes for each binding site. This causes that the depth of the center dip becomes dipper as shown in the 4th panel of

Figure S5A. Furthermore, an SDTF binding site with long distance to dyad does not affect the system if the range s is too small. Thus if

s is too small, a plateau appears in the plot of pðxÞ around x such that jxj is big.

From a given ATAC-seq measurement for the change of the nucleosome counts with a certain SDTF binding motif location (Fig-

ure S5B), we can calculate pðxÞ and plot it. Then by using the fact that each parameter of the stochastic epigenome system charac-

terizes pðxÞ, we can make an initial guess of the parameter values comparing to the experimentally measured pðxÞ. And then as

described in Figure S5C, we can further tune the parameters for more accurate fitting with the gradient decent searching algorithm,

which is a typical algorithm for searching optimal system parameters. We use L2 norm to define the loss function for the gradient

decent algorithm as d =
Pm

i = 1jp0ðiÞ � pðiÞj2, where i indicates the i SDTF binding location, p0 is the experimentally measured

full eviction probability, and p is the full eviction probability computed with the stochastic model. The plots in Figure S5D display

that the fitted parameters are actually global optimization values of the L2 distance.

Modeling under generalized parameter sets

Continuity of the stochastic nucleosome model. Here we state that the statistical quantities associated with the stochastic

nucleosome model is almost preserved under small variations to the model parameters since the probability density function is

continuous in the model parameters. To visualize this, we add small noise to the unwrapping/rewrapping parameters, and show how

the full eviction probabilities change.

First of all, to incorporate noise in the unwrapping and rewrapping parameters, an and bn, we add a Gaussian noise to the param-

eters so that the new noisy parameters are ~an = an +Z1;n + ~an = an +Z2;n, where Zi;n is a normal random variable with mean 0 and

variance an=10 and bn=10, respectively for i = 1 and 2. In case some parameter becomes negative, we make it zero. Then we obtain

the Eviction Probability Profiles of the stochasticmodel under both non-cooperative setting and cooperative setting. The noise added

to an and bn can continuous; y deform the eviction probability profiles (Figure S6A). As the original setting without noise in the pa-

rameters, therefore, the unique characteristic of the Eviction Probability Profiles is preserved with a single peak for the non-cooper-

ative case and double peaks for the cooperative case (Figure S6B). This variability of an and bn can be associatedwith the variability of

the DNA-histone affinity caused by DNA sequence. Secondly, we allow an event of rebinding of DNA to a histone after full eviction
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with small probability as described in Figure S6C. Then the continuity of the full eviction probability guarantees the geometric

characteristic of the Eviction Probability Profile is preserved with this small variation (Figure S6D).

Dependence of binding/unbinding rates on the binding motif location. Recall that the binding/unbinding rates kon and koff are in-

dependent of the binding location in our original model introduced in the main text. However, one can consider binding/unbinding

rates depending on the binding location as the SDTF may not easily bind at more buried sites on the nucleosomal DNA. Thus we can

use konðsÞ and koffðsÞ for the binding/unbinding rate, respectively as functions of the binding location s ˛ f0; 1;.;14g.
First, we can assume that konðsÞ follows the upside-down Gaussian curve as shown in the right panel of Figure 5A so that the SDTF

has the lowest binding rate at dyad. We can further assume that the binding and unbinding are equally hard for buried sites so that for

all s, the ratio konðsÞ
koffðsÞ = r for some constant r. We showed in STAR Methods Section 1.2 that the model behavior solely depends on

BF = koffðsÞ
konðsÞ+ konðsÞ =

1
r +1 rather than the individual konðsÞ and koffðsÞ. Hence although the binding/unbinding rates are varied with the

binding location s, the stochastic nucleosome model under konðsÞ and koffðsÞ has the same behavior as the original model under

the binding location-independent binding/unbinding rates. Despite the ratio between konðsÞ and koffðsÞ are not identical across all

the binding sites s, the Eviction Probability Profiles have the same qualitative patterns when the variation of the ratio is not substantial

(Figure 5B). This was theoretically verified with the continuity of the eviction probability described as in STAR Methods Section 5.1.

Alternatively, we can also assume that the binding rate is a function of the DNA opening states, XðtÞ. It is possible that when an

SDTF binding site is exposed by DNA opening, the SDTF binding rate is higher than the binding rate when the binding site is buried

by a wrapped nucleosome status. To model this, we assume that konðnÞ and koffðnÞ are functions of the DNA opening state n as

described in the right panel of Figure 5C. As long as the variability of konðnÞ and koffðnÞ with respect to n is not too big, the Eviction

Probability Profiles possess a consistent shape under both the non-cooperative case and the cooperative case as shown in

Figure 5D.

Mean unwrapping times

In Tims et al. (2011), it was shown that the unwrapping time fromDNA opening state n to n+ 1 is increasing as n increases. Thismeans

that the unwrapping rate around the dyad (or more buried sites) is lower than the unwrapping rate around the edges. This conclusion

seems to conflict to our result that the DNA-histone binding affinity is cooperative so the more unwrapped DNA state the easiler

further unwrapping. However, the unwrapping time measured in Tims et al. (2011) is the time for DNA to reach state n+ 1 from n.

Hence there could be multiple unwrapping/rewrapping steps of DNA inbetween the final transition from n to n+ 1. For exampple,

DNA can go through a sequence of steps n/n � 1/n � 2/n � 3/n � 2/n � 1/n/n+ 1 for a transition from n to n+ 1.

To check consistency of our work with the previous work, we also simulated our model under the cooperative setting we revealed

in this research to measure the time for unwrapping from state n to state n+ 1. As shown in Figure S6F, the time increases as a func-

tion of n (Figure S6F left). Similarly, the first time for rewrapping from state n to state n+ 1 can be also measured, and it is shown that

the time increases as n increase, but the increment is not as significant as the unwrapping case (Figure S6F right). These results are

consistent with the results in (Tims et al., 2011).

QUANTIFICATION AND STATISTICAL ANALYSIS

Model simulations
Model implementation and simulations were performed in MATLAB 2016b. Further detailed description of the model can be found in

the Method details.

Coefficients variation
The coefficient variation for a probability distribution or a random variable is calculated with the standard deviation divided with the

mean. Since this quantity gives a normalized degree of variation of a given probability distribution, we can use them to compare the

variabilities of two probability distributions as described in Figure 2G.

Total variation distance
We used the total variation distance tomeasure similarities between the distributions of chromatin accessibilities under an oscillatory

signal and a constant signal shown in Figure 4E. For probability distribution P1 and P2 defined on the same finite state space,

the total variation distance is defined as kP1 � P2ktv = maxAjP1ðAÞ � P2ðAÞj = 1
2

P
xjP1ðxÞ � P2ðxÞj. The usage of this distance

can be found in ‘‘Model predicts cooperativity based on Eviction Probability Profiles’’ in Results.

ATAC-seq data processing
Macrophage ATAC-seq sampleswere generated as previously described (Buenrostro et al., 2015), and single-end datawas obtained

from (Cheng et al., 2021). Macrophage ATAC-seq libraries of the IkBa knockout mouse from Cheng et al. (2021) were re-sequenced

paired-end 2 3 150 on HiSeq4000. Only paired-end sequencing allows the separation of nucleosomal fragments from non-nucleo-

somal fragments, as read fragments with lengths shorter than the nucleosome footprint of�150 basepairs can be classified as nucle-

osome-free accessible regions, while read fragments of�150bp, or amultiple of 150bp, can be classified as accessible nucleosomal

genomic regions, with cut sites flanking nucleosome boundaries. ATAC-seq fastqs were processed through the ENCODE-DCC
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ATAC-seq pipeline (https://github.com/ENCODE-DCC/atac-seq-pipeline). The reads were trimmed using cutadapt, and aligned to

mm10 or hg38 using bowtie2. Picard was used to de-duplicate reads, which were then filtered for high quality, paired reads using

samtools. Peak calling was performed using macs2. The optimal Irreproducible Discovery Rate (IDR) thresholded peak output

was used for all downstream analyses, with a threshold p-value of 0.05. Other ENCODE3 parameters were enforced with the flag

–encode3. Reads that mapped to mitochondrial genes or blacklisted regions, as defined by the ENCODE pipeline, were removed.

The peak files were merged using bedtools merge to create a consensus set of peaks across all samples.

ATAC-seq nucleosome analysis
Nucleosome positions were called using the merged regions, from paired-end ATAC-sequencing data, using the published software

NucleoATAC (Schep et al., 2015). An example genomic location Cxcl2, illustrates the information obtained is orthogonal to simply

chromatin accessibility (Figure S6). The output of this software provides putative nucleosomal and nucleosome-free regions of

accessible chromatin, by analyzing the patterns of ATAC-seq read fragment sizes. As described in full detail in Schep et al.

(2015), nucleosome occupancy is called by maximum likelihood estimation, and nucleosome dyad positions are called by consid-

ering the local maxima of candidate nucleosome positions. Genomic locations of nucleosome positions called were annotated,

and NF-kB motifs were found using the tool HOMER (Heinz et al., 2010). Motif searching was done using the three NF-kB motif po-

sition weight matrices within the HOMER database, for length 9, 10, 11. Motifs were listed if they occurred within +/�200 basepairs of

the nucleosome dyad. Nucleosomes across timepoints were matched by assigning them to their closest transcription start site for

each sample. Nucleosomes assigned to a TSS for the baseline time point, and subsequently not found at that TSS at the later time

point, were considered evicted. For analyses where the model calculated a probability of nucleosome eviction, nucleosomes that

appeared, and matched to a new gene at the second time point but not in the first, were ignored. Probabilities of eviction p with

respect to location of the binding motif and distance from nucleosome dyad were calculated by taking bins of distance from

dyad, and using the following formula for each bin: p = nt = 0 � nt = 4

nt = 0
, where nt = h is the number of nucleosomes at h hours.
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