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Abstract
Innate immune sentinel cells must initiate and orchestrate
appropriate immune responses for myriad pathogens. These
stimulus-specific gene expression responses are mediated by
combinatorial and temporal coding within a handful of immune
response signaling pathways. We outline the scope of our
current understanding and indicate pressing outstanding
questions.
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The innate immune response is a first-line defense
against invading pathogens and coordinates the activa-
tion and recruitment of specialized immune cells,
thereby initiating the adaptive immune response. While
the adaptive immune system is capable of highly
pathogen-specific immunity through the process of ge-
netic recombination and clonal selection, innate im-
munity is frequently viewed as a catchall system that
initiates general immune activation.
In this review, we are reexamining this view, as we are
distinguishing between immune sentinel functions
mediated by macrophages and dendritic cells and innate
immune effector functions mediated by cells such as
neutrophils, NK cells, etc. Given pathogen diversity,

including modes of entry, replication cycles, and stra-
tegies of immune evasion and spread, all successive
waves of the immune response ought to be tailored to
the specific immune threat, leading us to postulate that
immune sentinel functions by macrophages and den-
dritic cells ought to be highly stimulus-specific. Here we
review the experimental evidence for stimulus-specific
responses by immune sentinel cells which initiate and
coordinate immune responses, as well as the mecha-
nisms by which this specificity may be achieved.

Functions of immune sentinel cells
Immune sentinel cells can sense a wide variety of mol-
ecules that derive from viruses, bacteria, fungi, or par-
asites, termed pathogen-associated molecular patterns
(PAMPs), or that are indicative of tissue damage,
termed damage-associated molecular patterns
(DAMPs). They are recognized by dozens of diverse
transmembrane and cytosolic pattern recognition re-
ceptors (PRRs) [1,2]. Cytokines produced by first re-
sponders, such as tumor necrosis factor (TNF) or
interferons (IFNs), may be sensed through cytokine
receptors. Both PRRs and cytokine receptors transmit
information about the stimuli via signaling adaptors to a
stimulus-responsive signaling network with overlapping
downstream pathways consisting of signaling kinases
and transcription factors to coordinate diverse immune
sentinel functions (Figure 1) [1e3].

The functions of immune sentinel cells provide for both
local antimicrobial activity and systemic immune acti-
vation, and they coordinate the resolution and tissue
healing when the threat is eliminated [4]. On exposure
to an immune threat, immune sentinel cells may induce
resistance factors that may directly limit pathogen in-
vasion, replication, or assembly [5]. Through secretion
of inflammatory cytokines, phospholipids, and second
messengers, immune sentinel cells communicate and
spread this antimicrobial state to bystander cells within
the tissue [4].

To limit pathogen spread, phagocytic immune sentinel
cells, such as macrophages and dendritic cells, upre-
gulate their ability to engulf pathogens through dra-
matic reorganization of their cytoskeletons [4].
Production of nitric oxide and reactive oxygen species
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contributes to pathogen killing [4]. In response to
some intracellular pathogens, the induction of cell
suicide may limit pathogen viability and may occur in
the absence of inflammatory mediator release through
apoptosis or through inflammation-inducing necropto-
sis [7].

Cell-intrinsic pathogen defenses are complemented by
the induction of local inflammation and secretion of
chemokines for the recruitment and activation of
diverse immune effector cells such as neutrophils and
NK cells. Secreted and membrane-bound proteases
remodel the extracellular matrix and assist migration of
immune sentinel cells to the infected site. Eventually,
immune sentinel cells orchestrate the adaptive immune
response through systemic inflammation and modula-
tory cytokines that increase antigen presentation,
adaptive immune cell production, selection, maturation,
and recruitment [4].

Finally, immune sentinel cells are also responsible for
resolving inflammation and restoring tissue homeostasis
through production of anti-inflammatory mediators,
such as cytokines, and through tissue remodeling and
repair [4].

In sum, innate immune activation has severe conse-
quences at the level of tissue and organism homeostasis.
Indeed, these functions are intrinsically toxic and may
harm the physiology of the organism. In other words, the
diverse functions of immune sentinel cells are to be
deployed on an “only as-needed” basis. By this consid-
eration immune sentinels should be expected to mount
responses that are specific and appropriate for the
particular immune threat.

Stimulus-specific gene expression
Many but not all functions of immune sentinel cells
involve the de novo expression of gene products. To

Figure 1

Functions of tissue-resident immune sentinel cells. Immune sentinel cells as such tissue resident macrophages or dendritic cells are capable of sensing
diverse immune threats via dozens of different sensors and of responding in numerous distinct ways to regulate cell-intrinsic defenses, local immune
responses, or systemic immune activation. Colors illustrate the diversity of functions but do not represent a color code.
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examine pathogen responses of immune sentinel cells,
transcriptome profiling studies have been carried out by
a number of laboratories. A first report identified a core
set of genes that are activated regardless of the pathogen
[8], with subsequent studies revealing more diversity
[9e11]. Interestingly, whereas immune sentinel cells
such as fibroblasts and macrophages are capable of
stimulus-specific gene expression when challenged by
PRR ligands or cytokines, immune effector cells, such as
B-cells, showed much less stimulus-specificity in par-
allel analyses of early gene expression studies
(Figure 2a). This distinction may relate to the different
physiological roles of innate versus adaptive immune
cells. Unlike tissue-resident immune sentinel cells, B-
cell specificity is encoded in the genome of each B-cell
clone [12], but stimulation of its receptors triggers the
activation of its immune effector functions, including a
dramatic proliferative program.

However, the general impression of transcriptomic
profiling studies is that there are just a few patterns of
gene expression distinguished by the involvement of a

handful of key signaling pathways [9,10]. A common
approach in these analyses is the use of clustering
methods which identify dominant patterns in complex
datasets and the use of heatmaps for visualizing them.
However, such methods may underestimate the degree
to which individual genes do not actually match some of
the dominant patterns [13] because they are either
forced into a cluster or they are visually lost in the
heatmap display of thousands of data points. The fact
that polarizing cytokines found in distinct tissue mi-
croenvironments may alter pathogen-response gene
expression in myriad ways [14] indicates a high degree
of regulatory diversity.

To reexamine the stimulus-specificity of innate immune
responses, we analyzed some of the available datasets
encompassing immune response transcriptomes across a
variety of cell types and stimulus conditions, using
consistent analysis methods (Figure 2b). These datasets
encompass cells participating in innate immunity, such
as human and mouse macrophages, and dendritic cells.
The results indicate that careful clustering and heatmap

Figure 2

Stimulus-specific gene expression by immune sentinel cells as documented by prior transcriptome profiling studies. (a) Heatmaps of k-means clustered
transcriptomic data from human macrophages (484 genes; 0, 2, 6 h) [8]; murine embryo fibroblasts (673 genes; 0, 1, 8 h) (Hoffmann lab ca. 2004), B-cells
(433 genes; 0, 4, 12 h) [53]. (b) Murine dendritic cells (0, 0.5, 1, 2, 4, 8, 12, 16, 24 h) [9]; murine macrophages (0, 1, 3, 8 h) [10]; human macrophages (0,
1.5, 3, 5.5, 10 h) [14]. (c) Heatmap of peak expression and line graphs showing temporal trajectories for select genes from cluster C of murine
macrophage dataset from (b) shows additional stimulus-specificity of individual genes that is hidden by clustering. (d) PCA captures genes contributing to
stimulus-specificity. Murine macrophage gene expression data (as in (b)), with points colored by cluster number from the k-means heatmap. Dashed lines
indicate genes with the largest weights for each component (~top 10 genes on each extreme).
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visualization of induced genes reveals a large variety of
expression patterns, but above-described concerns
remain that the degree of stimulus-specificity is un-
derrepresented by this analytical and visualization
approach.

After all, considering just five different stimuli and
categorizing gene expression in only three categories of
low, medium and high, can theoretically yield hundreds
of patterns. As hundreds of genes are responsive to
innate immune stimuli, it seems likely that many pat-
terns are in fact present. It is not surprising then that
examining the peak expression value of individual genes
in the timecourse reveals at least a dozen distinct pat-
terns, even when not considering time of peak expres-
sion or their temporal patterning (Figure 2b). Increasing
the number of clusters beyond the seven shown does
not appreciably reduce the problem that genes with
markedly different specificity patterns are grouped
together. For example, in cluster C of the Cheng et al.,
2017 heatmap (Figure 2b, ‘murine macrophages’), the
dominant pattern for those genes are medium to high
expression in all stimuli except IFNb and MCMV.
However, the clustering hides the pattern of a gene such
as Il10, which instead has a medium expression level in
response to IFNb and low expression to VSV, different
from the average behavior of the cluster (Figure 2c).

Thus, other analytical approaches are required to ascer-
tain the degree of stimulus-specificity of gene expres-
sion. We have, for example, explored principal
component analysis, which focuses on the diversity
present in a dataset to identify genes that drive this di-
versity and thus show stimulus-specific responses
(Figure 2d). The top N genes of each principal compo-
nent can be used to identify orthogonal gene programs.
As each subsequent principal component captures the
maximal variation in the dataset that is independent of
the previous components, this approach can help select
subsets of genes, including those in lower components
that may be hidden in clustering approaches of all
induced genes. As timecourse transcriptomic sequencing
across multiple stimuli represents more degrees of
freedom than can be represented in a matrix, tensor
factorization may prove useful, such that subtensors may
correspond to independent biological programs and the
rankings of genes from significant subtensors may be
used to identify individual genes that were specific to
the conditions [15]. These analytical approaches,
performed on bulk sequencing data, may reveal and
illustrate stimulus-specific gene expression, but in order
to truly quantify the stimulus-specificity of the re-
sponses of immune sentinel cells, which function as in-
dividuals in surveilling tissue health, transcriptomic data
at the single cell level are required [16].

Given the present evidence for highly stimulus-specific
gene expression responses by immune sentinel cells, a

substantial literature addresses the underlying molecu-
lar mechanisms in gene expression control and in the
signaling mechanisms that connect genes to extracel-
lular stimuli. These mechanisms may be summarized
within two complementary hypotheses about regulatory
control: combinatorial coding and temporal coding.

Combinatorial coding to produce stimulus-
specific transcriptomes
The combinatorial code hypothesis proposes that
stimulus-specific combinations of signaling pathway
activity produce stimulus-specific responses [17].
Receptor-proximal mechanisms involving adaptor pro-
teins mediate the activation of specific combinations of
pathways (encoding). In turn, response genes contain
combinations of response elements for stimulus-
responsive transcription factors or mRNA processing or
decay regulators that control gene expression (decod-
ing). Theoretical considerations suggest that even with
just three available pathways, seven potential tran-
scriptomic patterns may be activated when only OR
gates are available for decoding, 14 patterns when AND
gates are also available, and many more with additional
decoding logic gates [18] or when intermediate
expression levels are distinguished. The inputeoutput
function of any combinatorial network can be related
by a so-called “truth-table” (Figure 3a).

Within the innate immune signaling network there are
numerous examples of combinatorial coding. For
example, TLR2, TLR3, and TLR4 are pathogen sensors
for distinct microbial products that are strong inducers
of either NFkB only (TLR2) or both NFkB and IRF3
(TLR3 and TLR4) [1,19]. Whereas TLR2 and TLR3
activate distinct signaling adaptor proteins MyD88 and
TRIF, TLR4 activates both (albeit sequentially).
Although all TLRs effect signaling via a TIR domain,
the small differences in the TIR domain structure along
with plasma vs. endosomal membrane localization pro-
vide for specificity in engaging MyD88 vs TRIFadaptors
[1,20]. This illustrates the principles of combinatorial
encoding as distinct combinations of pathways are acti-
vated in a stimulus-specific manner.

Recent studies revealed that even the dose of a single
ligand may be encoded by combinatorial coding [21].
Whereas low doses of LPS activate primarily NFkB and
JNK pathways, high doses also activate MAPKp38, thus
allowing d in principle d for a straightforward
distinction of the LPS dose at the gene regulatory
decoding step. Similarly, bacterially infected cells show
both NFkB and MAPK/JNK activation, whereas many of
the exposed but uninfected bystander cells will activate
NFkB only or show no response [22]. Indeed, a few
dozen genes were identified that respond fully only
when both NFkB and MAPKp38 are activated, being
regulated by a functional AND gate formed by NFkB-
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driven transcription and p38-driven transcript stabili-
zation [10]. These genes, which contain many impor-
tant inflammatory cytokines such as TNF or IL1, are
induced substantially only by high doses of LPS, not low
doses of LPS, and not TNF at any dose (Figure 3b).

The classic example for combinatorial decoding is
IFNb gene expression which requires activity of three
transcription factors, AP1, NFkB, and IRF. Classic
studies described the regulatory logic as an AND gate
d only the presence of all three transcription factors
would recruit chromatin remodeling machinery to
move an inhibitory nucleosome off the transcription
initiation site [23]. However, recent observations sug-
gest that the logic may be more complex, as exposure to
virus may lead to IFNb activation even in the absence
of NFkB [24], and the NFkB homodimer p50:p50 has
the capacity to block IRF binding to the IFNb
enhancer [25]. That means that the combinatorial logic
of the IFNb enhancer remains to be elucidated more
rigorously.

In all, although the principle of combinatorial coding is
well established as a means of producing pathogen-
specific responses in immune sentinel cells, for the
vast majority of genes the operative combinatorial logic
has yet to be described quantitatively, and the extent to
which combinatorial coding may provide stimulus-
specific or pathogen-appropriate immune sentinel re-
sponses has yet to be quantitatively determined.

Temporal coding to produce stimulus-
specific transcriptomes
The temporal code hypothesis posits that the dynamical
activity of even a single signaling protein (e.g. tempo-
rally varying kinase or TF activity) encodes information
about the stimulus, such as the ligand identity and dose
(Figure 4a). Furthermore, target genes of the tran-
scription factor can decode these temporal profiles to
result in appropriate stimulus-specific activation.

In innate immune signaling, much of the evidence for
temporal coding stems from studies of the NFkB

Figure 3

Current Opinion in Systems Biology

a b

Combinatorial Coding to produce stimulus-specific gene expression. (a) Top: Schematic of an imaginary stimulus-response network depicting combi-
natorial encoding by receptor proximal mechanisms and combinatorial decoding by gene-regulatory mechanisms. Bottom: The truth table of the network
indicates that gene expression is stimulus-specific, with R1 and R3 providing more restricted gene expression programs than R2 and R4. (b) Schematic of
prominent pathways within the signaling network governing the responses of immune sentinel cells. When the hundreds of immune response genes are
grouped into 7 gene expression clusters A–G, which correlate with distinct physiological functions (as revealed by gene ontology analysis, bottom), the
dominant combinatorial decoding mechanism could be identified for each cluster [10].
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pathway. Early population-level biochemical studies
showed that the dynamics of NFkB activation are
stimulus-specific when comparing the cytokine TNF
and the bacterial endotoxin LPS [26,27] (Figure 4b).
Furthermore, some NFkB target genes were found to be
activated in an NFkB-dynamics-dependent manner
[27,28]. Systems biology studies of mathematical
modeling and experimentation uncovered a number of
molecular mechanisms that allow for encoding of ligand-
and dose-specific NFkB dynamics. These include four
negative feedback loops to control NFkB nuclear
translocation [29e33]; cyclical multistate enzyme con-
trol [34], positive feedback control [35], and recruit-
ment scaffolds [36] to control the dynamics of the
kinase IKK; a cytokine-mediated coherent feedforward
loop that is deployed stimulus-specifically [37]; and a
dose-sensing autoregulatory loop within a receptor
proximal signaling module [38]. Based on the resulting
mathematical models, it was shown that the dynamics of
signaling could be targeted pharmacologically to achieve
superior specificity in pleiotropic signaling pathways
[39] (Figure 4c).

In parallel, single-cell studies using fluorescent pro-
teineNFkB fusion proteins whose nuclear localization is
monitored by live cell microscopy revealed complex
dynamics in response to stimulation [40,41]. However, a
high degree of cell-to-cell variability and seemingly
ligand-independent oscillatory behavior [42] led to
more questions than support of the notion of a temporal
code. Still, innovative information theoretic analysis

found that more information is encoded in the time-
course than any single timepoint [43]. However, a key
limitation of present single-cell studies is that they
involve overexpression of the fluorescent proteineRelA
fusion in immortalized cells. Because this is not only a
reporter but also an effector, it has the potential to alter
the NFkB signaling system [44], and immortalized cell
lines, which have been optimized for growth in cell
culture, show diminished responsiveness to immune
threats [45]. Primary fibroblasts from a knockin eGFP-
RelA mouse yielded some timecourse data but signals
proved too dim for a thorough analysis [46]. Improved
primary cell experimental model systems will need to be
established to determine to what extent NFkB dy-
namics are in fact ligand-specific, how much information
may be conveyed, and what dynamical features convey
stimulus-specific information.

How NFkB dynamics are decoded by target genes is the
other key question d the complement to whether and
how NFkB dynamics encode information about the
ligand identity and dose. Early studies suggested that
both the mRNA half-life and chromatin-mediated
mechanisms may decode the duration NFkB dynamics
[28], and recent same-cell NFkB dynamics and tran-
scriptome measurements confirmed correlation of tem-
poral profiles with distinct gene expression programs
[47], but future studies ought to address this question
in a quantitative, gene-specific manner. Alternative
mechanisms include a coherent feedforward loop
involving CEBPd [48] but this awaits confirmation.

Figure 4

Temporal Coding to produce stimulus-specific gene expression. (a) Schematic of the Temporal Coding hypothesis. Two receptors elicit distinct gene
expression programs via a single shared pathway; this is achieved via stimulus-specific temporal patterns of signaling activity. (b) Schematic of the
network that allows for the encoding of TNFR vs TLR-specific temporal profiles of NFkB activity [27, 32, 37]. (c) When the regulatory mechanisms
mediating stimulus-specific temporal control of signaling are elucidated, pharmacologic intervention within the shared pathway can be targeted to produce
stimulus-specific inhibition [39].
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Another study proposed that fold change of NFkB
activation may be decoded via an incoherent feedfor-
ward loop mediated by the repressive p50 homodimer
which may be stimulus-induced [49]. NFkB oscillations
have captured substantial research efforts, but to date
there is little evidence that the oscillatory feature of
NFkB dynamics affects gene expression [44], let alone
what the molecular mechanisms might be that decode
oscillatory versus nonoscillatory NFkB dynamics. In
sum, while there is substantial literature on the tem-
poral coding of NFkB and also other innate immune
signaling pathways (e.g. MAPKp38 [50]), and how these
may be modified by polarizing or conditioning cytokines
[51], future studies ought to address to what extent
these contribute to the capacity of immune sentinel
cells to produce stimulus-specific gene expression
programs.

Outlook
Past research has established that immune sentinel
cells are capable of stimulus-specific gene expression
programs and has provided strong evidence for the ex-
istence of two complementary coding schemes:
signaling pathways that are triggered by sensors of the
extra- and intracellular environment engage combina-
torial and temporal coding to control the expression of
nuclear target genes. Still, the extent to which immune
sentinel cells are able to provide stimulus- or pathogen-
specific responses to trigger and then orchestrate a
pathogen-appropriate immune response ought to be
addressed quantitatively at the single-cell level [52].
Similarly, while the mechanisms for combinatorial and
temporal coding have begun to be delineated, quanti-
tative insights will require the use of primary cells at
single-cell resolution iterated with data-driven and
knowledge-based computational modeling. Indeed,
what remains entirely unchartered at this time is how
temporal and combinatorial codes complement each
other to improve information transmission, and how the
mechanisms of encoding and decoding may be coordi-
nated, independent, or interdependent. Furthermore,
as immune sentinel cells function in diverse tissue
microenvironments that affect their function through
polarizing cytokines and are subject to priming and
tolerizing mechanisms, it will be of interest to under-
stand how these conditions affect the capacity for
stimulus-specific gene expression and combinatorial
and temporal coding within signaling pathways. This
suggests that despite two decades of research into the
responses of immune sentinel cells, the development of
impactful signaling concepts, and an abundance of
molecular mechanistic knowledge (captured in mathe-
matical models), the field remains in its infancy. Further
research is likely to lead to transformative insights
about immune sentinel biology and the regulatory
mechanisms that initiate and orchestrate pathogen-
appropriate immune responses.
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