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SUMMARY

Pathogen-derived lipopolysaccharide (LPS) and
cytokine tumor necrosis factor (TNF) activate NFkB
with distinct duration dynamics, but how immune
response genes decode NFkB duration to produce
stimulus-specific expression remains unclear. Here,
detailed transcriptomic profiling of combinatorial
and temporal control mutants identified 81 genes
that depend on stimulus-specific NFkB duration for
their stimulus-specificity. Combining quantitative
experimentation with mathematical modeling, we
found that for some genes a long mRNA half-life
allowed effective decoding, but for many genes this
was insufficient to account for the data; instead, we
found that chromatin mechanisms, such as a slow
transition rate between inactive and RelA-bound
enhancer states, could also decode NFkB dynamics.
Chromatin-mediated decoding is favored by genes
acting as immune effectors (e.g., tissue remodelers
and T cell recruiters) rather than immune regulators
(e.g., signaling proteins and monocyte recruiters).
Overall, our results delineate two gene regulatory
strategies that decode stimulus-specific NFkB dy-
namics and determine distinct biological functions.

INTRODUCTION

The innate immune response is the first line of defense against

pathogens. Exposure to a pathogen leads to dramatic changes

in the transcriptome of myeloid and fibroblastoid cells (Nau

et al., 2002; Novershtern et al., 2011; Ramirez-Carrozzi et al.,

2009; Ramsey et al., 2008; Ravasi et al., 2010). These cells coor-

dinate multi-tiered immune responses by inducing cell-intrinsic

defenses, recruitment of professional innate immune cells (e.g.,

neutrophils and macrophages), the initiation of an adaptive

immune response (via dendritic cells and T cells), and tissue

remodeling for pathogen clearance and subsequent wound

healing. Numerous molecular factors have been identified that
regulate these pathogen-responsive gene expression programs

through complex signal regulatory networks (Amit et al., 2009;

Cheng et al., 2011; Gilchrist et al., 2006; Nau et al., 2002; No-

vershtern et al., 2011; Ramsey et al., 2008; Ravasi et al., 2010).

Previous studies (Cheng et al., 2017; Tong et al., 2016) delin-

eated the pathogen-responsive transcriptome in terms of the

combinatorial control of three major transcription factors (TFs),

activating protein 1 (AP1), nuclear factor kB (NFkB), and interferon

regulatory factors (IRF/ISGF3). Specifically, examining the

transcriptomic data quantitatively provided evidence for the p38

pathway functioning combinatorially with NFkB to potentiate

LPS-specific expression (Cheng et al., 2017). Further, focusing

on highly induced genes and analyzing transcriptomic data at sin-

gle gene resolution helped to identify five genes that engage the

combinatorial functions of IRF3 and NFkB (Tong et al., 2016).

These studies also suggested that combinatorial TF control is

not the only regulatory strategy that cells can employ to achieve

stimulus-specific gene expression. Several signaling pathways

have been found to produce stimulus-specific TF temporal pat-

terns (a.k.a. ‘‘dynamics’’), leading to the hypothesis that a tem-

poral code specifies stimulus-specific gene expression (Behar

and Hoffmann, 2010; Hoffmann and Baltimore, 2006; Purvis

and Lahav, 2013; Hoffmann, 2016). Indeed, a number of studies

have presented evidence that stimulus-specific gene expression

depends on the dynamics of TF activity (Batchelor et al., 2011;

Hao and O’Shea, 2011; Hoffmann et al., 2002; Purvis and Lahav,

2013; Werner et al., 2005). However, the number of genes

controlled by TF dynamics, and the molecular mechanisms

they employ to decode such dynamics to achieve stimulus-

specific expression has remained unclear.

One confounding aspect of TF dynamics is that they are com-

plex and differ in multiple aspects, for example, in speed of acti-

vation, amplitude, oscillatory components, and duration. Thus,

focusing on a specific dynamic feature may be key to gain a

mechanistic understanding of the gene regulatory mechanisms

that decode even complex TF dynamics. Prior work focusing

on peak amplitude or fold change of NFkB activation identified

an incoherent feedforward loop as a decoding mechanism (Lee

et al, 2014). In this study, we focused on identifying decoding

mechanisms for stimulus-specific duration of NFkB activity.

Based on the gene expression programs induced by a single

stimulus, recent studies in other biological systems, showed
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that mRNA half-life may play a role in decoding the duration of

p53 dynamics (Hafner et al., 2017; Porter et al., 2016) and ERK

signaling (Uhlitz et al., 2017). This relates to the observation

that the temporal ordering of gene expression is governed by

mRNA half-life, for example, during the response to H2O2-

induced stress in yeast (Shalem et al., 2008), upon IL-2 signaling

in murine T cells (Elkon et al., 2010), or upon TNF-induced NFkB

signaling in mouse fibroblasts (Hao and Baltimore, 2009). How-

ever, it is currently not understood whether stimulus-specific

expression of immune response genes is mediated by differen-

tial mRNA half-life control, and which genes actually employ

this gene regulatory strategy. Indeed, whether this mechanism

is sufficient to account for observed stimulus-specific gene

expression, or whether other mechanisms of dynamics decod-

ing might also contribute, is an open and important question.

These considerations suggest that dissecting the regulatory

strategies of immune response genes requires not only detailed

quantitative experimentation but also quantitative interpretation

of the data. That in turn requires a mathematical modeling frame-

work that recapitulates the dynamic processes underlying gene

expression. The systems biology approach of combining experi-

mental studies with computational models to achieve a quantita-

tive understanding has been particularly useful in the study of

NFkB signaling, uncovering numerous mechanisms that encode

NFkB dynamics (Basak et al, 2012). A key utility of mathematical

modeling has been to determine the sufficiency of a mechanistic

explanation to account for the observed phenomena or measure-

ments. However, quantitatively applying mathematical modeling

tomammaliangeneexpressiondatahasprovenmorechallenging.

In one study, mathematical models explored the combinatorial

control of signaling pathways for LPS-responsive gene clusters

(Cheng et al., 2017). In another study, mathematical models were

fit to gene expression data produced by a synthetic experimental

system for ERK signaling in PC12 cells and MCF7 cells that

avoided the combinatorial complexities of endogenous signaling

(Uhlitz et al., 2017). However, quantitative modeling at single

gene resolution to understand the mechanisms of stimulus-

specific gene expression in primary cells has not been reported.

Here, we addressed how TNF- versus LPS-specific NFkB acti-

vation dynamics are decoded by target genes to produce stim-

ulus-specific gene expression responses. We developed a

workflow of iterative mathematical modeling and experimentation

to evaluate the sufficiency of alternate gene regulatory strategies.

We found that anmRNA half-life of just >30min could be an effec-

tive decoding mechanism, but for the majority of genes, stimulus-

specific transcription initiationmediated by chromatin-associated

control mechanisms contributed substantially to decoding stim-

ulus-specific NFkB dynamics. Using a two-step mathematical

model for gene activation could recapitulate the mRNA dynamics

of a majority genes and quantify chromatin-associated transcrip-

tional and cytoplasmic post-transcriptional mechanisms to

achieve stimulus-specific immune responses.

RESULTS

The Duration of NFkB Activity Controls LPS-Specific
Expression of Innate Immune Genes
The early LPS-responsive transcriptome is largely determined by

the activation of the TFs NFkB, AP1 and IRF (Figure 1A; Cheng
2 Cell Systems 10, 1–14, February 26, 2020
et al., 2017), while the cytokines TNF and IL1 activate only

NFkB and AP1. We asked whether LPS-specific (compared to

TNF and IL1) gene expression can occur in the absence of the

primary IRF family member ISGF3. In Ifnar�/� mice and cells,

ISGF3 activation is abrogated, thereby diminishing the encoding

of stimulus-specific combinations of TFs. However, stimulus-

specific dynamics of NFkB activity aremaintained in Ifnar�/�mu-

rine embryo fibroblasts (MEFs) (Figure 1B). Thus using Ifnar�/�

MEFs allow us to identify genes that may be stimulus-specifically

expressed, not by the combinatorial TF code (Cheng et al., 2017)

but a temporal TF code (Hoffmann, 2016; Behar and Hoff-

mann, 2010).

Genome-wide expression measurements by mRNA-seq in

replicate at six time points (0.5, 1, 2, 3, 5, and 8 h) in response

to pulse stimulation with a 80% saturating dose of LPS, TNF or

IL1 identified 177 differentially induced genes with fold change

of >4-fold and false discovery rate (FDR) < 0.01 at any timepoint.

Binary comparisons of the maximum expression quantified by

reads per kilobase per million (RPKM) revealed that many genes

showed higher expression in response to LPS than TNF or IL1,

but that IL1 and TNF produced roughly equivalent levels of

expression for any gene (Figure 1C; Table S1). Pairwise stim-

ulus-specificity for each gene was determined by calculating

the log2 ratio of maximum gene expression (RPKM) in any two

stimulation conditions. Using this specificity metric, we found

that LPS versus IL1 specificity strongly correlated with LPS

versus TNF specificity (Figure 1D; Table S1), allowing us to focus

on the latter as being representative for pathogen versus cyto-

kine-responsive gene expression.

To further categorize the 177 inducible genes, we used a

threshold value of 0.5 (i.e., 20.5=1.4-fold difference) for speci-

ficity; by this measure, 106 genes were LPS-specific (LPS versus

TNF specificity > 0.5), 19 were TNF-specific (LPS versus TNF

specificity < �0.5), and the remaining 52 genes fell below the

stimulus-specificity threshold (Figure 1E; Table S1). Expression

profiles from two biological replicates showed excellent repro-

ducibility in mRNA abundance measurements (Figure S1A;

Table S1), in the evolution of their time-courses, and in specificity

metrics (Figure 1F; Table S1). Our results demonstrate that even

in the absence of combinatorial TF coding by the IFNAR-ISGF3

axis, there is a high degree of LPS-specific gene expression.

Two mechanisms may underlie this phenomenon: either combi-

natorial coding via another LPS-specific signaling pathway, such

as for example the TBK1-IRF3 and MAPKp38-TTP pathways

(Cheng et al., 2017), or temporal coding by stimulus-specific dy-

namic control of NFkB (Werner et al., 2005).

To address the role of stimulus-specific NFkB dynamics in

mediating stimulus-specific gene expression programs, we

quantitated time-course NFkB activity in these TNF and LPS

stimulation conditions and found LPS-specific long-lasting activ-

ity (Figure 2A). To diminish the stimulus-specificity in NFkB dy-

namics, we generated MEFs that are deficient in the key NFkB

negative feedback regulator IkBa (encoded by Nfkbia) in the ge-

netic background (Ifnar�/�) of combinatorial control deficiency

(hereafter referred to as ‘‘control,’’ as temporal coding is tested),

resulting in a temporal control ‘‘mutant’’ (Ifnar�/�Nfkbia�/�). We

found that in the mutant MEFs, NFkB activity was extended in

response to TNF, and largely unaltered in response to LPS.

Particularly, at 2 h, nuclear NFkB activity was still present in
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Figure 1. Identifying LPS-Specific Genes that Do Not Depend on Interferon Signaling

(A) Schematic of the signaling pathways for TNF, LPS, and IL1 that activate downstream gene expression through transcriptional factors AP1, NFkB, and IRF3/

ISGF3. The percentage of LPS-induced genes that are targets of each transcription factor, as identified in Cheng et al. (Cheng et al., 2017), is indicated.

(B) EMSA showing NFkB activity in Ifnar�/� MEFs following treatment with LPS (100 ng/ml), TNF (1 ng/ml), or IL1 (1 ng/ml).

(C) Scatter plots of maximum gene expression between LPS and TNF, LPS and IL1, and TNF and IL1.

(D) Scatter plot showing that LPS versus TNF specificity correlates well to LPS versus IL1 specificity. The pairwise specificity (L versus T or L versus I) for each

gene is defined by log2 of the fold ratio between maximum expression in LPS treatment versus TNF or IL1 treatment, respectively.

(E) Pie chart showing TNF-specific, LPS-specific, or non-specific genes, using a L versus T specificity threshold value of R0.5 or %�0.5.

(F) Heatmap of polyA+ RNA expression profiles (normalized to max) of the 177 induced genes in Ifnar�/�MEFs by LPS (100 ng/ml), TNF (1 ng/ml), or IL1 (1 ng/ml)

at each of the indicated time points. The three groups of genes defined in (E) are shown in distinct expression clusters. Specificity metrics (L versus T, L versus I,

and T versus I) are shown on left. Results from two independent biological replicates are shown (see also Table S1).
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mutant cells stimulated with TNF whereas in control cells, it had

returned to basal levels (Figures 2A and S2A). Thus, IkBa defi-

ciency extended TNF-induced NFkB activity by about 1 h

causing the duration of TNF-induced and LPS-inducedNFkBac-

tivity to be similar.

To test howdiminished stimulus-specificity inNFkBduration af-

fects the stimulus-specificity of gene expression, we compared

the transcriptomes of mutant and control cells stimulated with

LPS or TNF (Figure S1B; Table S2). Of the 177 inducible genes,

104 genes were found to fall below the threshold of stimulus-

specificity in the mutant (compared to 52 in control), 55 genes

were still LPS-specific (compared to 106 in control), and 18 genes

(compared to 19) were found to be TNF-specific (Figure 2B;

Table S2). Thus, by reducing the difference in the duration of

NFkB activity in the LPS and TNF stimulation scenarios, we dimin-

ished the specificity of gene expression responses.

In order to determine in a more quantitative and gene-spe-

cific manner which genes showed diminished stimulus-speci-

ficity in the mutant, we plotted the specificity of LPS versus
TNF for each gene for the mutant (y axis) against that for the

control (x axis) as a scatterplot (Figure 2C, left panel). One

example of a stimulus-non-specific gene (group I) is Fos, whose

expression was equivalent for LPS and TNF in both control and

mutant cells (Figure 2C, right panel), which is consistent with its

transcriptional control being regulated by the MAPK/JNK axis

rather than by NFkB. Focusing on the 106 genes that were cate-

gorized as LPS-specific in control cells, we found that many

genes showed diminished specificity in the mutant, but others

were unaffected. We categorized 18 genes as LPS-specific

but independent of NFkB duration (group II) as their specificity

score was maintained in the mutant; a representative gene is

Il1a (Figure 2C, right panel) as its substantial LPS specificity

was maintained in the mutant, and whose expression is known

to be subject to combinatorial control by the MAPK p38 axis

(Cheng et al., 2017). However, the majority of genes (88 genes),

LPS-specific expression was either fully or partially dependent

on the duration of NFkB dynamics (group III), as their specificity

score was reduced by at least one-third (dashed blue line in
Cell Systems 10, 1–14, February 26, 2020 3
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Figure 2. Determining the NFkB Duration Dependency of LPS-Specific Gene Expression

(A) Dynamics of nuclear NFkB activity measured by EMSA in control (Ifnar�/�) and mutant (Ifnar�/�Nfkbia�/�) in response to 30 min pulse of 100 ng/ml LPS or

1ng/ml TNF. Error bars are standard deviations (SD) from 3–5 independent experiments. p value was calculated by multiple t test using Graph-pad Prism. p value

< 0.05 considered significant.

(B) Pie charts showing TNF-specific, LPS-specific, or non-specific genes using the specificity threshold of 0.5 in control versus mutant (same definition as in

Figure 1D).

(C) 177 differentially induced genes are categorized into 3 groups based on the loss of specificity in themutant. Group I. not LPS-specific: if L versus T in control as

well as mutant is less than 0.5; group II. NFkB-dynamics independent and LPS-specific: if L versus T in control is higher than 0.5 and L versus T in mutant is not

reduced by 2^0.5-fold (i.e., above line y = 0.71x); group III. NFkB-dynamics dependent and LPS-specific: if L versus T in control is higher than 0.5 and L versus T in

mutant is reduced by 2^0.5-fold (i.e., below line y = 0.71x). The expression trajectories, for example, genes in each category are shown on the right.

(D) Heatmap of polyA+ RNA-seq gene expression profiles (normalized to max) for control and mutant cells for indicated time points (see also Table S2).

(E) Known TF binding motifs (kB, AP1, and IRE)

(F) Gene Ontology (GO) terms enrichment level is shown as the p value in�log10, using genes in each category and remaining genes as background. If p value >

0.05, it is shown as ‘‘–’’.
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Figure 2C, left panel). Ccl5 serves as an example of this cate-

gory as its expression is highly LPS-specific in the control,

but this specificity was almost entirely lost in the mutant (Fig-

ure 2C, right panel). In fact, visual inspection of line graphs (Fig-

ure S2B) proved useful as a quality control measure for our

analysis. We identified 7 genes as being incorrectly categorized
4 Cell Systems 10, 1–14, February 26, 2020
in group III due to elevated basal levels in the mutant (Fig-

ure S2B). The re-categorization thus resulted in a total of

25 genes in group II and 81 genes in group III. In subsequent

analyses, we focused on the 81 genes whose LPS-specific

expression was at least partially dependent on the duration of

NFkB dynamics.
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Based on these groupings, we plotted the time-course RNA-

seq data (normalized to max) from control and mutant cells as

a heatmap, ordering genes within each group by the time of

peak expression (Figure 2; Table S2). As described, focusing

on the 106 genes whose expression was LPS-specific in control

cells, group II contained 25 genes whose LPS-specific expres-

sion in control was largely maintained in the mutant, and group

III contained 81 genes whose LPS-specific expression in control

showed substantially diminished specificity in the mutant (Table

S2). We examined the relative enrichment for the motifs (kB, AP1

and IRE) of relevant TFs in the promoter proximal regions (�500

to +200 bp) of genes in each group against the remaining LPS-

induced genes (Figure 2E). These results revealed that whereas

non-specific group I genes had a preponderance of both kB and

AP1 motifs, and LPS-specific group II genes had both kB and

IRE motifs, LPS-specific, NFkB-dynamics-dependent group III

genes showed only a preponderance of kB motifs. Further,

gene ontology (GO) enrichment analysis revealed that non-spe-

cific group I genes code for a variety of transcriptional regulators,

and group II genes showed an enrichment for regulators of inter-

feron signaling, while group III genes were enriched in the GO

term ‘‘innate immune response,’’ suggesting that NFkB temporal

coding is functionally important for mounting an effective im-

mune response (Figure 2F).

Long mRNA Half-Lives Are Correlated with LPS
Specificity
We next set out to characterize the gene regulatory strategies

that allow group III LPS-specific genes to decode the duration

of stimulus-specific NFkB dynamics.

Mathematical modeling of RNA synthesis and degradation

suggests (Yang et al., 2003) and experimental data confirm

(Cheng et al., 2017; Elkon et al., 2010; Hao and Baltimore,

2009; Nagashima et al., 2015; Porter et al., 2016; Shalem et al.,

2008) that short-lived transcripts achieve their half-maximal in-

duction more rapidly than long-lived transcripts. This suggests

that long-lived transcriptsmay only be fully induced by persistent

TF activities.

To test this hypothesis, we developed a simple kinetic model

(model v1) of TF-dependent mRNA production (Bintu et al.,

2005) (Figure 3A), and we asked how NFkB activities in response

to LPS or TNF may affect the abundances of mRNAs of different

half-lives. We interpolated the quantitated NFkB activities

measured by electrophoretic mobility shift assay (EMSA) for

both control and mutant cells (Figure 2A) to use as input to the

ordinary differential equation (ODE) model (Figure 3A). The

mRNA abundances (color scale, z axis) were then simulated

over time (x axis) in control (Figure 3A) as a function of mRNA

half-lives ranging from 1 to 1,000 min (y axis). The log2 peak

expression ratio (P.R.) (representing LPS versus TNF specificity

for mRNA) was calculated and indicated in a yellow color bar

on the right side of the heatmap. As expected, we found that

LPS-specific expression is more pronounced in mRNAs with

long half-lives. Thesemodel simulations suggest that for mRNAs

whose half-lives are >30 min, TNF-induced NFkB activity is too

transient to produce target gene mRNA of half the maximum

response amplitude. The simulated mRNA trajectories for

5 min, 1 h, and 8 h half-lives also documented this phenomenon

(shown on right of Figure 3A).
We next asked whether the model would predict that mutant

cells produce diminished stimulus-specific gene expression.

Using the measured NFkB time-courses associated with mutant

cells for analogous model simulations (Figure 3B), we found that

the specificity metric associated with mRNAs with half-lives

between 30 and 100 min were substantially diminished, though

mRNAs with half-lives of >100 min largely retained it. Taken

together, these simulation results suggested that mRNAs with

half-lives of greater than 30 min might decode the duration of

stimulus-specific NFkB dynamics and that the IkBa mutant

may render mRNA of 30 to 100-min half-lives incapable of stim-

ulus-specific gene expression. These findings are summarized in

a graph of LversusT specificity of NFkB target genes as a func-

tion of their mRNA half-life (Figure 3C): whereas in control cells,

NFkB target genes with >30-min half-life may show LPS speci-

ficity (greater than 0.5 threshold), in mutant cells, LPS-specific

genes must have a half-life of >100 min.

To address this model prediction experimentally, we

measuredmRNA half-lives using actinomycin D (actD)-mediated

transcriptional inhibition in two biological replicates (Figure 3D;

Table S3). Though this approach is used formRNA half-life deter-

minations, it is not always reliable (Lugowski et al., 2018). To

focus on likely reliable data, we developed an algorithm and soft-

ware (STARMethods; Table S3) for deriving half-life estimates by

linear regression in log2 scale only when specific conditions were

met. We show four example genes, for three of which the data

allowed for half-life derivations (Figure 3E). Overall, for the genes

for which we are able to derive half-lives from both datasets, the

values were reasonably reproducible (Figure 3F) and matched

with the values that were reported by a previous study (Hao

and Baltimore, 2009).

Using these measured mRNA half-lives, we plotted the

measured LversusT specificity of control and mutant against

the median measured mRNA half-life values, binned into five

ranges as indicated (Figure 3G). We found that LversusT

specificity indeed correlated with mRNA half-life up to about

a 5 h of half-life. Furthermore, we found that the genes that

had lost their LversusT specificity in the mutant were in the

(30–60) and (60–180) min bins, though very long-lived mRNAs

retained some LversusT specificity. These results showed a

remarkable resemblance to the model simulations (Figure 3C).

In sum, these results suggest that an intermediate mRNA

half-life of 30–180 min is correlated with LPS-specific

NFkB target gene expression in control cells, but not in

IkBa-mutant cells, which show diminished stimulus-specific

NFkB dynamics.

A Long mRNA Half-Life May Be Sufficient for Decoding
Stimulus-Specific NFkB Duration
To extend the correlative finding, we aimed to test whether the

LPS specificity of NFkB dynamics-dependent genes can

indeed be accounted by their mRNA-half-lives. To this end we

embedded the mathematical model v1 used for hypothesis gen-

eration (Figure 3A) into a gene-by-gene parameterization work-

flow (Figure 4A). This allowed us to determine whether for a given

gene a set of value for the model parameters (k0, kf, Kd) could be

found that satisfy the available data, namely the quantified NFkB

activity, mRNA half-life estimates, and mRNA-seq time-course

data in control and mutant cells stimulated with LPS and TNF.
Cell Systems 10, 1–14, February 26, 2020 5
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Figure 3. Long mRNA Half-Lives Are Correlated with LPS Specificity
(A and B) Heatmap of simulated gene expression profiles with different mRNA half-lives (from 1 to 1,000 min) using a simple ordinary differential equation (ODE)

model. NFkB activity profiles in response to LPS (left) or TNF (right) are used as input, in control (A), or in mutant (B). ODE is shown in the top panel: mRNA

abundance is determined by NFkB-dependent synthesis using a Hill-equation (with a basal synthesis) and a first-order degradation term. The yellow color bar on

the right side of the heatmap shows the peak expression ratio (P.R.) between LPS and TNF input given the same mRNA half-life. Example trajectories of different

half-lives are shown on the right for LPS input (red line) and TNF input (green). Gray dashed lines indicate a half-life of 30 and 100 min.

(C) Line-graph showing that the predicted L versus T specificity from simulation results in (A) and (B) is correlated with mRNA half-life.

(D) Gene expression profiles (log2 ratio with respect to unstimulated timepoint) for the 177 inducible genes after actinomycin D treatment (ActD-seq) in control

cells at indicated time points for two independent biological replicates are shown. The right-side annotation color-bars indicate the derived mRNA half-life using

an adapted linear regression method on log2 expression of actinomycin D time-course data (see also Table S3).

(E) Four example genes are shown on the right. Dots are the values fromActD-seq datawith two different colors to indicate replicates. The dots with an open circle

are the data points selected for linear regression. If the initial reads are not enough (less than 32), the half-life is not determined (e.g., Mmp1b).

(F) Scatter of derived half-life between the two replicates with density distribution shown on the top and right.

(G) Boxplots showing that the measured L versus T specificity from the RNA-seq in Figure 2D is correlated with the derived mRNA half-life from Act-D-seq.
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Thereby, we aimed to determine whether mRNA half-life was it-

self a sufficient decoding mechanism to explain the stimulus-

specific expression of group III duration-dependent NFkB target

genes. We performed the fitting procedure for all 81 genes in

group III and plotted both the experimental data and the simula-

tion data as a heatmap (Figure 4B). We found that for 31 genes,

the model simulations recapitulated the RNA-seq data well,
6 Cell Systems 10, 1–14, February 26, 2020
showing a fit with a normalized RMSD (nRMSD) of <0.13 (Table

S4). As expected, many of these genes were induced rather late

indicating a long mRNA half-life. Line graphs of mRNA time-

courses for some genes deemed to be well-fit or poorly fit clari-

fied that an nRMSD<0.13 provided a stringent cut-off. Whereas

Ccl2,Gsap,Rab15, andMmp3 showed a good fit between simu-

lation and data, Rel, Nfkb1 and Ccl1 showed a less good fit
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Figure 4. Model-Aided Analysis to Determine Sufficiency of mRNA Half-Life as the Decoding Mechanism

(A) Diagram of model v1 showing NFkB activity and mRNA half-life (range) as inputs to output mRNA expression profiles. By comparing the predicted trajectory

with the experimental measurement from RNA-seq, we can test for each gene in category III in Figure 2D, whether a parameter set can be found that allows the

model to fit the data.

(B) Comparing gene expression profiles between data and best-fit model simulation in response to indicated stimulus. The expression levels are normalized to the

maximum in control or mutant individually. The yellow and black color bar indicates whether the best-fit model is acceptable (normalized RMSD < 0.13) or not

(see also Table S4).

(C) Line graphs for seven genes are shown to represent how well the best-fit model matches the experimental data.

(D) Testing whether NFkB dynamics-dependent LPS specificity is dependent on the mRNA half-life for the fitted genes. Predicted L versus T specificity in best-fit

model for control (black closed circle) andmutant (black open circle) for the genes with nRMSD< 0.13 in 4B is shown. The length of the line connecting control and

mutant indicates the degree to which specificity is dependent on NFkB dynamics. The blue lines and dots are the in-silico perturbation results obtained by only

changing the mRNA half-life in the best-fit model to 15 min.

(E) Expression trajectories for four genes with estimated half-life and fixed short half-life (15 min) are shown.

(F) Graph showing the comparison of L versus T specificity of model fitted (yellow) and non-fitted (black dots) genes in control versusmutant. L versus T specificity

of model fitted (yellow) genes is significantly higher compared to non-fitted (black dots) genes in mutant but not in control. p values are generated by one-tailed

Student’s t test.
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(Figure 4C) and in most of these cases the TNF simulations in the

mutant typically fell short of what the data indicated.

To test whether NFkB duration-dependent LversusT speci-

ficity was indeed dependent on the mRNA half-life for the fitted
genes, we plotted the LversusT specificity of each of the 31

best-fit models for control cells (black closed circle) and mutant

cells (black open circle) (Figure 4D). The length of the line con-

necting LversusT specificity of control and mutant indicates
Cell Systems 10, 1–14, February 26, 2020 7
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Figure 5. Stimulus-Specific NFkB Dynamics May Be Decoded at the Level of Transcriptional Initiation

(A) Cartoon showing the synthesis of nascent, chromatin-associated RNA (caRNA) in the nucleus, and transport of mature RNA (mRNA) to cytoplasm after post-

transcriptional processing.

(legend continued on next page)
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the dependence of specificity on NFkB duration as probed with

IkBa-deficiency. We then considered how this LversusT speci-

ficity metric would be affected if these genes had a short

mRNA half-life. With mRNA half-life set to 15 min, we simulated

LversusT specificity of control and mutant in each of the 31

genes, plotted in blue (Figure 4D). This analysis revealed that

the LversusT specificity was universally dependent on a long

mRNA half-life. Plotting the simulation time-course data directly

for a few genes confirmed these results (Figure 4E). When the

estimated mRNA half-lives were used, the four sample genes

showed high LversusT specificity in control conditions, but

diminished LversusT specificity in the mutant. However, when

the mRNA half-life was set to 15 min, LversusT specificity was

either eliminated (Rab15) or significantly diminished (Ccl2,

Gsap, and Mmp3) in control and thus the mutant showed little

effect.

While our simple modeling approach provides a sufficient

explanation for 31 of the 81 genes that show NFkB-duration-

dependent LversusT specificity, we wondered whether remain-

ing 50 genes that did not show an adequate fit to the simple

model were in some manner distinct. We graphed L versus T

specificity for control and mutant for the 31 best-fit genes and

for the remaining 50 genes (Figure 4F). Remarkably, we found

that while the good-fit genes showed only partial NFkB-dura-

tion-dependence for LversusT specificity, the remaining 50

genes showed a higher degree of NFkB-duration-dependence

(p value < 0.0002). These results suggest that mRNA half-life

may not be solely responsible for controlling LversusT specificity

of these genes but that theremay be additional regulatory layers.
Stimulus-Specific NFkB Duration May Also Be Decoded
by Transcriptional Mechanisms
In order to examine whether an additional regulatory layer for de-

coding stimulus-specific NFkB-durationmay occur at the level of

transcriptional initiation, we measured nascent transcript levels

in control and mutant cells by isolating total chromatin-associ-

ated RNA (caRNA) followed by ribosomal RNA depletion and

Next Gen Sequencing at six time points in response to TNF

and LPS stimulation (Figure 5A). Of the 81 LPS-specific dy-

namics-dependent genes, 39 were found to be substantially

LPS-specific at the level of caRNA in control cells (Figure 5B).

Among the 39 LPS-specific nascent transcripts, in the mutant

16 genes lost specificity to below the threshold. These data sug-

gested that for some genes the mechanisms controlling tran-

scriptional initiation may indeed be capable of decoding the

duration of NFkB activity.

To relate caRNA-seq and mature polyA+ RNA time-courses,

we plotted both datasets side by side for the 81 genes in a heat-

map (Figure 5C), showing them in the three clusters based on

specificity. The first cluster contains 42 genes that did not

show substantial LPS-specific caRNA levels and presumably
(B) Pie charts showing LPS-specific or non-specific genes using a threshold of 2

(C) Heatmaps comparing gene expression (normalized to max) at polyA+ RNA (

indicated time points (see also Table S5)

(D) Relative expression levels are shown by line graphs.

(E) Heatmap of RelA ChIP-seq in control and mutant cells for genes in cluster 3 (t

Boxplots showmaximum peak intensity for each gene in the heatmap (normalized

(two-sided t test).
achieves stimulus-specific polyA+ RNA through post-transcrip-

tional mechanisms, including mRNA half-life. The second cluster

contains 23 genes that showed LPS-specific caRNA in control

cells and retained that specificity in the mutant; indeed, their

stimulus-specificity at the polyA+ RNA level was only partially

diminished in the mutant. These genes might be targets of other

LPS-specific TFs such as IRF3, or they may be sensitive to dura-

tions of NFkB longer than 2 h. The third cluster contains 16 genes

that showed LPS-specific caRNA in control cells but lost that

specificity in the mutant; in other words, their caRNA-seq data

mirrored the polyA+ RNA-seq data, indicating that NFkB-dura-

tion-dependent LPS-specific gene expression for this cluster is

produced primarily by chromatin-associated mechanisms that

control transcriptional initiation.

Line graphs of a few example genes (Figure 5D) confirmed

these conclusions. For example, Ccl5 is LPS-specific at both

the caRNA and polyA+ RNA level in control cells, with the Lver-

susT specificity score >0.5 for both data types. In mutant cells,

this gene still showed some, though diminished LPS specificity

in caRNA but specificity at the polyA+ RNA level was almost

entirely lost. Cgn is LPS-specific in caRNA as well as in polyA+

RNA in control but not in mutant cells indicating a critical role

for the transcriptional initiation mechanism in decoding NFkB

duration. Fpr1 showed LPS specificity in control at caRNA as

well as in polyA+ RNA level. This specificity was lost at the

caRNA level in the mutant but only partially at the level of polyA+

RNA indicating the presence of LPS-specific post-transcrip-

tional mechanism underlying LPS-specific gene expression.

NFkB-duration-dependent transcriptional initiation may in prin-

ciple be mediated either by molecular mechanisms that control

chromatin accessibility to NFkB or by some duration-sensitive

downstream step in co-activator recruitment, pre-initiation com-

plex assembly, or activation. For the former, NFkBwith longer nu-

clear residence timemay gain better access to its binding site. We

examined this possibility by performing RelA ChIP-seq analysis in

both control and mutant cells. Focusing on RelA binding events in

the proximity of genes in the third cluster, we found that their LPS

specificity was weakly correlated not just with the duration of RelA

binding but peakChIP read counts (Figure 5E) indicating that RelA

may not achieve equivalent access to its binding motif when it is

transiently activated. In contrast, in mutant cells peak read counts

were similar in response to LPS and TNF (Figure 5E, lower panel).

This result indicates that the duration of NFkB activation deter-

mines whether RelA is able to gain access to its binding site and

suggests that there is a chromatin-associated mechanism that

decodes the duration of NFkB signaling.
Model-Aided Quantification of Transcriptional and Post-
transcriptional Contributions
In order to more quantitatively relate and interpret the caRNA

and polyA+ RNA datasets, we constructed a mathematical
0.5 in control versus mutant at the caRNA level.

mature mRNA) and caRNA (pre-mRNA) levels for control and mutant cells for

op panel). Grayed out rows were genes for which no peaks were mapped to it.

individually for control andmutant cells) (bottom panel) with p values indicated

Cell Systems 10, 1–14, February 26, 2020 9
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Figure 6. Model-Aided Analysis to Quantify Chromatin-Associated Decoding of Stimulus-Specific NFkB Dynamics
(A) Model diagram and ODEs of two-step model v2. NFkB (red dimer) serves to both open chromatin and activate transcription. Chromatin transitions between

closed, open, and active states. Transcription can only occur from the active state. Parameters in parentheses correspond to the parameters in the model. The

details of the model can be found in the STAR Methods section.

(B) Experimental data and model simulation of three example genes with nRMSD for each gene shown.

(C) Simulation heatmap for caRNA and polyA+RNA in control andmutantMEFs stimulatedwith LPS or TNF. (nRMSD<0.13 defined as good fit for v2, markedwith

yellow; for v1, same as Figure 4B; see also Table S6) (See also Figure S3 for side-by-side comparison of data and simulation).
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model v2 in which we considered transcriptional initiation by a

chromatin-associated mechanism that is sensitive to the dura-

tion of NFkB activity. Based on the observations from caRNA-

seq and RelA-ChIP-seq data, model v2 describes three states

of chromatin – closed, open, and active – with NFkB not only be-

ing able to activate the gene, but also acting to transition it from a

closed to open state (Figure 6A). This may reflect a conforma-

tional or chromatin-state transition that prior studies reported

NFkB to be capable of either via SWI/SNF recruitment (Ram-

irez-Carrozzi et al., 2009) or de novo enhancer formation

(Kaikkonen et al., 2013; Ostuni et al., 2013), and has been used

previously to describe the control of the IL-4 gene (Mariani

et al., 2010). A detailed description of the model equations is

included in STAR Methods.

To quantitatively interpret the available data, we followed

the established parameterization workflow. Specifically, we first

determinedwhether there is a set of values for the free parameters

(k-1, k-2, Kd1, and Kd2) that satisfy the available data for a given

gene, namely, the quantified NFkB activity, measured mRNA

half-life, and caRNA-seq and polyA+ RNA-seq time-course data

in control and mutant cells stimulated with LPS and TNF. When

the normalized root-mean square difference (nRMSD) between
10 Cell Systems 10, 1–14, February 26, 2020
model simulations and data time points were%0.13, we deemed

the model to provide an appropriate fit to the data (Table S6). Line

graphs showing the best-fit model simulation results for caRNA

and mRNA dynamics (Figure 6B) for 3 genes (Ccl5, Cgn, and

Fpr1) provide a visual confirmation that these models recapitulate

the data reasonablywell. By thismeasure, we found thatmodel v2

accounts for 37 additional genes that were not accounted for in

model v1, indicative of a role of a chromatin-associated mecha-

nism in decoding NFkB duration. Meanwhile, 1 gene (Slc6a12)

whose mRNA data were accounted for by model v1 fell outside

the fit threshold with v2, due to poor concordance of the caRNA

simulations and caRNA-seq data. Overall, model v2 accounted

for 67 of 81 (�83%) stimulus-specific genes that are dependent

on NFkB dynamics (Figures 6C and S3). The remaining 14 genes

whose expression dynamics could not be explained by v2 sug-

gest more complex regulation, potentially involving other stim-

ulus-induced TFs or signaling pathways.

Gene Regulatory Strategies Correlate with Gene
Functions in Immune Responses
The described studies revealed that a slow chromatin opening

mechanism and slow mRNA decay may combine to decode the
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Figure 7. Distinct Regulatory Strategies

that Decode NFkB Duration-Dependent

Gene Expression

(A) Diagram illustrating two broad regulatory

mechanisms that may decode stimulus-specific

duration of NFkB dynamics to contribute to LPS

versus TNF-specific gene expression.

(B) Stacked bar graphs showing the relative

contribution of mRNA half-life (T1/2) and chro-

matin-regulation to the decoding of stimulus-

specific gene expression. The gray portion of each

bar denotes stimulus-specificity that is not miti-

gated by the NFkB dynamic mutant. Genes are

ordered by whether they are controlled by a pre-

dominantly chromatin-associated mechanism,

mixed mechanisms, or a predominantly mRNA

T1/2 mechanism.

(C) Scatterplot of chromatin contribution versus

half-life contribution for all genes. Selected genes

from Figure 7B that are controlled by either pre-

dominantly a chromatin-associated mechanism or

an mRNA half-life mechanism are indicated.

(D) Example ATAC-seq track view of a predomi-

nantly chromatin-controlled gene.

(E) Boxplots of read counts for ATAC-seq data

indicate that chromatin-regulated genes are more

likely to have closed chromatin at promoter re-

gions (peaks found within �1,000 to 100 base

pairs of the TSS). Genes are grouped by the cat-

egories shown in Figure 7B. Two-sided Wilcoxon-

Mann-Whitney U test p values are shown.

(F) Boxplots of the difference in read counts of control and mutant cells after 2 h treated with TNF pulse, compared to the 0 h basal counts. Genes are grouped by

the categories shown in Figure 7B. Shown are one-sided Wilcoxon-Mann-Whitney U test p values that chromatin-controlled genes shown greater differences

from baseline. Lines inside boxplots represent the 25th, 50th, and 75th quantiles. Whiskers extend up to 1.5 the interquartile range, with genes outside this

represented as outlier points.
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differential duration of LPS- versus TNF-induced NFkB dynamics

more effectively (Figure 7A). Using the mathematical model, we

parameterized for each of the 67 genes for which a satisfactory

fit was produced, we could now quantify the relative contribution

of these two regulatory strategies for decoding the duration of

NFkB dynamics. Starting with caRNA data recapitulated by the

model (Figure 6C), we obtained the duration-dependent speci-

ficity observable at the chromatin level. Taking the difference of

mutant versus control specificity using the simulated mRNA

data further describes the total dynamics-dependent specificity,

a portion of which was the chromatin-associated specificity.

Remaining LversusT specificity in the mutant is a result of other

unknown mechanism(s). In this manner, for 67 genes whose

expression profiles could be accounted for by model v2, we

calculated the contribution of each mechanism and plotted the

quantification result as a stacked bar graph that also indicates

the residual as yet unaccounted specificity for each gene (Fig-

ure 7B). Using this analysis, we found that the vast majority of

genes involve multiple mechanisms to decode the duration of

NFkB dynamics. Although most genes employ multiple mecha-

nisms for decoding, among the 67 genes, 11 genes employed

predominantly slow mRNA decay and 30 genes slow chromatin

transition. In support of this, small molecule histone deacetylase

(HDAC) inhibitor, Trichostatin A, showed more hyper-expression

effect on chromatin-regulated genes (e.g., Lcn2 and Fpr1) after

TNF stimulation than genes that are not predominantly chromatin

regulated (e.g., Rab20 and Ccl7) (Figure S4).
We observed that genes that have higher stimulus-specificity

tend to rely on chromatin-mediated mechanisms rather than

post-transcriptional mechanisms to decode duration. Indeed,

genes that use only mRNA half-life as a decoding mechanism

have a specificity index of below 1.5. In contrast, genes that

employ chromatin-associated mechanisms to decode duration

tend to have high specificity indices, with more than half genes

having a specificity greater than 1.5 (Figure 7B). This suggests

that chromatin-mediated mechanisms can in general generate

more pronounced stimulus-specificity in gene expression from

stimulus-specific NFkB duration.

After sorting the genes by their gene regulatory strategy (i.e.,

predominantly chromatin-associated, mRNA half-life, or both,

Figure 7B), we examined their cellular and physiological func-

tions. We found that several functionally important genes de-

coded predominantly by mRNA half-life were cell-intrinsic

regulators of innate immune function, such as TFs and their reg-

ulators (Nfkb2, Nfkbie) and genes involved in cytokine signal

transduction pathways (Pim1, Il1rl1) (Figure 7C). In addition,

the monocyte chemoattractant Ccl2 was in this category, indi-

cating that recruitment of immune surveillance cells that can

appropriately regulate immune responses was LPS-specific via

the mRNA decay gene regulatory strategy. Examining the genes

whose stimulus-specificity employed a chromatin-associated

gene regulatory strategy, we identified the phagocytosis recep-

tor, Fpr1, and the tissue remodeling protease, Mmp3, that are

key effectors of immune responses, which may then synergize
Cell Systems 10, 1–14, February 26, 2020 11
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with the function of Ccl5, a key chemoattractant of cytotoxic

T cells (Figure 7C). Thus, our analysis suggests that the stim-

ulus-specific expression of immune effector genes may be

more dependent on cell type, microenvironmental context, and

history than that of immune regulatory genes due to their

employment of a chromatin-associated rather than mRNA

decay-mediated gene regulatory strategy to decode stimulus-

specific NFkB dynamics.

To examine whether molecular correlates of a chromatin-

associated mechanism for decoding NFkB signaling duration

could be identified, we turned to ATAC-seq and grouped genes

by their predominant duration decoding strategy. We made two

observations – that chromatin-regulated genes are more likely to

have closed chromatin at promoter regions (Figure 7E) at the

basal state, and that these genes showed increased accessibility

compared to the basal state after TNF stimulation in the dynamic

control mutant, as seen in the gene Il34 (Figures 7D and 7F). This

experimental evidence further supports a slow chromatin open-

ing step for a subset of genes as a gene regulatory strategy for

decoding stimulus-specific signaling duration.

DISCUSSION

In this study, we report progress in addressing the longstanding

question of how immune response genes decode differential

temporal profiles of NFkB. This question was first raised by the

discovery that NFkB activation showed complex dynamic con-

trol (Hoffmann et al., 2002) that was indeed found to be stim-

ulus-specific (Covert et al., 2005; Werner et al., 2005). Further,

the duration of NFkB activity was found to be correlated with

the expression of some NFkB target genes (Hoffmann et al.,

2002; Werner et al., 2005), even when NFkB duration distributed

into several discrete pulses (Ashall et al., 2009). However, the

mechanisms by which genes are able to achieve stimulus-spe-

cific expression by distinguishing differential durations of NFkB

activity remained unknown. The present study addressed this

question in a quantitative manner by employing mathematical

models to interpret quantitative experimental data produced at

high temporal resolution. Here, we have demonstrated that not

only mRNA half-life, previously shown to play a critical role in

duration decoding of p53 and ERK (Hafner et al., 2017; Uhlitz

et al., 2017), but also chromatin-regulated mechanism(s) are

important for duration decoding of NFkB target genes.

Our analysis revealed that the genes most strongly regulated

by duration employ both the transcriptional and post-transcrip-

tional decoding mechanisms. Interestingly, immune effectors

and immune regulators were found predominately regulated by

the former and latter, respectively. How may the chromatin

mechanism work? As no binding sites other than NFkB were

identified among LPS-specific dynamics-dependent genes (Fig-

ure 2E), we found no evidence for coherent feedforward loops as

the prevalent regulatory mechanism, but instead suggest that

slow steps in chromatin opening or pre-initiation complex (PIC)

assembly are required for decoding. A functional consequence

of this purely kinetic explanation for why genes may employ

one mechanism over another may be that chromatin may be a

more versatile regulatory node; it may receive inputs from

diverse microenvironmental contexts or exposure histories. For

example, for a gene with high LPS specificity based on chro-
12 Cell Systems 10, 1–14, February 26, 2020
matin control, memory of a prior direct pathogen exposure

may allow the gene to be expressed later with less stimulus-

specificity, also in response to cytokines released from

pathogen-infected neighbors. In addition, chromatin-based

mechanisms are strongly cell type specific, thus rendering stim-

ulus-specificity a function of cell type.

The present study provides a general approach that may be

used to elucidate the regulatory strategies underlying TF control

of gene expression at single gene resolution. Iterativemechanistic

modeling and experimentation has been successful in elucidating

the mechanisms that encode dynamic TF activities (Basak et al.,

2012), but for understanding the regulatory strategies of gene

expression, this approach encounters particular challenges.While

Next Generation Sequencing methods provide highly quantitative

genome-wide data, errors are associated with low abundance

mRNAs, and variabilities in library preparation methodologies

and data normalization methods. This is compounded for

caRNA-seq data where the read depth tends to be lower, and

the benefits of polyA+ selection do not apply. Previous studies

that fit transcriptomic data to models either did not include TF ac-

tivities as inputs to elucidate the regulatory logic (Rabani et al.,

2011) or did not attempt to provide quantitativemodel fits at single

gene resolution (Cheng et al., 2017). Indeed, the transcriptional

control mechanisms are highly complex, involving numerous fac-

tors and potentially multiple regulatory steps; these must be

abstracted without losing critical regulatory behavior.

A key principle of mathematical biology holds true here also:

when amodel fits the data, it does not mean that themodel is cor-

rect, but it represents a starting point for further iterative testing.

This is illustrated in our study: when we iterated with additional

data in the form of caRNA-seq, our initial conclusions about the

key role of mRNA half-life were confirmed for only some genes

(11 out of 67), while we found substantial contributions by a chro-

matin mechanism for the remaining 56 genes, 30 of which were

predominantly controlled by the chromatin mechanism. This in

turn suggests that further iterations may lead to additional in-

sights. For example, other gene regulatory strategies or mecha-

nisms such as pre-mRNA processing, splicing or mRNA transport

might play regulatory roles in decoding NFkB duration.

Theoretical considerations (Behar and Hoffmann, 2010) sug-

gest a diverse set of potential decoding mechanisms. First,

any slow kinetic process that controls either gene activation

(e.g., mRNA synthesis, slow chromatin opening, slow PIC as-

sembly) or slow mRNA decay (e.g., long mRNA half-life) can in

principle decode the duration of TF activity. Second, coherent

feedforward logic where two TFs present coincidently (AND

gate) might also decode duration of TF activity. The inclusion

of additional TFs (e.g., AP1 or IRF) in subsequent model versions

may also be key to accounting for the remaining specificity not

accounted for by model v2, or the 14 of 81 dynamics-controlled

genes not satisfactorily recapitulated.
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NA https://github.com/biomystery/duration_decode_manuscript
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LEAD CONTACT AND MATERIALS AVAILABILITY

This study did not generate newmaterials. Further information and requests for resources and reagents should be directed to andwill

be fulfilled by the Lead Contact, Alexander Hoffmann (ahoffmann@ucla.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Culture
Mouse embryonic fibroblasts (MEFs) were prepared from male or female E12-E14 embryos from C57BL/6 mice that were Ifnar�/�

and Ifnar�/�Nfkbia�/� and cultured in DMEM containing 10% BCS for 5-6 passages before being stimulated (Werner et al., 2005).

Stimulation Conditions
MEFs were stimulated with 100ng/ml LPS (Sigma, B5:055), 1 ng/ml murine TNF (R&D Systems) or 1 ng/ml IL1 (Pepro Tech, USA) for

30 min and washed with warm PBS for 3 times. Cells were cultured with conditioned media (without stimulus) until harvested at indi-

cated time points for further manipulations. For TSA experiment, Ifnar�/� MEFs were treated for 24 hrs. with 50 nM TSA (T1952,

Sigma-Aldrich) and then stimulated with 1 ng/ml murine TNF for 30 min and washed with warm PBS for 3 times and then cultured

until harvested for RNA isolation.

Animal Use
The use of mice and isolation of MEFs have been approved by the Animal Care and Use Committee of University of California,

Los Angeles.

METHOD DETAILS

In all Figures, the data presented are representative of at least 2 ormore independent experiments. Data were not divided into training

and test datasets for any of the analyses performed in this paper. Blinding of the experimenter to the sample genotypes was not per-

formed at any stage of the study.

Electrophoretic Mobility Shift Assays (EMSAs)
EMSAs were conducted with standard methods as described previously for fibroblasts (Basak et al., 2007). Whole cell lysates were

made with RIPA buffer; nuclear extracts by hypotonic cell lysis and high salt extraction of nuclear proteins.

Cell Fractionation and RNA Isolation
After stimulation, cells were harvested at desired time points. For PolyA+ RNA, cells were harvested in TRIzol reagent (Life Technol-

ogies, Carlsbad, CA). Then, DNA-free RNA was extracted from cell using DIRECTzol kit (Zymo Research, Irvine, CA) according to

manufacturer’s instructions. For chromatin RNA, subcellular fractions were prepared as described (Pandya-Jones and Black,

2009), with minor changes. The cell lysis buffer contained 0.15% NP-40, and the sucrose cushion did not contain detergent. For

chromatin RNA isolation, chromatin fraction was suspended in TRIzol reagent. Followed by chloroform extraction, aqueous phase
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containing RNAwas used for purification with Direct-zol RNAMiniprep Kit (Zymo Research). Chromatin fraction purity was confirmed

by immunoblot analysis with anti-B-Tubulin (Sigma, T5201), anti-SNRP70 (Sigma, AV40275) and anti-Histone H3 (abcam, ab1791)

antibodies.

cDNA Synthesis and qPCR
RNA was reverse transcribed with iScript Reverse Transcription Supermix for RT-PCR (Bio-Rad). qPCR was performed using

SsoAdvanced Universal SYBR Green Supermix (Bio-Rad).

Library Preparation and RNA Sequencing
After RNA extraction, libraries for polyA+ RNA were prepared using KAPA Stranded RNA-Seq Kit for Illumina Platforms (KAPA Bio-

systems, Wilmington, MA) according to the manufacturer’s instructions. caRNA sequencing libraries were prepared using the KAPA

Stranded RNA-Seq Kit with Ribo Erase for Illumina Platforms (KAPA Biosystems). Resulting cDNA libraries were single-end

sequenced with a length of 50bp on an Illumina HiSeq 2000 (Illumina, San Diego, CA).

RelA ChIP-Seq
After stimulation, cells were harvested at desired time points. ChIP-seq libraries were prepared using the NEBNext Ultra DNA Library

Prep Kit for Illumina (New England Biolabs). ChIP-seq was performed as described (Barish et al., 2010) using anti-RelA (Santa Cruz

Biotechnology, sc-372) antibody.

ATAC-Seq
For ATAC-seq libraries, cells were dissociated with Accutase (Thermo Fisher Scientific, Waltham,MA), and 50,000 cells were used to

prepare nuclei. Cell membrane was lysed using cold lysis buffer (10mM Tris-HCl pH7.5, 3mMMgCl2, 10mMNaCl and 0.1% IGEPAL

CA-630). Nuclei were pelleted by centrifugation for 10 min at 500 x g, and suspended in the transposase reaction mixture (25 ml of 2X

TD Buffer (Illumina), 2.5 ml of TD Enzyme 1 (Illumina), and 22.5 ml of nuclease-free water). The transposase reaction was performed

for 30 min at 37C in a thermomixer shaker. Then, fragmented DNA in the reaction was purified using MinElute PCR purification kit

(QIAGEN, Hilden, Germany). The purified DNA fragments were amplified by PCR to obtain ATAC-seq libraries with Illumina Nextera

sequencing primers. The libraries were purified using MinElute PCR purification kit (QIAGEN) and quantified using KAPA Library

Quantification Kit (KAPA Biosystems). The libraries were single-end sequenced with a length of 50bp on an Illumina HiSeq 4000.

QUANTIFICATION AND STATISTICAL ANALYSIS

Sequence Mapping and Analysis of polyA+ RNA-Seq and caRNA-Seq
After adapter trimming, single-end reads were mapped to reference mouse genome (mm10) using STAR (Dobin et al., 2013) with

default parameters. Only primary mapped reads with alignment score (MAPQ)>30 were selected by ‘samtools view -F 2820

-q 30’. Transcript abundance was quantified based on GENECODE M6 (GRCm38.p4) annotation using featureCounts (Liao et al.,

2014) using option ‘-t exon -g gene_id. The raw counts of PolyA+ RNA-seq were input to DESeq2 to determine LPS-induced genes

by comparing each sample of LPS stimulation time points against unstimulated samples with threshold log2-fold change >2 and

Benjamini-Hochberg False discovery rate (FDR) <0.01. The expression levels of genes in each sample were normalized by means

of Reads Per Kilobase per Million (RPKM) mapped reads in the downstream analysis.

Specificity Score Calculation
The stimulus-specificity score was calculated for each pair of stimuli gene-wise. The stimuli A versus B specificity score for gene g is

calculated as follow:

Sg
A.versusB = log2 (max mean RPKMg

A/ max mean RPKMg
B)

i.e., the log2 ratio of maximum gene expression (mean RPKM of replicates) for all the measured timepoints between stimulation

condition A and B.

Transcription Factor Motif and Gene Ontology (GO Term) Analysis
Known transcription factor motif enrichment analysis and GO term enrichment analysis was performed using ‘findMotif.pl’ from

HOMER (Heinz et al., 2010) on promoter regions (-500bp to +200bp TSS) of genes in each category in Figure 2C and the remaining

genes in the other two categories as control. Only results for kB, AP-1 and ISRE motifs and the GO:0016070, GO:30035458 and

GO:0045087 are displayed in Figures 2E and 2F.

Determination of mRNA Half-Life
Half-lives ofmRNAs (Figures 3D–3F) were determined from unstimulated Ifnar�/�MEFs treated with 10mg/ml Actinomycin D (A9415,

Sigma-Aldrich) for 0.5, 1, 2, 3, 4, and 6 h in replicate. 2mL of 1:100 diluted RNA Spike-In control mix (Ambion ERCC RNA Spike-In Mix

Part no 4456740) were added with RNA during library preparation. These libraries were sequenced and processed to get the counts

of transcripts per gene using the same process pipeline as described earlier. The gene counts were normalized by size factor per
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library using the median counts of all the spike-ins that have at least 32 counts. Reads counts normalized, then log2 transformed after

adding pesudocount of 1. Then half-life was derived at the log2 normalized count scale based on the procedure below.

Due to confounding drug-induced stress responses, mRNA levels of some geneswere increased transiently following Actinomycin

treatment, and some mRNAs displayed two-phase reduction: a fast decay followed by a slow decay. Due to these observations, we

designed the following strategy to derive themRNA half-life (Table S3): First, select one of the first three time points (0, 0.5hr, and 1hr),

which has the highest level of expression as the starting point. To ensure the reliability of the data, we only considered the mRNAs

with R32 count at the starting point. Second, from the selected time point, select the next two or more consecutive time points to

perform linear regression at log2 scale (indicated as startID and endID in Table S3). Third, select the linear regression with highest

adjusted R2 score to derive the slope. Fourth, calculate the 95% confidence interval (CI) based on CI of potential slopes.

Mapping of RelA ChIP-Seq and Analysis
RelA ChIP seq reads were mapped to mm10 using bowtie2 with option ‘–non-deterministic –very-sensitive‘. Peaks were called using

macs2 and peaks across all time points and conditions were merged to obtain a consensus peak set. Reads were normalized based

on the total number of reads mapped per sample. HOMERwas first used to annotate peaks, resulting in a many-to-one peak to gene

mapping. Because peaks can be associated with genes from a long distance, to map functional peaks to genes, we utilized the

caRNA data and calculated Spearman’s correlation of peaks to caRNA-seq measurements for peaks within -100000/+50000 of

the TSS. The single peak with the highest correlation was chosen as representing a functional binding event for that gene. Counts

were further scaled to the maximum count for each genotype.

ATAC-Seq Analysis
Raw fastq files were processed by taking the reads and trimming, filtering, and aligning tomm10. Peaks were called usingMACS2 for

each individual sample. Reads that mapped to mitochondrial genes or blacklisted regions were removed. Peak files were merged

using bedtools merge to obtain a consensus set of peaks across samples. The number of reads that fell into the peaks was obtained

using bedtoolsmulticov, with the parameter –q 30 to exclude readswith poormapping quality. Readswere then normalized based on

the total number of reads mapped per sample. HOMER was used to associate peaks to genes based on the nearest TSS. Because

peaks can be associated with genes from a long distance, we further utilized the caRNA data and calculated Spearman’s correlation

of peaks to caRNAseqmeasurements for all peaks, selecting peaks to the nearest gene. Geneswere grouped as predominantly chro-

matin-controlled, half-life controlled, if either chromatin of half-life accounted for greater than 30% of the known specificity, respec-

tively, and the rest were categorized as ‘mixed’. Normalized counts were then used to find the difference in counts for the relevant

peaks by subtracting the counts in the basal timepoint, and then plotting these values as boxplots.

Mathematical Modeling
Model v1 (Figures 3 and 4): For the simulations shown in Figure 3, the activity of transcription factor (TF(t)) was interpolated fromquan-

tified EMSAmeasurements (in controls: TNF0:1, TNF30: 42.1, TNF60: 25.2, TNF90: 4.6, TNF120: 1, TNF240: 1, TNF360: 1, TNF480:1;

LPS0: 1, LPS30:22.5, LPS60: 37.8, LPS90, 42.6, LPS120: 40.6, LPS240: 30.8, LPS360: 20.6, LPS480: 18.6; and in mutant: TNF0:1,

TNF30: 36.6, TNF60: 28.9, TNF90: 20.1, TNF120: 18.5, TNF240: 1.8, TNF360: 1.2, TNF480:1.3; LPS0: 1, LPS30:13.1, LPS60: 42.2,

LPS90, 34.0, LPS120: 27.8, LPS240: 24.5, LPS360: 15.4, LPS480: 10.1) by using the ‘pchipfun‘ from R package ‘pracma‘. These

were then inputted into the TF(t) term of the ODE, which was numerically solved by ‘ode‘ from R package ‘deSolve‘ with time

step 0.1 min for the sweep of different mRNA half-lives (50 evenly spaced in log10 scale ranging from 1 min to 1000 mins). Other

parameters in the simulation are: k0 = 0.001, kf = 0.5, Kd=0.5, n=6.

To fit the ODEmodel to each LPS induced gene in Figure 4, we first introduced a delay parameter tau in TF(t-tau) to account for the

time gap between TF nuclear localization and the appearance of polyA+ mRNA in the cytoplasm. The model is numerically solved by

ode function from ‘deSolve‘ package for all input functions to predict this gene’s expression dynamics. The parameters are fitted for

gene j by minimizing the difference between simulation’s result and the experimental RNA-seq data (Table S2) using normalized

RMSD (by range of data):

kj0,k
j
f,K

j
d, k

j
deg, n, tau = arg min (nRMSDj)

nRMSDj=sum(residuals2)/number of residuals/(max – min) using ‘nlminb‘ function from R in log10 scale. Except for n, which

is discrete from 1 to 6, kj0, k
j
f and Kj

d are bound by 10-3 to 103, kjdeg is bound by the experimental half-life determinations

(Table S3), and tau is bound by 1e-5 to 120 mins. The results of the model fitting are listed in Table S4.

Model v2 (Figure 6): The version 2 model includes three states of the promoter: closed (C), open (O), and activated in transcription

(A) and the transitions among these states. Only state A promoter can produce mRNAwith rate constant kp. We assume that the sum

of the fractions of these promoter states is constant, that the transitions from C to O to A are regulated by NFkB (modeled by

Michaelis-Menten kinetics), and that they are reversible. The process and degradation of mature mRNA is modeled by a first-order

equation. The model equations are shown in Figure 6A.

Forward reactions, which are regulated by NFkB and parameters Kd1 and Kd2, contain parameters k1 and k2. To simplify parameter

fitting, we assume k1 = k2 = 1. mRNA production, which is regulated by fractional state A, contains parameter kp. To simplify param-

eter fitting, we assume kp = 1. Other parameters are fitted to experimental measurements of caRNAseq and polyA+RNAseq data

(Tables S2 and S5) using the same algorithm as model v1. The results of the model fitting are listed in Table S6.
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Calculation of Contribution of Different Regulatory Strategies
To calculate the contributions of the chromatin and mRNA half-life associated strategies to the total specificity, we used the simu-

lated data from model v2. For each gene, we first calculated the difference in specificity for control versus mutant from the caRNA

data to assess the amount of specificity at the caRNA level that is reduced by the dynamics mutant (DspecificitycaRNA). These are the

dynamics-generated specificities that are controlled at the chromatin level, without any influence from mRNA half-life. The chro-

matin-contribution is therefore DspecificitycaRNA. We next made the same calculation of difference in specificities for control versus

mutant from the mRNA data (DspecificitymRNA). At the mRNA level, the specificity in the control represents the total specificity, and

thus the difference in specificity between mutant and control at the mRNA level represents the contributions of both chromatin and

mRNA half-life–associated mechanisms. It follows from this that by subtracting the two deltas (DspecificitymRNA - DspecificitycaRNA),

we can obtain the mRNA half-life contribution to the specificity. The ‘remaining’ mechanisms that are not accounted for by either

chromatin or mRNA half-life associated mechanisms are represented by the amount specificity still remaining in the mutant at the

mRNA level.

DATA AND CODE AVAILABILITY

All sequencing data were deposited to Sequence Read Archive (SRA, NCBI) under BioProject IDs PRJNA453806 (polyA+ RNA-

seq), PRJNA454496 (ActD RNA-seq), PRJNA454896 (ca-RNA seq), PRJNA517534 (RelA-ChIPseq) and SAMN12325160,

SAMN12325163, SAMN12325167, SAMN12325170 (ATAC-seq) . All the code necessary for reproducing the figures, model fitting

and simulation is available on the GitHub site mentioned in the STAR Methods.
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Figure S1, Related to Figure 1. 
Induced genes are highly reproducible across biological replicates. (A) Control MEFs 
after stimulation with IL1, LPS, or TNF. The maximum mRNA abundance across the 
timecourse for a gven stimulus is plotted of each. Blue lines represent Pearson’s 
correlation. (B) Mutant MEFs.  
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Figure S2. Related to Figure 2. (A) NFkB activity measured by EMSA after pulse 
stimulation with LPS and TNF in control and mutant showed extended activity in mutant 
with TNF.   (B) Line graphs of 7 genes re-categorized from group II to group I. 
Expression values are scaled to the maximum of each genotype under LPS or TNF 
stimulation. The elevated basal expression levels in the mutant initially caused these 
genes to be incorrectly categorized into group II. However, visual inspection shows that 
these 7 genes have stimulus specificity that is not dynamics dependent, and should 
therefore be categorized into group I. (B) Unscaled RPKM expression values.   
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Figure S3. Related to Figure 6. 
Comparisons of experimental and model simulation data of gene expression (normalized 
to max) at PolyA+ RNA (mature-mRNA) and caRNA (pre-mRNA) levels for control and 
mutant cells for indicated time-points.  
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Figure S4. Related to Figure 7. (A) Immunoblots for Pan-Acetyl H4, H3K27Ac H3 and 
total H3 from control MEFs with/without TSA treatment. TSA was used at three different 
doses to identify the optimum dose. (B) Expression levels of indicated genes were 
measured by qPCR after 24 hr of TSA (50 nM) or vehicle (DMSO) treatment followed 
by 30 min pulse treatment of TNF. RNA was harvested at 7 hr after TNF treatment. Error 
bars are standard deviations (SD) from 2 experiments. P-value was calculated by paired t-
test using Graph-pad Prizm. P-value <0.05 indicated by “*”. 
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