Common Experimental Approaches for Systems Analysis of Immune Response Signaling Networks (1/2)

Method	Information gained	Pathway components interrogated	Resolution	Degree of multiplexing	Quantitation, reliability, sensitivity	Data generation challenges	Data interpretation challenges	Example protocol or study reference
Flow Cytometry of cell surface proteins	Protein abundance, internalization kinetics	8	Single cell snapshot	Multi-analyte (typically <10, more possible with Cy-TOF)	Relative quantitation (protein abundance/cell), absolute quantitation (fraction of cells expressing specific protein); sensitivity depends on antibody quality and probe.	Flow cytometer, specific antibodies against proteins of interest required; need to optimize fluorescence panel.	Fluorescence compensation if using multi-color panel; gating strategies and multi- dimensional analysis.	Yu et al., 2016, PMID: 26938654. Rigo and Vinante, 2017, PMID: 27342211.
Co-immuno- precipitation (Co-IP), + Western Blotting or + Mass Spec	Protein- protein interactions	Adaptor Ub-modifier Kinase	Bulk]	Typically single analyte, but can be linked to mass spec	Relative quantitation; not reliable for weak or transient interactions.	High specificity, high affinity antibodies required; need to optimize precise experimental conditions; time-intensive.	Potential for artefact requires good negative and positive controls. Not clear whether association is direct or indirect.	Tang and Takahashi, 2018, PMID: 29855966.
In situ Proximity Ligation Assay (PLA) with microscopy	Protein- protein interactions	Adaptor Ub-modifier	Single cell snapshot	Single analyte	Absolute quantitation of complexes possible; high sensitivity.	Fluorescence microscope, antibodies against both proteins required; need to optimize experimental conditions.	Automated cell segmentation and spot count.	Hegazy et al., 2020, PMID: 33044803.
(Phospho-) proteomics by Mass Spectrometry using labeling (e.g. SILAC)	Protein abundance, Protein activation	Adaptor Ub-modifier Kinase	Bulk]	'omic	Relative quantitation; high accuracy.	Mass Spec required; chromatography for fractionation and phosphopeptide enrichment; very time-intensive; only applicable to metabolically active model systems.	Peptide identification using databases and commerical software; correct analysis of pooled samples; time-intensive.	Rathore and Nita-Lazar, 2020, PMID: 32936995. Ankney et al., 2018, PMID: 29894226.
(Phospho-) proteomics by Mass Spectrometry using peptide spike-in (e.g. AQUA)	Protein abundance, Protein activation	Adaptor Ub-modifier Kinase	Bulk]	Single analyte, multi-analyte	Absolute quantitation; high accuracy.	Mass Spec required; stable isotope labled synthetic peptides for proteins of interest required; time-intensive.	Peptide identification using databases and commerical software.	Ankney et al., 2018, PMID: 29894226. Kirkpatrick et al., 2005, PMID: 15722223.
Immuno-blotting (for phospho-proteins)	Protein abundance, Protein activation	Adaptor Ub-modifier Kinase	Bulk	Single analyte, (multi-analyte possible)	Relative quantitation; dependent on skilled protocol implementation; sensitivity varies with antibody affinity and detection chemistry.	High specificity antibodies required; need to optimize experimental conditions: knowledge about phosphorylation sites; time-intensive.	Need to determine dynamic range of antibody; appropriate loading; correct band identification; careful normalization, etc.	Pillai-Kastoori et al., 2020, PMID: 32007473. Esser-Nobis et al., 2020, PMID: 32571931.
Protein turnover assays (e.g. pulse- chase (P-C), cycloheximide (CHX) inhibition, Mass Spec)	Protein half- life/ degradation	Adaptor Ub-modifier Kinase	Bulk	ʻomic (mass spec), targeted (pulse-chase, CHX, etc.)	Rate constants can be determined from relative abundance measurements; mass spec: high sensitivity, CHX: low sensitiivty.	Metabolically active system required; classical P-C requires IP, radioactivity; CHX induces cells stress; mass spec: sample complexity, much input material required.	Accurate calculation of turnover rate; mass spec: peptide identification using databases across time points; Validation of measured rates often required.	Hinkson and Elias, 2011, PMID: 21474317.
Kinase activity assays	Protein activity	Kinase	Bulk	Single-analyte	Absolute quantitation possible (nmole of phosphate incorporated/min); good sensitivity and accuracy.	Radioactivity required; high quality protein preparation/IP required; time-intensive; need to determine linear range of kinase.	Calculating the kinase activity for true quantitation is not easy.	Hastie et al., 2006, PMID: 17406331.
Live-cell Microscopy	Subcellular localization of protein	(Kinase) (TF	Single cell time-lapse	Single analyte, multi-analyte	Relative quantitation; dynamic range strongly dependent on reporter protein design.	Cells with fluorescently-tagged reporters required; advanced microscope with live cell incubator and multi-position automated time series image acquisition required.	Accurate image segmentation and reporter quantification pipeline required; need to relate localization to activity.	Kudo et al., 2018, PMID: 29266096; Regot et al., 2014, PMID: 24949979 ; Adelaja et al., 2021, DOI: 10.1101/ 2020.05.23.11286.
Electrophoretic Mobility Shift Assay (EMSA)	DNA-protein interactions, protein activation	TF	Bulk	Single analyte	Good but relative quantitation of DNA binding activity, and composition of the DNA binding complex.	Radioactivity required; phosphor- imager required; time-intensive.	Quantitation procedure and appropriate controls are well established.	Juvekar et al., 2012, PMID: 22113267.
TransAM [®] assay	DNA protein interactions, protein activation	TF	Bulk	Single analyte	Relative quantitation, absolute quantitation possible; high sensitivity.	High costs for kits; commercial kit for TF of interest needs to be available.	Data analysis is standardized, but determining the complex composition is a challenge.	Challis et al., 2006, DOI: 10.1038/nmeth907.

Common Experimental Approaches for Systems Analysis of Immune Response Signaling Networks (2/2)

Method	Information gained	Pathway components interrogated	Resolution	Degree of multiplexing	Quantitation, reliability, sensitivity.	Data generation challenges	Data interpretation challenges	Example protocol or study reference
Bulk epigenetic assays, e.g. ATACseq, ChIP- Seq, CUT&RUN, CUT&Tag	Chromatin state	TF	Bulk	'omic	Relative quantitation; ChIP- Seq, C&R, C&T: normalized to background or spike-in control.	High cost; ChIP-Seq, C&R, C&T require high specificity, high affinity antibodies; optimization of protocol to cell types; ChIP-Seq: large number of cells required.	Next Gen Sequencing data processing/ interpretation; may need to develop new algorithms for analysis.	Buenrostro et al., 2013, PMID: 24097267. Corces et al., 2017, PMID: 28846090. Skene et al., 2017, PMID: 28079019.
Single cell epigenetic assays, e.g. ATACseq, CUT&Tag	Chromatin state	TF	Single cell snapshot	'omic	Relative quantitation; C&T: normalized to background or spike-in control; some dropout events common.	High cost; separating cells; C&T require high specificity, high affinity antibodies; need to optimize protocol for each condition.	High dimensional data; batch effects; dropouts and sparsity; technical noise vs. biological effects.	Buenrostro et al., 2015, PMID: 26083756. Kaya-Okur et al., 2019, PMID: 31036827.
Sequencing of Intron- Containing RNA (e.g. caRNA-Seq, total RNA Seq)	Abundance of nascent RNA	\sim	Bulk	ʻomic	Relative quantitation; low sensitivity; accurate quantitation difficult due to variable intron excision rates across time course and genes.	High costs for library kits and Next Gen Sequencing.	'omic data processing/ interpretation; caRNA-Seq: non- linear quantitation, some non- nascent RNA species also sequenced.	Wissink et al., 2019, PMID: PMID: 31399713.
qRT-PCR	RNA abundance	AAAA	Bulk	Single analyte	Relative quantitation; absolute quantitation possible using standard.	qRT-PCR instrument required; entry level skill sets.	Appropriate normalization; standard methods.	Forlenza et al., 2012, PMID: 22131023.
Bulk mRNA Sequencing	mRNA abundance	AAAA	Bulk	'omic	Relative quantitation; absolute quantitation with spike-ins.	High costs for library kits and Next Gen Sequencing.	'omic data processing/ interpretation.	Su et al., 2014, PMID: 25150838. Kukurba et al., 2015, PMID: 25870306.
Single cell mRNA Sequencing	mRNA abundance	AAAA	Single cell snapshot	'omic or targeted multi- analyte	Absolute quantitation possible with UMI-based approaches; some dropout genes common.	Very high costs for kits or service; separating cells; maintaining cell health during assay; access to cell capture device and sequencing core.	High dimensionality data; batch effects; dropouts and sparsity; technical noise vs biological effects.	Shalek et al., 2014, PMID: 24919153. Luecken et al., 2019, PMID: 31217225.
Fluorescence In Situ Hybridization (FISH), e.g. MERFISH	RNA abundance	ANAD	Single cell snapshot	Multi-analyte	Absolute quantitation of mRNA spots; high sensitivity.	Good resolution fluorescence microscope required; If multiplexed: microfluidics required, time- intensive, complex protocol, correct hybridization probe design, feasable sample size is limited.	Cell segmentation, automated quantitation of RNA spots; If multiplexed: optical crowding of RNA spots esp. for highly expressed genes, analysis and interpretation is challenging	Chen et al., 2015, PMID: 25858977. Xia et al., 2019, PMID: 31118500.
Metabolite Analysis by Mass Spectrometry	Metabolic state		Bulk	Omics, (single analyte for absolute quantitation)	Relative quantitation; absolute quantitation possible using spike-ins; high sensitivity.	Mass spec required.	Optimizing parameters for peak identification in software.	Abuawad et al., 2020. PMID: 32114632.
Intracellular Cytokine Staining (ICS) by flow cytometry	Protein abundance	••••	Single cell snapshot	Multi-analyte	Relative quantitation (protein abundance/cell), absolute quantitation (portion of cells expressing specific protein)	Flow cytometer, specific antibodies against proteins of interest required; need to identify time point, to optimize permeabilization procedure.	Fluorescence compensation if using multi-color panel, gating strategies and multi-dimensional analysis.	Lovelace and Maecker, 2018, PMID: 29071680.
Enzyme-linked Immunosorbent Assay (ELISA)	Cytokine secretion		Bulk	Single analyte	Relative quantitation, absolute quantitation of cytokine concentration possible using standard.	Relatively expensive; plate reader required; antibodies or ready-made ELISA kit for cytokine of interest required.	Analysis is generally not very challenging.	Chiswick et al., 2012, PMID: 22262432.
Enzyme-linked Immunospot (ELISPOT) assay	Cytokine secretion	•••••	Single cell snapshot	Single analyte, (multianalyte possible)	Absolute quantitation of number of cells secreting cytokine of interest.	Relatively expensive; antibodies against cytokine of interest required; cell health during incubation time.	Analysis is generally not very challenging.	Kouwenhoven et al., 2001, PMID: 11687471.
LUMINEX®	Cytokine secretion		Bulk	Multi-analyte	Relative quantitation, absolute quantitation possible using standard; large dynamic range.	LUMINEX [®] instrument required; expensive kits; kit for desired analyte needs to be available.	Analysis is generally not very challenging.	Surenaud et al., 2016, PMID: 27835944.

Common Perturbation Approaches for the Study of Immune Response Signaling Networks (1/1)

Perturbation	Purpose Features		Challenges	Example protocol or study reference
Pharmacological inhibitors	Reduce enzymatic activity, or block protein-protein interactions	 Easy to administer Usually transient effect, with defined t = 0 Usually high efficiency if using established inhibitor 	 Cytotoxicity depending on concentration, target, and solvent Significant off-target effects a common problem, depends on available inhibitors, requires careful controls 	Van den Blink et al., 2001, PMID: 11123340. Greten et al., 2007, PMID: 17803913.
RNA interference by siRNA, often delivered by transfection or electroporation	Reduce protein production	 Easy to implement Strength of knockdown can be titrated Transient effect, but timecourse not well defined 	 Off-target effects require controls, such as suppressing the phenotype by complementary expression of an siRNA-resistant variant May activate type I IFN Effect may be cell-to-cell heterogeneous 	Birmingham et al., 2007, PMID: 17853862. Troegeler et al., 2014, PMID: 24890643.
RNA interference by shRNA, often vector-based delivery by viral transduction	Reduce protein production	 Permanent knockdown through genomic integration possible Inducible knockdown systems available Viral transduction often well tolerated 	 Off-target effects require controls, such as suppressing the phenotype by complementary expression of an shRNA-resistant variant May activate type I IFN May require selection of cell clone to avoid heterogeneity 	Moore et al., 2013, PMID: 20387148.
Traditional knockout in mice (or DT40 cell line)	Eliminate expression	 Permanent and complete Perfectly specific for gene of interest Conditional/ organ-specific knockouts possible Inducible knockout possible 	 Genetic compensation by family members may mask true function Embryonic lethality may be a problem Long and expensive process, low efficiency 	Hall et al., 2010, PMID: 19731224.
CRISPR knockout	Eliminate expression	 Easy to design and implement compared to traditional knockout Many design and delivery options available Avoids embryonic lethality if cell type of interest tolerates loss of protein Permanent knockout Inducible knockout possible 	 Genetic compensation by family members may mask true function Off target effects possible, can be reduced by careful design, but when clonal analysis is needed, multiple clones are required Often relatively low efficiency May result in cytotoxicity 	Ran et al., 2013, PMID: 24157548. Giuliano, et al., 2019, PMID: 31503414.
Modulation of gene expression via catalytically inactive CRISPR variants	Transcriptionally activate or repress target gene without altering protein coding sequence	 Applicable also to non-coding RNA expression CRISPRa: allows overexpression of endogenous genes Inducible designs available 	 Off targets effects possible, depend on design of guide RNA Designing guide RNA targeting transcriptional start site can be difficult (accessiblity, promoter use, lack of annotation) 	Qi et al., 2013, PMID: 23452860. Konerman et al., 2015, PMID: 25494202. Joung et al., 2017, PMID: 28333914.
Transient Transfection	Overexpress signal transducer or transdominant inhibitory mutant, introduce tagged or mutated genes, complement knockout.	 Easy to implement in some cell lines Expression starts within 12-24 h after transfection, reverses over time in most cells Expression levels can be titrated 	 Works well for some cell lines, but not for all, and rarely for primary cells Cell-to-cell heterogeneity of expression May activate type I IFN 	Kim et al., 2010, PMID: 20549496. Longo et al., 2014, PMID: 24011049. Zhang et al., 2010, PMID: 19347315.
Stable Transfection	As above	 Permanent genomic integration Cloning and/or selection used to achieve pure cell population Inducible expression systems available 	 Random genomic integration may disrupt gene functions Epigenetic silencing may occur Low efficiency, and long time required to grow pure population Cell health depends on nature of protein expressed 	Zhang et al., 2010, PMID: 19347315.
Viral Transduction (e.g. lenti- or retroviruses)	As above	 Ensures long-lasting expression Cloning and/or selection used to achieve pure cell population Inducible expression systems available 	 Epigenetic silencing may occur Cell health depends on nature of protein expressed Random genomic integration may disrupt unrelated gene functions, so when a clonal analysis is needed, multiple clones are required 	Leyva et al., 2011, PMID: 21281514. Zhang et al., 2010, PMID: 19347315.
CRISPR Knockin	Mutate or tag endogenous genes	 Targeted alterations of genes in endogenous locus possible Permanent alteration of gene Selection/cloning/sorting results in pure cell population 	 Low efficiency, sometimes difficult to select successful event Careful design necessary Delivery of protein/nucleic acid may not work for all cells 	Koch et al., 2018, PMID: 29844520.

Regulatory motifs in innate immune signaling networks (1/5)

Regulatory motifs in innate immune signaling networks (2/5)

Regulatory motifs in innate immune signaling networks (3/5)

FFLs Occurs when a signal splits into two branches that then combine again through an AND gate. However, the indirect path functions to inhibit the positive effect of the direct path.

Low fold change

Time

Response

Response

5.2. Incoherent FFLs: **Fold**

Change Detector

High fold change

Time

Basal

(<u></u>4

amount

log10(fold change)

Amplitude above basa

- If basal levels of Y are already high, then X's activation effect on Z is dampened, even when absolute abundance
- of X is high. • Whereas simple direct activation of Z by X is solely a function of the amplitude of X, the incoherent feedback motif is also a function of the basal level of X such that peak activity of Z is more proportional to the fold change in X.

NFkB-induced transcription:

- NFkB induction of a transcriptionally incompetent competitor (p50:50 homodimer) inhibits NFkB-induced gene activation.
- It thus provides memory of the cell's pre-stimulation state (Lee et al., 2014).

Incoherent FFL:

- X promotes production of Y and Z, but production of Y represses the production of Z.
- The action of X on Y and Z can be modeled with an activating Hill function for $f_x(t)$.
- The action of Y on Z can be modeled with a repressive Hill function for f_y(t) (rather than activating as in the coherent feedforward case).

Incoherent FFL (pulse generator):

- · An incoherent FFL acts as a pulse generator for Z.
- Initial production by X is dampened as the X-induced production of Y increases.
- When X is high, increased production of Y dampens overproduction of Z.

Controlling overproduction of inflammatory cytokines: • NFkB-induced ATF3 represses

 NFκB-induced ATF3 represses
 NFκB-induced expression of IL6 and IL12B (Gilchrist et al., 2006).

Regulatory motifs in innate immune signaling networks (4/5)

Motif	Diagram	Equation	Simulations	Description	Examples
6. Positive j feedback loops	$ \begin{array}{c} \text{nput} & \mathbf{Y} \\ \downarrow & \downarrow \\ \downarrow$	$\frac{dY}{dt} = k_{syn_Y} \frac{Z}{K+Z} - k_{deg_Y} Y$ $\frac{dZ}{dt} = k_{syn_Z} X \left(1 - \frac{K}{K+I(t)} \frac{K}{K+Y} \right) - k_{deg_Z} Z$ $\frac{dX}{dt} = k_{deg_Z} Z - k_{syn_Z} X \left(1 - \frac{K}{K+I(t)} \frac{K}{K+Y} \right)$		 Positive feedback motif: The Input signal produces Z, Z then produces its positive feedback regulator Y, which continues to promote the production of Z even after the input signal has gone. 	
6.1. Positive feedback loops: Ultrasensitivity		Persiste 0.6 0.5 0.4 0.2 0.2 0.1 0.3 0.2 0.1 0.3 0.2 0.1	nt input: dose response	 Ultrasensitivity (a feature of positive feedback motifs): The Input signal produces Z; positive feedback loops reinforce the activity of the signal The dose-response curve is ultrasensitive, or thresholded with a high Hill coefficient. The strength of the positive feedback determines the threshold and steepness of the dose response curve. 	Stimulus-response: • Positive feedback loops providing ultrasensitivity may filter out low-input noise, while triggering complete activation when a threshold is reached (Shinohara et al., 2014).
6.2. Positive feedback loops: Bistability		Transie	ent input: time course	 Bistability (a feature of positive feedback motifs): In contrast to the toggle switch, which loses activity once the input signal is gone, positive feedback motifs allow for bistability. The on-state remains stable, even after the incoming signal has terminated. One can describe the system as having two different attractor steady states, as is illustrated below with the on-state being reached even if the signal is terminated after only partial activation has been achieved. 	 Signaling by caspase 8/3: Cleaved and hence active caspase will trigger downstream effects, but also generate more active caspase. This contributes to the irreversibility of programmed cell death decisions (Eissing et al, 2004).

Regulatory motifs in innate immune signaling networks (5/5)

