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SUMMARY
Immune sentinel macrophages initiate responses to pathogens via hundreds of immune response genes.
Each immune threat demands a tailored response, suggesting that the capacity for stimulus-specific gene
expression is a key functional hallmark of healthy macrophages. To quantify this property, termed ‘‘stim-
ulus-response specificity’’ (SRS), we developed a single-cell experimental workflow and analytical
approaches based on information theory and machine learning. We found that the response specificity of
macrophages is driven by combinations of specific immune genes that show low cell-to-cell heterogeneity
and are targets of separate signaling pathways. The ‘‘response specificity profile,’’ a systematic comparison
of multiple stimulus-response distributions, was distinctly altered by polarizing cytokines, and it enabled an
assessment of the functional state of macrophages. Indeed, the response specificity profile of peritoneal
macrophages from old and obesemice showed characteristic differences, suggesting that SRSmay be a ba-
sis for measuring the functional state of innate immune cells.
A record of this paper’s transparent peer review process is included in the supplemental information.
INTRODUCTION

Macrophages reside in almost all tissues of the body, where they

are sensors for injury, infection, or disease.1 The many functions

they perform require them to respond appropriately to patho-

gens (pathogen-associated molecular patterns [PAMPs]), injury

and danger (danger-associated molecular patterns [DAMPs]),

and to cytokines. Immune response genes code for potent bio-

activities that are not constitutively expressed because they

may be detrimental to the host. Thus, immune response gene

programs should only be deployed as needed and to the extent

necessary. In fact, the precise deployment of immune response

genes is critical for preventing abnormal immune sequelae. Both

weak or overactive immune responses may arise from the failure

of immune sentinel cells to respond with appropriate specificity

to immune threats, resulting in poor health outcomes.2–5

Since immune sentinel cells function as individuals in initiating

and coordinating immune responses, measuring their capacity

to respond specifically to diverse pathogens requires consider-

ation of their substantial cell-to-cell heterogeneity.6 Prior popula-

tion-level macrophage transcriptome profiling studies identified

a common immune response gene program,7 as well as gene

programs that were in fact highly stimulus specific.8–10 A

plethora of population-level studies have shown that specific re-

sponses arise from the signaling and epigenetic networks down-

stream of receptor-ligand interactions.11–13 In addition, several

studies measuring time-dependent stimulus responses using
Cell Systems 14, 1–16,
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transcription factor knockouts have delineated the regulation

of stimulus-dependent gene programs.8,13 However, these

studies did not quantify how specific macrophages responses

actually are, as this requires single-cell measurements to

determine the breadth and overlap of single-cell response

distributions.

Macrophage heterogeneity itself has recently been studied via

single-cell measurements in multiple contexts, such as during

polarization or differentiation. For instance, the heterogeneity

of macrophage populations after exposure to polarizing cyto-

kines was shown to be greater if simultaneous conflicting cues

were provided.14 Single-cell heterogeneity has also been pro-

filed during monocyte-to-macrophage differentiation in different

tissues under different infection conditions, uncovering distinct

activation paths in vivo that are altered by microenvironment

and disease.15 Importantly, macrophages must function as re-

sponders to immune threats, and thus recent studies have inves-

tigated the heterogeneity of single-cell macrophage ormonocyte

responses to single stimuli, after polarization16 or after immune

training.17 However, these studies have not yet addressed how

the heterogeneity of macrophage gene expression affects the

specificity of responses to different to stimuli, and how the result-

ing stimulus-response specificity may be affected by different

microenvironmental contexts.

The response of immune sentinels to stimuli is known to be a

function of the microenvironmental context.18 Polarizing cyto-

kines enhance and diminish the activation of specific immune
March 15, 2023 ª 2022 The Author(s). Published by Elsevier Inc. 1
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genes in an immune stimulus-specific manner by altering

signaling networks and epigenetic landscapes.19–22 Thus, aber-

rant cytokine contexts that are associated with inflammatory or

immunological disease may affect the macrophage’s capacity

to mount stimulus-specific responses. Indeed, as macrophages

circulate and patrol the body, profiling their capacities to mount

stimulus-specific responses may report on the inflammatory

state of their donor. However, in the absence of a workflow

that measures response distributions and quantifies their over-

lap, the opportunity to leverage the macrophage’s sensitivity to

immune cytokines for reporting on the function of an individual’s

innate immune system has not been explored.

Here, we developed the necessary single-cell experimental

and computational approaches to assess the functional states

of macrophages, via quantification of the specificity of their re-

sponses to immune threats. Using information theoretic andma-

chine learning approaches, we found that stimulus-response

specificity (SRS) was driven by genes with narrow response dis-

tributions that in combination distinguished different ligands.

Mechanistically, high SRSwas associated with stimulus-specific

activation of interferon regulatory factor (IRF) or MAPKp38 path-

ways, or with differences in the dynamical profiles of NF-kB

signaling. We found that SRS was affected by microenviron-

mental cytokines in a gene-specific manner. This realization

prompted the development of the response specificity profile,

involving systematic pairwise comparisons, to reveal important

functional distinctions in macrophages polarized in vitro or

conditioned in vivo by inflammatory conditions of age or obesity.

RESULTS

Despite single-cell heterogeneity, macrophages
produce highly specific gene expression responses to
diverse immune stimuli
To quantify the degree of response specificity in macrophages,

we developed an experimental workflow using a targeted

mRNA sequencing approach23 that was both cost-effective

and reduced the technical noise of genome-wide single-cell

RNA sequencing (scRNA-seq) approaches (Figure 1A). We

selected a set of 500 macrophage genes via principal-compo-

nent analysis (PCA) on available macrophage response RNA-

seq data, which profiled macrophage responses across a time

series at 0, 1, 3, and 8 h in response to 14 different viral and bac-

terial immune components or whole pathogens.8 The gene load-

ings of the resulting PCA identified the most stimulus-specific

genes in an unsupervised manner (Figure S1A; Table S1; STAR

Methods). This bulked RNA-seq dataset. The selected set of

500 genes showed greater enrichment of NF-kB, IRF, and AP1

motifs than 1,502 stimulus-induced genes, which suggested

that these three signaling pathways are the primary drivers of

response specificity (Figure S1B).

To identify immune stimuli that would best represent response

specificity, we further analyzed bulk RNA-seq data from macro-

phages responding to 14 different pathogen or cytokine ligands

to determine the ligands that induce diverse macrophage re-

sponses (Figure S1A).8 Tensor component analysis24 allowed

for an integrated decomposition of the data across all measured

time points and stimuli, and showed that each ligand occupied a

non-redundant location, indicating a distinct transcriptomic
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response at the population level. However, some ligands such

as CpG and Pam3CSK (P3C) sat closely adjacent in the

tensor-decomposed space (Figure S1C), indicating a greater

similarity in their time-dependent expression profiles. From the

14 stimuli, we selected 6 with distinct tensor component weights

that represented a spectrum of Gram-positive bacteria (P3C),

Gram-negative bacteria (lipopolysaccharide [LPS]), bacterial

DNA (CpG), viral nucleic acids (poly(I:C) [PIC]), and host cyto-

kines activating either the interferon (IFN-b) or NF-kB (TNF)

signaling pathways.

Because gene programs are induced dynamically, the quanti-

fication of SRS may depend on the time point at which gene

expression measurements are taken. To compare different

time points of stimulation, we calculated pairwise stimuli dis-

tances at 1, 3, and 8 h. Ligand-pair distances were most distinct

at 3 h (Figure S1D), reflecting less impact from secondary

signaling mechanisms than at the 8-h time point, and thus we

chose the 3-h time point for our analysis of response specificity.

A heatmap comparison of the newly generated single-cell data

showed good concordance with the published bulk RNA-seq

data while revealing substantial cell-to-cell heterogeneity in

expression (Figure 1B).

A comparison of the scRNA-seq data from our targeted

approach (Rhapsody) to the genome-wide approach (10x Geno-

mics) showed that both had similar concordance in their means

to bulk data (Figure S2A) and had comparable distributions to

each other (Figure S2B). Notably, the majority of genes captured

only by the genome-wide approach were poorly expressed,

further supporting the utility of sequencing just themost informa-

tive genes through the targeted approach (Figure S2C). For

�90% of the genes measured by both approaches, the targeted

approach also had a smaller percentage of cells with drop-out

data (i.e., genes with zero reads), as each transcript could be

sequenced more deeply (Figure S2D). To avoid heterogeneity

in macrophage populations due to different progenitors present

in bone marrow, we used a clonal HoxB4-immortalized myeloid

progenitor cell line that was differentiated intomacrophages with

macrophage colony-stimulating factor (M-CSF)-containing me-

dium. The resulting cell populations showed similar bulk25 and

single-cell stimulus-response transcriptomic profiles as bone

marrow-derived macrophages (Figures S3A and S3B). Taken

together, these results suggest that the targeted sequencing

approach provides a reproducible (Figures S3C and S3D;

STAR Methods), cost-effective means for measuring heteroge-

neous single-cell macrophage gene expression in response to

diverse immune ligands, making it suitable for quantifying SRS.

To determine howmuch single-cell heterogeneity affected the

stimulus specificity of responses, we next sought to assess

the overlap in gene expression response distributions. PCA re-

vealed that IFN-b, LPS, and PIC-response distributions

were best distinguished, with minimal overlap of their 95%

confidence regions on the first two components (44% variance

explained), while TNF, CpG, and P3C appeared overlapping (Fig-

ure 1C). Uniform manifold approximation and projection (UMAP)

on the top 20 components clarified that TNF could be separated

from CpG and P3C on lower components (Figure 1D), potentially

because the latter activate stronger MAPK and non-oscillatory

NF-kB, while the MyD88-mediated CpG and P3C response dis-

tributions remained largely indistinguishable (Figure 1E). We
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Figure 1. Macrophages produce highly specific gene expression responses to diverse immune stimuli

(A) A cost-effective experimental workflow using targeted single-cell RNA sequencing profiles immune response gene expression at single-cell resolution.

Bottom left: heatmap of all genes induced with log2(FC) > 2 in any stimulus from bulk RNA-seq data.8 Bottom middle: PCA loadings from bulk RNA-seq data.

Bottom right: panel genes were selected by scoring each gene based on the summed strength of the loadings from the top 20 principal components. Top right: all

genes are captured, and selected genes are amplified via a targeted primer panel.

(B) Comparison of bulk RNA-seq data and single-cell data shows concordance of gene expression clusters and also reveals single-cell heterogeneity. Color bars

represent Z scores.

(C) PCA onmacrophages stimulated for 3 h indicates there may be a high degree of stimulus specificity despite single-cell heterogeneity, but TNF, P3C, and CpG

appear overlapping on the first two components. Ellipses represent 95% confidence intervals based on multivariate t distribution. Colors are the same as in (A).

(D) UMAP of stimulatedmacrophages using the top 20 principal components clarifies that TNF can be separated, but P3C andCpG response distributions remain

overlapping.

(E) Calculation of the Bhattacharya distance between pairs of response distributions confirms the similarity of CpG and P3C distributions. IFN-b is the most

distinct from all other stimuli but with a response-distribution space closest to that of PIC. Bhattacharya distances were calculated on the top 20 principal

components.

(F) A random forest classifier confirms high identifiability of each stimulus condition, with only the bacterial ligands P3C and CpG being confused with each other.

Classifier was trained on 70%of all single-cell data (2 replicate experiments fromM0 naivemacrophage populations) and tested on the remaining 30%of held-out

data. Color bar represents sensitivity.
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trained a random forest classifier to determine howwell the stim-

ulus could be predicted given a single cell’s response transcrip-

tome (Figures 1F, S4A, and S4B). We found that IFN-b could be

perfectly predicted (F1 score = 100%), while the bacterial

ligands CpG and P3C were confused with each other and were

thus more poorly classified (F1 = 85% and 74%, respectively).

The overall prediction accuracy of 88% across all stimuli

indicated a high degree of stimulus specificity despite cell-

to-cell heterogeneity in macrophage responses to ligands

(Figure 1F).

High stimulus specificity is determined by combinations
of individual genes that alone can distinguish only
subsets of stimulus pairs
To identify genes that may be driving the observed stimulus

specificity, we next employed an information theoretic

approach.26,27 We considered ligand information as transmitted

through a channel comprising cell signaling and gene regulatory
networks, both affected by pre-existing biological heterogeneity

and the stochasticity of biochemical reactions, to produce het-

erogeneous gene expression responses (Figure 2A).28,29 Under

this framework, the maximum mutual information (max MI) de-

scribes the certainty about the ligand input given the transcrip-

tome output. One bit equates to perfect distinguishability of

2 ligand response distributions (21 = 2), 2 bits for 4 ligands

(22 = 4), and 2.58 bits for 6 ligands (22.58 = 6). BecauseMI is maxi-

mized over all possible input distributions (max MI), this metric

provides a comparable absolute quantity for the biological char-

acteristic of response specificity that is independent of the un-

derlying type of data distribution or the mechanisms by which

the information is encoded.

We found that 95% of the measured genes on their own

conveyed no more than 1 bit of information (Figure 2B;

Table S2), which would indicate the ability to distinguish two

conditions. A heatmap of the top-ranking individual genes indi-

cated that rather than each gene having several levels of
Cell Systems 14, 1–16, March 15, 2023 3
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Figure 2. Despite the high stimulus specificity of gene expression programs, individual genes are capable of distinguishing only a subset of

stimulus pairs

(A) An information theoretic approach treats single-cell signaling and epigeneticmechanisms as a communication channel that passes extracellular information to

nuclear target genes.

(B) Distribution of maxMI values for single genes shows that only a few genes have amaxMI above 1 bit, with 1 bit indicating the ability to distinguish two groups.

Highlighted in green are high max MI genes shown in the heatmap in (C).

(C) Heatmap of single-cell gene expression indicates that low max MI is because most genes have binary expression patterns, on or off, rather than a range of

levels that would have been able to distinguish multiple groups of stimuli.

(D) Max MI as a function of the indicated number of genes in combination, for the gene combinations providing the highest max MI. The horizontal dotted line

indicates the theoretical limit for 6 stimuli.

(E) Gene names for the combinations that allow for the highest max MI for each given number of genes.

(F) Confusion matrices from random forest classifiers for gene combinations indicate that a small number of genes generate fair prediction accuracy, and a

classifier trained on 15 genes performs approximately the same as all genes.

(G) The genes comprising the top 2-gene combination, Cmpk2 and Nfkbiz, distinguish complementary stimulus pairs. Error bars represent standard deviations

from 10 iterations of 50% bootstrap resampling of the single-cell data.
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expression that would separate ligands, most genes displayed

an on-or-off expression pattern across single cells, which thus

distinguishes only two groups of ligands (Figure 2C). The single

gene most informative for distinguishing stimuli was Cmpk2, a

mitochondria-associated gene with reported antiviral and ho-

meostatic functions,30,31 which allowed for a max MI of 1.5 bits

(Figure 2C; Table S2), corresponding to expression distributions

sufficiently narrow to define approximately 3 kinds of stimulus-

specific responses.

How then can macrophages achieve high response speci-

ficity? One possibility is that a combination of genes that shows

low cell-to-cell heterogeneity may specify stimulus-specific re-
4 Cell Systems 14, 1–16, March 15, 2023
sponses to multiple stimuli. To assess this possibility, we em-

ployed the same information theoretic framework to calculate

the max MI provided by the best-performing combinations of

genes. Indeed, the best combination of two genes (Cmpk2 and

Nfkbiz) already allowed for a max MI of almost 2 bits, with the

gain in max MI plateauing to �2.25 bits as larger combinations

were tested (Figure 2D). Interestingly, the majority of genes

within the top gene combinations were intracellular proteins

controlling nucleotide metabolism (Cmpk2),32 antiviral activity

and cell death (Ifit3, Ifit1, and Mx2),33–35 ubiquitination (Peli1),36

mRNA half-life of inflammatory genes (Zc3h12a),37 or phagocy-

tosis (Swap70)38 (Figure 2E). Cytokine genes commonly
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Figure 3. The response specificity of cytokine genes is limited by cell-to-cell heterogeneity, despite having distinct expression means

(A) Deviation in mean expression among the six stimuli plotted against maxMI for each gene. Genes are colored by their average amount of dispersion across the

six stimuli (average Fano factor).

(B) Average Fano factor across the six stimuli plotted against maxMI shows genes with high or low dispersion. Genes are colored by deviation inmean expression

across stimuli (mean-square deviation).

(C) Mean-square deviation vs. average Fano factor over all stimuli, with cytokine genes highlighted.

(D) Expression distributions of cytokine (Ccl5, Tnf, and Cxcl10) and non-cytokine (Cmpk2) genes, showing distinct variance of responses to each stimulus.

(E) Mean expression level vs. expression variance for each stimulus-response distribution. Dotted lines mark where variance equals mean.
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measured by antibody-based assays (Tnf, Cxcl10, Ccl5, and

Ccl2) had secondary roles (Table S3). Machine learning classifi-

cation using different gene combination sizes confirmed these

conclusions. Even just the top two genes performed reasonably

well at 70% accuracy, the top 5 genes further improved classifi-

cation accuracy to 78%, and the top 15 genes performed almost

as well as all genes at 85% accuracy (vs. 88% for all) (Figure 2F

cf. Figure 1F). Gene combinations that worked well together did

so by distinguishing complementary ligand pairs (Figure 2G). For

example, Nfkbiz alone contributed 0.75 bits to distinguishing

CpG and PIC, complementing the inability of Cmpk2 expression

to distinguish these ligands (0 bits).

The response specificity of cytokine genes is limited by
high cell-to-cell heterogeneity, despite having distinct
expression means
High response specificity requires not only that mean population

gene expression is distinct but also that the cell-to-cell heteroge-

neity is low, such that distributions of single-cell responses have
limited overlap. Hence, we investigatedwhether SRSwas limited

by small differences in means or wide distributions. We found

that mean-square deviation (MSD), which summarizes differ-

ences in means across ligands, correlated more strongly to

response specificity (r = 0.8) than the average Fano factor, which

summarizes average gene heterogeneity (r = �0.5) (Figure 3A).

However, a few outliers were evident: some genes with a high

mean difference (e.g., Ccl5 or Cxcl10) showed unimpressive

response specificity, with similar max MI to genes with a low

mean difference (e.g., Ifi205) (Figure 3A). Plotting the average

Fano factor revealed that these outliers differed in their disper-

sion: Cxcl10 and Ccl5 displayed much higher heterogeneity

(i.e., high avg. Fano factors) (Figure 3B). By contrast, metabolic

and non-secreted genes such as Cmpk2, Ifi205, and Ifit3 had

tight distributions (i.e., unusually low avg. Fano factors) and

thus high response specificity.

Interestingly, a pattern emerged where the Fano factors

of cytokine/chemokine genes were higher than expected,

diminishing their response specificity despite distinct mean
Cell Systems 14, 1–16, March 15, 2023 5
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expression levels (Figure 3C). For example, directly plotting

the response distributions of cytokines Ccl5, Tnf, and

Cxcl10 (Figure 3D), as well as of the non-cytokine gene

Cmpk2, showed that Ccl5 was induced with high variance

expression distributions in response to PIC, P3CSK, and

CpG, while Cxcl10 and Tnf distributions also had Fano factors

(variance/mean ratio) close to or above one for multiple stim-

uli, which meant that their distributions were broad in relation

to mean expression. By contrast, the Fano factors across

stimuli for the non-cytokine gene Cmpk2 were well below

one for all stimuli (Figure 3E). These results suggest that sin-

gle-cell cytokine/chemokine expression may have limited pre-

dictive value in specifying distinct ligand responses due to

single-cell heterogeneity.

The stimulus specificities of immune response genes
are due to the selective deployment of IRF and p38
pathways and NF-kB dynamical features
In macrophage responses, four signaling pathways and their

downstream gene regulatory factors are combinatorially acti-

vated and are responsible for transmitting information about

extracellular ligands to the nucleus (Figure 4A). Their target

genes have been categorized into five gene regulatory strate-

gies, namely, AP1, NF-kB, IRF, NF-kB|p38, and NF-kB|IRF.8

We asked which gene regulatory strategies may mediate the

high SRS of particular genes, as measured by max MI. We as-

signed each gene to a regulatory logic through matching

mathematical model simulations of possible regulatory logics

to available stimulus-response datasets, followed by a cura-

tion of prior literature (Figure S5A; Table S4; STAR Methods).

The appropriate motifs were enriched for genes assigned to

each of the clusters (Figure S5B). We then calculated the

max MI of every gene for ligand pairs (Figures 4B–4D). For

example, contrasting TNF vs. IFN-b, genes within every regu-

latory logic group showed high specificity (Figure 4B), a reflec-

tion of the fact that each group is activated by only one of the

ligands: AP1 and NF-kB and NF-kB|p38 are activated by TNF

but not IFN-b, whereas IRF genes are activated by IFN-b but

not TNF.

By contrast, for the P3CSK vs. TNF stimulus pair, only NF-kB|

p38 target genes showed specificity because both stimuli acti-

vate AP1 and NF-kB, fail to activate IRF, and differ in the extent

of p38 activation (Figure 4C). Similarly, for P3CSK vs. PIC, NF-

kB|p38 targets showed specificity because PIC does not acti-

vate p38.8 However, for P3CSK vs. PIC, unlike P3CSK vs. TNF,

IRF target genes also contributed to SRS, since PIC activates

IRF but P3CSK does not (Figure 4D). Of note, the max MI of

IRF target genes was on average lower for P3CSK vs. PIC than

for TNF vs. IFN-b, potentially due to highly heterogeneous acti-

vation of IRF by the TRIF signaling pathway.40

In addition to combinatorial pathway control, the dynamics

of NF-kB activation also specify gene expression.41 Stimulus-

specific NF-kB temporal dynamics involve six NF-kB signaling

codons that convey information about the stimulus to target

genes: ‘‘speed,’’ ‘‘peak amplitude,’’ ‘‘oscillations,’’ ‘‘duration,’’

‘‘total activity,’’ and ‘‘early vs. late’’ activity (Figure 4E).39 To

determine which signaling codons may be associated with

the stimulus specificity of NF-kB target genes, we correlated

pairwise specificities of NF-kB signaling codons with the pair-
6 Cell Systems 14, 1–16, March 15, 2023
wise specificities of NF-kB target genes (Figure S5C). We

found that NF-kB target genes differed in with which signaling

codons they were associated (Figures 4F and S5D). These

distinctions may be reflective of genes employing distinct

gene regulatory mechanisms such as an incoherent feedfor-

ward loop that decodes peak amplitude,42 long mRNA half-

life or slow chromatin opening steps that decode duration,43

or the requirement for de novo enhancers that distinguishes

oscillations.44

Cytokine polarization modulates the response
specificity of specific genes to specific stimuli
Macrophages show remarkable functional pleiotropy that is

dependent on microenvironmental context.45 Thus, polarization

by prior cytokine exposure may alter their capacity for stimulus-

specific responses. To test this hypothesis, we polarized macro-

phages into M1(IFN-g) and M2(IL-4) states, which represent

opposing ends of the macrophage polarization spectrum (Fig-

ure S6A),46 and generated single-cell stimulus-response data

for the six ligands (Figure 5A). Polarized M1(IFN-g) and

M2(IL-4) macrophages expressed macrophage marker

Adgre1 (Figure S6B) and the appropriate polarization markers

(Figures S6C and S6D). PCA and UMAP projections of response

distributions revealed that stimulus responses for polarizedmac-

rophages were distinct (Figures 5B and S6E), but M1(IFN-g)

response distributions were more overlapping than those for

M0 naive macrophages.

We found that SRS was reduced in both polarization states for

every set of the best gene combinations, as calculated by max

MI, indicating that polarized macrophages may function more

as specialized effectors and less as sentinels that serve a pri-

mary role of distinguishing immune threats (Figure 5C;

Table S3). Interestingly, we further observed that the genes

within each of the best gene sets were different for each polari-

zation state (Figure 5D). This was corroborated by examining one

gene,Cxcl10, which was included in the best gene combinations

in M0 and M2 (IL-4) conditions but not in M1 (IFN-g). Indeed, in

M1 (IFN-g) macrophages, Cxcl10 was promiscuously rather

than stimulus-specifically activated and no longer carried stim-

ulus-specific information about any pairs of stimuli (Figure 5E).

This change in SRS could be ascribed to the IRF pathway.

Several NF-kB|IRF target genes (Cxcl10, Cmpk2, Ifit3, and

Trim21) lost specificity in M1(IFN-g) macrophages (Figures 5F

and S6F), reflecting the fact that in the presence of IFN-g condi-

tioning, such genes only require activation of NF-kB to be

induced. In fact, using the random forest machine learningmodel

trained on M0 naive macrophages to predict the stimuli seen by

M1 or M2 cells, we found that M1 responses were all more likely

to be predicted as LPS or PIC, which are IRF-activating stimuli

(Figure 5G). Gene ontology attributed this loss of SRS to the bio-

logical pathways ‘‘response to virus,’’ ‘‘response to LPS,’’ and

‘‘response to IFN-b’’ (Figure S6G; Table S5). Motif enrichment

analysis also identified IRF target genes as responsible

(Figure 5H).

While a global analysis indicated that polarization dimin-

ished macrophage response specificity, the genes most

affected differed for each macrophage state. In addition, a

smaller set of largely NF-kB response genes also showed

increased rather than diminished response specificities under
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Figure 4. Stimulus specificity of immune response genes from the selective deployment of IRF and p38 pathways, and NF-kB dynamical

features

(A) Signaling and gene regulatory mechanisms are responsible for generating response specificity. MAPKp38, IRF3, AP1, and NF-kB signaling profiles are

activated in response to inflammatory stimuli and act in combination to regulate gene expression, using five identified regulatory logics.8

(B) Distribution of max MI values for genes of the five regulatory logics for IFN-b vs. TNF.

(C) Distribution of max MI values for genes of the five regulatory logics for P3CSK vs. TNF.

(D) Distribution of max MI values for genes of the five regulatory logics for P3CSK vs. PIC.

(E) Single-cell NF-kB signaling dynamics in response to TNF, P3CSK, LPS, or PIC. Heatmap represents nuclear NF-kB concentration. Information conveyed by

NF-kB dynamical activity is transmitted through six NF-kB signaling codons.39

(F) Response specificity of NF-kB target genes across all pairs of stimuli vs. Stimulus specificity in NF-kB signaling codons. Color represents the correlation

strength between pairwise gene expression and pairwise signaling codon response specificity.
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each polarization condition (Figure 5F). Such nuanced findings

preclude the use of a single gene or even a single set of genes

to quantify SRS over multiple macrophage states. The
response specificity of macrophages thus may not be appro-

priately characterized by a single number, but rather by a

higher dimensional profile.
Cell Systems 14, 1–16, March 15, 2023 7
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Figure 5. Cytokine polarization causes complex modulation of the response specificity of specific genes to specific stimuli

(A) The response specificity experimental assay captures response distributions to six stimuli in M1(IFN-g) and M2(IL-4) polarized macrophages.

(B) PCA on all M0, M1(IFN-g), and M2(IL-4) macrophage responses to the six stimuli. Variance explained by PC1 (19.9%) and by PC2 (15.7%). Polarized

macrophages produce response distributions distinct from those of M0 macrophages.

(C) Response specificity as calculated by maxMI is slightly reduced in bothM1(IFN-g) andM2(IL-4) polarization states, for every dimension of best possible gene

combinations.

(D) Genes within the best 15-gene combination for M0, M1(IFN-g), and M2(IL-4) macrophages are distinct.

(E) Top: distribution ofmaxMI values of individual genes forM0,M1(IFN-g), andM2(IL-4) macrophage responses. Dotted linesmark themaxMI ofCxcl10 for each

macrophage state: red (M0), green (M1), and blue (M2). Bottom: Cxcl10 stimulus-response distributions for M0 (left), M1 (center), and M2 (right) macrophage

states are shown.

(F) Scatterplot of differences in max MI values betweenM0 vs. M1(IFN-g) or M2(IL-4) macrophage responses. Genes are colored by assigned gene regulatory logic.

(G) Confusion matrices representing the accuracy of stimulus prediction, given single-cell gene expression profiles for M1 and M2 macrophages, using the

random forest model trained on naive M0 macrophages. Color bar represents sensitivity.

(H) Motifs that lose specificity in M1 or M2 macrophages, compared with M0 naive macrophages. Left: enrichments of all potential motifs. Right: barplot of most

significant enrichment for each motif category.
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The response specificity profile of stimulus pairs
assesses the functional state of macrophages and
readily distinguishes M0 vs. M1 vs. M2 macrophages
We noted that while different macrophage states could be iden-

tified by profiling their steady-state transcriptomes (Figure S6A),

their responses to stimuli were even more distinguishable (Fig-

ure 6A). Quantifying the distance between both the stimulated

and unstimulated distributions, we found that in all comparisons,

specific stimuli revealed differences that were not as evident

from steady-state measurements. This was especially evident

for M0 vs. M2 macrophages, whose response distributions to

P3C and CpG were particularly more distinct than could be as-
8 Cell Systems 14, 1–16, March 15, 2023
certained from steady-state distributions (Figure 6B). This illus-

trates that for assessing the functional state of macrophages,

measurements of multiple stimulus responses provide non-

redundant information.

To quantitatively assess the response specificity provided by

all 6 stimuli, we developed an approach to profile the max MI

of all 15 stimulus pairs within the macrophage response land-

scape characterized by a PCA projection of all single-cell stim-

ulus-response transcriptomes (Figure 6C; Table S6; STAR

Methods). The resulting response specificity profile of M0,

M1(IFN-g), and M2(IL-4) macrophages showed specific differ-

ences for some of the stimulus pairs tested (Figure 6C).
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Figure 6. The response specificity profile of stimulus pairs assesses the functional state of macrophages, and readily distinguishes M0 vs.

M1 vs. M2

(A) PCA of stimulus responses vs. resting-state expression profiles of M0 vs. M1 vs. M2 macrophages.

(B) Quantification of differences in response distributions vs. resting-state distributions among the threemacrophage states, using Bhattacharyya distance on the

first three components. Colors are the same as in (A).

(C) Response specificity profiles measured by max MI of all 15 stimulus pairs, as defined by response distributions to 6 stimuli. M0, M1, and M2 macrophage

responses each show specific differences in select pairs. Error bars represent standard deviations from 50 iterations of 50% bootstrap resampling.

(D) Across all pairs, the difference in maxMI fromM0 responses is calculated to derive DRSI, a characteristic signature of the functional state of the macrophage.

(E) Top: a summary of the pairwise profile into a single number, the DRSI. Bottom: DRSI provides a clearer indication of differences than calculating the MI on all

stimulus-response datasets together. Error bars for DRSI represent the propagation of the original standard deviations in max MI calculations.
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Particularly, M1(IFN-g) macrophages were impaired in distin-

guishing bacterial stimuli (LPS-CpG and LPS-P3C), whereas

M2(IL-4) macrophages were not. Meanwhile, M2(IL-4) macro-

phages were more impaired in distinguishing host cytokine vs.

bacteria (TNF-CpG and TNF-P3C). In both polarization states,

CpG-P3CSK specificity, which had been the least distinguish-

able stimulus pair for M0 macrophages, was enhanced.

Calculating the difference in max MI from the M0 state, and

thereby the delta response specificity profile, provided a charac-

teristic signature of the functional state of the macrophage

(Figure 6D). This profile could also be summarized succinctly in

a single number, the delta response specificity index (DRSI),

which provided a clearer indication of differences among polar-

ization states than the MI calculated on all stimuli together (Fig-
ure 6E). We found that the overallDRSI of M2(IL-4) macrophages

was greater than that of M1(IFN-g) macrophages, as a result of

M2(IL-4) macrophages showing a greater loss of specificity in

distinguishing host vs. bacterial ligands. Thus, the response

specificity profile and DRSI revealed a signature of pairwise

SRS scores associated with the function of each macrophage

type, whether naive, M1(IFN-g), or M2(IL-4).

Peritoneal macrophages from old and obese mice show
distinctive alterations in their response specificity
profiles
Next, we tested whether the response specificity profile might

reveal aberrations in macrophages derived from mice with

conditions associated with inflammatory disease. We took
Cell Systems 14, 1–16, March 15, 2023 9
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Figure 7. Old and obese mouse peritoneal macrophages show distinctive alterations in their response specificity profile

(A) Measuring response specificity for three mouse models using peritoneal macrophages: healthy low-fat diet mice (16 weeks), old mice (>90 weeks), and high-

fat diet mice (16 weeks). Cells from two mice were aggregated for each condition.

(B) tSNE visualization of peritoneal macrophage responses to stimuli for each of themousemodels, healthy low-fat diet (LFD), aged (OLD), and high-fat diet (HFD),

using the top 20 principal components.

(C) Left: macrophage responses from healthy and diseased mouse models are scored by the response specificity profile. Error bars represent standard

deviations from 50 iterations of 50% bootstrap resampling. Right: subtracting each profile from the response specificity profile of M0 macrophages highlights

pairwise differences in max MI values.

(D) Square root of the sum of the square deviation fromM0 across all stimulus pairs was calculated to obtain the single-value DRSI (Figure 6B). For both polarized

macrophages and peritoneal macrophages, stimulus pairs that included CpG were not included due to CpG not being used in the response specificity assay on

peritoneal macrophages. Higher numbers for DRSI indicate a larger deviation fromM0. Error bars represent the propagation of the original standard deviations in

max MI calculations.

(E) Scatterplot of differences in maxMI values between LFD vs. OLD or HFDmacrophage responses. Genes are colored by the absolute maxMI quantity for each

gene in the LFD mouse model.
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peritoneal macrophages (PMs) from healthymice (17weeks old),

aged mice (90 weeks old), and high-fat-diet obese mice

(17 weeks old) and performed the response specificity workflow

using 5 ligands: LPS, TNF, PIC, P3C, and IFN-b (Figure 7A). Visu-

alization of the resulting single-cell data suggested that old mice

had aberrant IFN-b-response distributions, while obese mice

had aberrant PIC-response distributions (Figure 7B). We calcu-

lated the response specificities for the data (Figure 7C) and

noted that the PMs from young, healthy mice had an overall

DRSImost similar to naiveM0macrophages (Figure 7D). A closer

inspection of the response specificity profile showed that PMs

from old mice showed the most diminished specificity for inter-

feron-activating stimulus pairs (e.g., LPS-PIC), akin to what we

observed with M1(IFN-g) macrophages. PMs from high-fat-

diet, obese mice had decreased specificity across all stimulus

pairs, but particularly in distinguishing cytokine vs. viral (TNF-

PIC) responses. The differences observed through calculation
10 Cell Systems 14, 1–16, March 15, 2023
of the response specificity profile on stimulus subsets suggest

an importance to comparing multiple subsets of stimuli in evalu-

ating innate immune function.

To identify individual genes that showed particularly high los-

ses of SRS in these in-vivo-conditioned macrophages, we

compared max MI values for each gene (Figure 7E). We found

that macrophages from both old and obese mice lost specificity

in the cytokine Tnf, but also in the metabolic gene Acod1,47,48

and in upstream TLR signaling network proteins such as

Peli1,36 Nfkbiz,49,50 and Phlda1.51 Normal function of these

genes has been implicated in resistance to septic shock, macro-

phage response to atherosclerosis, and protection from autoim-

mune disease. Interestingly, a couple of genes showed higher

stimulus specificity in these dysregulated microenvironments.

In old mice, genes with the highest gains in specificity were the

cytokine Cxcl10 and cytokine regulator Aw112010, which are

required for mucosal immunity,52 and in obese mice, Cav1 and
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Slamf8, which play roles in macrophage differentiation and

migration.53,54 This suggests that macrophage responses in un-

healthy mice deviate from those in healthy mice through both

losses and gains of stimulus specificity in individual genes: los-

ses indicating responses that are too promiscuous, potentially

causing conditions for autoimmunity to arise; and gains indi-

cating responses that are too restricted to a particular stimulus,

potentially diminishing core functions of macrophages in innate

defenses or resolution of tissue inflammation and damage.

As PMs ofmice of different agesmay be composed of different

subpopulations, we next evaluated to what extent the changes in

SRS may be due to subpopulations of macrophages differen-

tially present in diseased vs. healthy mice. Based on scRNA-

seq of steady-state populations,55 we found that all subclusters

of macrophages were found in both young and old mice

(Figures S7A–S7E), although in slightly different proportions (Fig-

ure S7F). Using marker genes to match these clusters to the

stimulus-response data, we likewise found these subgroups rep-

resented across healthy, aged, and obese mice, although again

in different proportions (Figure S7G).

Taken together, quantifying the SRS ofmacrophages revealed

that this functional hallmark of immune sentinel cells is affected

not only by polarizing cytokines used in pre-conditioning re-

gimes in vitro but also by the microenvironments in vivo that

are evidently distinct in obese and old mice. It is possible that

response specificity profiles of PMs capture altered responses

of both distinct subpopulations of macrophages that are differ-

entially represented in inflammatory conditions and distinct func-

tional states of the same subpopulation. Regardless, the

observed differences in SRS suggest that quantifying post-stim-

ulation single-cell response distributions could be valuable for

assessing innate immune function.

DISCUSSION

Mounting stimulus-appropriate immune responses is a key

property of healthy macrophage function.7,8,56–58 Macrophage

response specificity is a function of the stimulus-specific

engagement of signaling pathways and may be diminished by

molecular network noise that results in cell-to-cell heterogeneity.

While response specificity of the macrophage NF-kB signaling

pathway has been characterized,39,59 the response specificity

of immune gene expression responses arising from all macro-

phage signaling pathways has not yet been quantified. By devel-

oping the experimental and computational tools to do so, we

found that the high gene expression specificity observed was

generated by sufficiently narrow response distributions in com-

binations of genes that respond with distinct patterns across

stimuli, but the contribution of often-measured cytokine genes

was limited by high cell-to-cell heterogeneity of expression.

Mechanistically, we found that SRS is generated by stimulus-

specific activation of IRF or MAPKp38 signaling, or by differ-

ences in NF-kB dynamics. Loss of IRF gene specificity by micro-

environmental polarization was the key driver in altering

response specificity profiles. Given that response specificity is

context-dependent, we profiled PMs from old and obese mice,

revealing highly specific changes in the response specificity pro-

file that correlated with a different health status. These findings

may prompt further studies to investigate whether macrophage
response specificity could be a means to characterize the innate

immune health of human donors.

Our ability to measure and subsequently quantify response

specificity was enabled by a quantitative assay for cost-

effective, reliable scRNA-seq.23,60 The targeted sequencing

approach we pursued here resulted in less technical noise than

genome-wide approaches, due to improved reverse-transcrip-

tase efficiency and increased sequencing depth per gene.23

However, even with technical improvements, the remaining

measurement noise61 still may result in underestimates of the

true response specificity. Future efforts on smaller gene lists

may allow for the use of even less noisy measurement ap-

proaches like single-molecule fluorescence in situ hybridization

(smFISH),62,63 which capitalize on the smaller sets of informative

genes identified in this study.

Measuring the responses from macrophages rather than their

steady-state transcriptomes provided additional levels of infor-

mation. First, we found that stimulus-response transcriptomes

may reveal differences in macrophage populations that are not

apparent in the steady state. This may be because exposure his-

tories and cytokine contexts change signaling pathways and

chromatin states that are not reflected in steady-state mRNA

abundances. Measuring stimulus responses also allowed us to

evaluate multiple distributions for each macrophage type, rather

than the single distribution provided by profiling the steady state.

Emergent from these multiple distributions is response speci-

ficity, which evaluates the relative extent of distribution overlap

and reports on the ability of eachmacrophage type to distinguish

among immune threats. Not only is response specificity an

important biological hallmark property of macrophages,58 but

also from the workflow perspective, being based on multiple

measurements that may be compared with one another, it

makes this analysis metric more resistant to technical noise or

batch effect, potentially enabling better comparisons across

studies.

The information theoretic approach we used here to quantify

SRS has been previously employed to quantify the information

transmission capacity of signaling pathways.28,39,59,64–69 In

fact, we found that SRS of individual genes can be traced either

to a single pathway or by multiple pathways,8 for example, the

NF-kB target gene Tnf whose mRNA half-life is regulated by

stimulus-induced MAPKp38.70 This combinatorial control ex-

plains why in principle some single genes like Tnf can hold

more information than available from a single signaling pathway.

But even single pathway genes may show response specificity

owing to their ability to distinguish different dynamical character-

istics, such as NF-kB signaling codons. Interestingly, we

observed that such genes correlated strongly to identifiable

signaling codons, indicating that their gene regulatory strategies

are able to decode the information present in the stimulus-spe-

cific deployment of the signaling codon.

Theoretically, information loss from signaling to gene expres-

sion is minimal without noise,71,72 while with noise, maintaining

minimal information loss is only possible under select optimal

promoter or chromatin conditions.73–75 Specifically, to achieve

high gene expression response specificity, signaling information

must be interpreted by gene regulatory strategies76,77 without

amplifying the cell-to-cell heterogeneity in signaling activity,78

and also without introducing further heterogeneity through
Cell Systems 14, 1–16, March 15, 2023 11
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pre-existing chromatin heterogeneity79,80 or molecular

noise.81–84 In this context, it is not surprising that the SRS of

most individual genes was low. However, as macrophages do

not rely on only a single gene to mount a biological response

to a specific immune threat, even with information loss at each

particular promoter, the overall SRS observed through combina-

tions of a few genes from complementary pathways was

still high.

Within the body, macrophages are exposed to polarizing mi-

croenvironments in physiological scenarios,85 as well as in path-

ological inflammatory contexts such as aging or obesity.86–88 As

circulating cells they are potentially reporters of even localized

infections.89 Indeed, profiling the transcriptome or epigenome

of circulating cells or macrophages has revealed molecular

markers or signatures that are prognostic for therapeutic effi-

cacy90,91 or alternative disease courses, such as in persistent

infectious or inflammatory diseases15,92 or in cardiovascular

and autoimmune diseases.93–97 However, as seen in human

COVID-19 studies, it can be unclear which individuals have

poor or vigorous immune health until they are challenged by

infection.98–102 Here, we considered that macrophage functions

are deployed in response to immune threats and that stimulus re-

sponses are a function not only of the steady-state transcrip-

tome or epigenome but also the dynamics of signaling com-

plexes, membranes, and transport rates. We reasoned that

macrophage responses to different stimuli reveal a functional

pleiotropy not evident at steady state and that the stimulus-spe-

cific deployment of functions is key to healthy immunity. Indeed,

we found that macrophages conditioned in vitro by defined

polarizing cytokines, as well as macrophages isolated from

obese or oldmice, showed distinctly altered response specificity

profiles due to both cytokine genes and regulators within macro-

phage metabolic and signaling pathways.

In developing the response specificity profile, we found that

analyzing single genes and pairs of stimuli provided more insight

than aggregating the data together. For example, response

specificity for each pair of stimuli differed for each polarization

condition, but this information is lost when calculating MI for all

stimuli at once. Instead, an aggregate score of alterations in

the response specificity profile (DRSI) provides the first indica-

tion of differences and the full response specificity profile pin-

pointed aberrancies in select stimulus pairs that may be a diag-

nostic for a specific condition, such asmacrophages from obese

mice confusing TNF and PIC responses. For initial surveys of

response specificity profiles, measuring the expression of a large

number of genes in response to multiple stimuli is important, as

the most informative genes and stimulus comparisons are

different across various macrophage states.103 We employed a

PCA approach to characterize the response landscape and

identify genes that are important across conditions, using the

gene weights in principal components. Indeed, the response

specificity of individual genes differed greatly between the two

disease models tested here, emphasizing the importance of

gene-by-gene analysis in characterizing the response specificity

profile to make biologically meaningful predictions.

Characterizing the macrophage response specificity profile

may prove useful in clinical scenarios. Many steady-state met-

rics of immune health exist, such as the complete blood count

that is a mainstay of clinical lab tests. However, tests for func-
12 Cell Systems 14, 1–16, March 15, 2023
tional immune responses, already used in select clinical sce-

narios such as tuberculosis testing or allergy testing, are

also rapidly emerging.104 Multiple such assays rely on

ex vivo stimulation of extracted clinical samples to diagnose

immunosuppression105 or phagocytic ability106 and have

included transcriptomic profiling studies of stimulus re-

sponses on peripheral blood, identifying inter-individual varia-

tion among healthy donors and the genes driving those

differences.107 As seen with existing assays, the extent to

which stimulus-response measurements provide more reliably

prognostic information than steady-state molecular profiling

may depend on the health condition being studied.

Our assay of single-cell macrophage responses may identify

outlier response cells within each donor sample through the

response specificity profile, which may be associated with risk

for aberrant inflammatory responses or diminished innate im-

mune defenses, or which may be reflective of an ongoing inflam-

matory or infectious condition that is not otherwise presented.

The response specificity profile allows for new samples to be

compared readily with a healthy range, a property that could

be the basis for a clinically deployablemeasure of innate immune

health. The stimulus-response data may also identify specific

genes with aberrant response distributions in patient cohorts

or in individual donors. Identifying such genes may provide

cost-effective prognostic markers for specific cohorts or may

point toward the underlying etiology of poor immune function.

To realize this promise, large-scale clinical studies will be

required to establish connections between response specificity

profiles and risk for disease. However, as a quantifiable property

of macrophage function that changes with conditioning cyto-

kines or states of health and disease, the macrophage response

specificity profile may be a viable approach for measuring the

health of innate immune function in the clinic.
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Chemicals, peptides, and recombinant proteins

LPS Sigma, B5:055 L2880

murine TNF Roche 11271156001
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low MW polyinosine-polycytidylic acid (Poly(I:C)) Invivogen tlrl-picw
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murine IFNg R&D 485-MI

murine IL-4 R&D 404-ML

Critical commercial assays

BD Rhapsody Express Single-Cell Analysis system BD 633702

Targeted mRNA and AbSeq Reagent Kit 4 Pack BD 633771

BD Rhapsody Cartridge Reagent Kit BD 633731

BD Rhapsody Cartridge Kit BD 633733

BD Rhapsody cDNA Kit BD 633773

BD Rhapsody P5000M pipette BD 633705

BD� Stain Buffer (FBS) BD Pharmigen 554656

Deposited data

BD Rhapsody scRNAseq processed data This paper Zenodo: https://doi.org/10.5281/zenodo.7296165

https://github.com/signalingsystemslab/

ResponseSpecificity

BD Rhapsody scRNAseq fastqs This paper GSE220970

BMDM bulk RNAseq data Cheng et al.8 GSE68318

Single cell NFkB signaling dynamics Adelaja et al.39 https://doi.org/10.17632/6wksmvh5p4.1

10x scRNAseq of macrophages Adelaja et al.39 GSE162992

10x scRNAseq of peritoneal macrophages Mogilenko et al.55 GSE145562

Experimental models: Cell lines

Immortalized Myeloid Progenitor-derived macrophages Singh et al.25 N/A

Experimental models: Organisms/strains

C57BL/6J 90wks old Jackson Labs 000664

C57BL/6J/DIO high fat diet (60% fat diet) Jackson Labs 380050

C57BL/6J/DIO controls (10% fat diet) Jackson Labs 380056

Oligonucleotides

Rhapsody Custom Panel: ID 1330 BD 633743

Rhapsody Custom Panel: ID 1331 BD 633743

Rhapsody Custom Panel: ID 1332 BD 633743

Rhapsody Custom Panel: ID 1334 BD 633743

Rhapsody Custom Panel: ID 1341 BD 633743

Software and algorithms

CARET Kuhn et al.108 http://caret.r-forge.r-project.org/

Seurat Stuart et al.109 https://www.rdocumentation.org/packages/

Seurat/versions/3.1.4

BD Rhapsody Targeted Analysis Pipeline (version v1.0) Shum et al.23 https://www.sevenbridges.com/
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HOMER Heinz et al.111 http://homer.ucsd.edu/homer/

SLEMI Jetka et al.66 https://cran.r-project.org/web/packages/

SLEMI/index.html

rtensor Li et al.112 https://cran.r-project.org/web/packages/

rTensor/index.html

clusterProfiler Yu et al.113 https://bioconductor.org/packages/release/

bioc/html/clusterProfiler.html
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Alexander

Hoffmann (ahoffmann@ucla.edu).

Materials Availability
This study did not generate new materials.

Data and Code Availability
d Data have been deposited at Zenodo and GEO and are publicly available as of the date of publication. DOIs are listed in the key

resources table.

d All original code has been deposited on the Github repository https://github.com/signalingsystemslab/ResponseSpecificity

and is publicly available as of the date of publication. The DOI of an archived version is listed in the key resources table.

This includes code for data processing and analysis, and processed single cell data, including raw and normalized counts.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Macrophage Cell Culture
Macrophages were obtained by differentiating immortalizedmyeloid progenitors (HoxB4 iMPs).25 The choice of using HoxB4 immor-

talized progenitors was multifold: First, Singh et al.22 showed that HoxB4-iMPDMs (immortalized myeloid progenitor-derived mac-

rophages) had gene expression responses more similar to BMDMs than RAW cells to BMDMs, thus making the HoxB4-iMPDMs a

better choice to model primary macrophages than the current most popularly used murine macrophage line, RAW 264.7. Second,

using iMPDMs removed the need for using large numbers of mice, making it more economical and animal-friendly. Third, while intro-

duction of HoxB4 may be a concern in terms of the function of the macrophage, the near-clonal nature of the precursor cells rather

than the mixture of various precursors in bone marrow may in fact be an advantage. HoxB4-iMPs were differentiated in DMEM/10%

FBS + 30%L929 supernatant for a total of 10 days: iMPs were initially thawed into 10cm non-adherent petri dishes for 3 days. On day

0 of differentiation, cells were thenwashed once and transferred into differentiationmedia (DMEM/10%FBS, 30%L929 supernatant,

1% PS, 1% L-Glut, b-Me (1:1000)). Cells were replated into 6cm plates with new media on day 7, at a density of �20k cells/cm2. On

day 10, the iMP-derived macrophages (iMPDMs) were stimulated with 100ng/mL lipopolysaccharide (LPS, Sigma Aldrich), 10ng/mL

murine TNF, and 50mg/mL low molecular weight polyinosine-polycytidylic acid (Poly(I:C)), 100nM synthetic CpG ODN 1668 (CpG),

500U/ml IFNb, or media only Untreated control. For polarized macrophages, cells were incubated in 50ng/ml IFNg or 50ng/ml IL4

for 24 hours prior to stimulation on day 10.

Peritoneal Macrophage Experiments
All mouse work was done following institutional approval under UCLA’s accreditation by Association for Assessment and Accredi-

tation of Laboratory Animal Care International (AAALAC). C57Bl/6 mice were obtained from Jackson labs. Twomale mice were com-

bined for each condition in order to obtain sufficient numbers of cells for the assay: 90wks old (000664 C57BL/6J), 17wks old (380050

C57BL/6J/DIO high fat diet (60% fat diet)), 17wks old (380056 C57BL/6J/DIO controls (10% fat diet)). Peritoneal macrophages were
e2 Cell Systems 14, 1–16.e1–e5, March 15, 2023
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extracted by injecting 10mL PBS +1% FBS into the peritoneal space, shaking gently, and then pulling out as much fluid as possible,

typically �8ml. Macrophages were plated in DMEM +10%FBS and allowed to rest 24hrs. Floating cells after that time were washed

away, and remaining adherent macrophages were stimulated with the same ligand concentrations as for iMPDMs: 100ng/mL lipo-

polysaccharide (LPS, Sigma Aldrich), 10ng/mL murine TNF (R&D), 50mg/mL low molecular weight polyinosine-polycytidylic acid

(Poly(I:C)), 500U/ml IFNb, or media only Untreated control. Cells were washed once with cold PBS after 3hrs of stimulation and lifted

into suspension for the Rhapsody scRNAseq assay. The investigators were not blinded the identity of the animal models during the

experiments or outcome assessment.

METHOD DETAILS

Gene Panel Selection Algorithm
To select genes for single-cell targeted gene profiling, we analyzed existing bulk transcriptomic profiling of macrophage responses.

Bulk RNAseq data from Cheng et al.8 was obtained from GEO GSE68318. Counts were converted to counts per million (cpm) using

the package edgeR,110 and genes with cpm>4 in at least three samples were retained. Induced genes were gathered by calculating

fold changes at each of the 14 stimulus conditions available in the dataset, at each timepoint, against the unstimulated controls.

Genes were retained as induced genes if they met the threshold of log2(fold change)>2 and p-value < 10-5, which resulted in

1502 genes.

Because PCA identifies a new basis that maximizes variance within the rotated data, it was ideal for identifying genes that varied in

expression level across different stimuli. PCA was performed centered and unscaled on the induced genes across all time points for

the 14 stimuli in the dataset. The loadings matrix obtained from the PCA was used to calculate a rank score for each gene. The rank

was computed as the radial distance of each gene j from the origin, over the top 20 PCs: scorej =
P20

x = 1ðPCxjÞ2, where PCxj is the

component x loadings value for gene j. The top 480 ranked genes were included in the panel, and the remaining 20 genes weremanu-

ally selected to add genes such as cell type markers, macrophage polarization markers, and transcription factors (Table S1). As a

visual confirmation of the approach, k-means clustering was performed on all induced genes and loadings were colored by cluster.

As expected, genes with the highest absolute loadings values in each principal component tended to be spread across different clus-

ters, and the top genes in each principal component exhibited distinct patterns across stimuli.

Selection of Stimuli for Response Specificity Assay
To identify an optimal set of the most distinct stimuli from the set of 14 used in the bulk transcriptomic data, tensor components anal-

ysis (TCA) was performed. TCA is a higher dimensional parallel of PCA – whereas PCA is performed on a genes3samplematrix, TCA

is performed on a higher-order tensor by folding the gene expression matrix into a genes3stimuli3timepoint tensor. The bulk

RNAseq data consisted of N genes over S stimuli with T timepoints per stimulus, which formed a third-order tensor X of dimensions

N3S3T (a three-dimensional array). Tucker decomposition115 was performed using the package rTensor. This decomposes the

tensor into a core tensor G of dimensions R1 3 R2 3 R3, multiplied by a matrix UðiÞ along each mode:

X = G3 1U
ð1Þ 3 2U

ð2Þ 3 3U
ð3Þ

The first five components, which explained 92% of the variance in the data, were retained. The stimulus loadings matrix Uð2Þ of
dimensions S3 R2was hierarchically clustered on the first five components, and stimuli that each occupied separate branches of

the hierarchical tree were selected. Stimuli that represented whole bacterial organisms or viruses were not selected, in favor of iso-

lated bacterial or viral components.

Rhapsody scRNAseq
To collect the adherent macrophages for scRNAseq using the Rhapsody platform, macrophage cells were washed 1x with cold

PBS, then lifted into suspension by incubating at 37C for 5 minutes with Accutase, which resulted in cell viability typically >85%.

Cells were centrifuged at 4C, 400g for 5 minutes, and resuspended in PBS + 2% FBS. Cells were hash-tagged with anti-CD45-

hashtags (BD Rhapsody # 633793) and loaded onto the cartridge following manufacturer’s instructions (BD Rhapsody # 633771),

with the following modifications, which helped ensure sufficient cell viability for the subsequent steps: Incubation with

hashtags was performed for 30mins on ice, instead of 20mins at room temperature; only two washes were performed after

hashtag incubation to minimize cell loss. Each cartridge was then loaded with a total of �36k cells across 12 hash-tagged samples

(�3k cells/sample). Libraries were prepared according to manufacturer’s instructions (BD Rhapsody # 633771) and sequenced

2x100 on Novaseq 6000.

QUANTIFICATION AND STATISTICAL ANALYSIS

Motif Enrichment
Motif enrichment of induced genes and selected genes was performed using HOMER,111 with a motif search range of -1000 to +100

of the TSS of each gene. Individual motif hits were placed into five categories: bZIP (AP1 family TF motifs), IRF (IRF and ISREmotifs),

RHD (Rel Homology Domain NFkB family motifs), ETS (Erythroblast Transformation Specific family TF motifs), and Zf (Zinc finger
Cell Systems 14, 1–16.e1–e5, March 15, 2023 e3
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motifs). To summarize the overall enrichment of particular transcription factor families within the gene sets, the average -ln(p value) of

motifs in each category was calculated, and a second log transform was taken for plot visualization.

Gene Ontology
Gene ontology on selected genes versus unselected genes was performed using clusterProfiler113 against a background of all genes.

Cutoff values of p-value < 0.01, Benjamini-Hochberg q-value <0.05, and minimum gene set size >5 were used. Ontologies were

grouped if they had a similarity proportion greater than 0.7. The top three Biological Processes ontology terms for each group

were plotted.

scRNAseq Data Processing
Raw fastq files were processed using the BD Rhapsody� Targeted Analysis Pipeline (version v1.0)23 hosted on Seven Bridges Ge-

nomics. Distribution-Based Error Correction (DBEC)-adjusted UMI counts (molecules per cell) were used in the downstream analysis.

Multiplets, cells with undetermined barcodes, and cells with less than 80 features were removed from the analysis. Due to the

selected 500 gene panel comprised of largely inducible genes, the assumption that the total number of RNAs per cell is constant

does not hold. Counts were therefore normalized using the package ISnorm,114 rather than the more standard approach of dividing

by total counts per cell. PCA was performed centered and unscaled using the R function prcomp, and UMAP and tSNE were per-

formed on the top 20 PCs.

Assignment of Genes to Regulatory Mechanisms
We first pursued a data-driven approach for the assignment, by examining time-series cell population average data from macro-

phages stimulated with the six stimuli. We then simulated the 7 gene regulatory logics identified by Cheng et al.,8 collapsing short

and longmRNA half-life clusters. Each of the ordinary differential equations used for the 7 regulatory logics followed the same general

form:

dmRNA

fdtg = ksynfðtÞ-- kdeg �mRNA;

where for single transcription factor logic gates8:

fðtÞ = ð1 � k0Þ � ðKD � ½TFðtÞ�Þn
1+ ðKD � ½TFðtÞ�Þn + k0

and for two transcription factor OR logic gates8:

fðtÞ = ð1 � k0Þ �
�
KD1

� TF1ðtÞ�n + �
KD2

� TF2ðtÞ�n + �
KD1

� KD2
� TF1ðtÞ � TF2ðtÞ�n

1+
�
KD1

� TF1ðtÞ�n + �
KD2

� TF2ðtÞ�n + �
KD1

� KD2
� TF1ðtÞ � TF2ðtÞ�n�+ k0

We matched regulatory logics to each gene by assigning the GRS with the lowest RMSD between model and experimental data

(see https://github.com/signalingsystemslab/ResponseSpecificity; Cheng et al.8 and Wang et al.116). We then manually curated the

model assignments based on evidence provided by the literature, resulting in assignments given in Table S4.

Machine Learning Models and Feature Importance
Machine learning classification models were trained using scRNAseq data from naı̈ve macrophages. The data was split 70%/30%

into a training group and a testing group. Using only the training data, a random forest model was trained using repeated 10-fold cross

validation, with 3 repeats. The parameter mtry, which is the number of variables randomly selected as candidate features for each

decision tree split, was set to Oðtotal number of features). As alternative models, weighted k-nearest neighbors and neural network

model were also trained on the same dataset. Random forest, weighted kNN, and neural network models were implemented using

the R package caret (classification and regression training).108 After the model was trained, the remaining held-out data was tested,

with each cell assigned a soft probability prediction for each ligand. The highest probability ligand was the final prediction. Ensemble

modeling was performed by majority voting, taking the predicted stimuli from each of the individual models and choosing the most

common stimulus predicted for each cell among the different machine learning models. Macrophages of other polarization condi-

tions, M1(IFNg) and M2(IL4), were tested using the model trained on M0 naı̈ve macrophages.

Feature importance was extracted from the trained random forest model, which is calculated by how much information is lost at

each node/split of the decision trees. We calculated this value based on Gini impurity:
PC

i = 1ðfreqi 3 ð1 � freqiÞÞ, across all unique

category labelsC. The feature importance is then the product (decrease in node impurity) * (probability of reaching that node), scaled

so the top feature has a value of 100.

Mutual Information Analyses
An information theoretic approach was used to identify either individual genes or combinations of genes providing the highest

maximum mutual information between ligand identity and gene expression. Error bars on mutual information calculations were

done using 10 bootstraps on 50% of the data. Estimation of maximum mutual information was implemented using the R package
e4 Cell Systems 14, 1–16.e1–e5, March 15, 2023
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SLEMI,66 which uses a statistical learning-based approach to more accurately and more efficiently calculate maximummutual infor-

mation for data types with higher dimensional outputs. The max MI was first calculated for each gene individually, using all stimuli

(highest theoretical max MI = 2.58bits), as well as for all pairs of stimuli (highest theoretical max MI = 1.0bits). To relate the max

MI to the either the mean and variance of each gene, max MI was plotted against either the average Fano factor (avg: FF =�PS
i = 1

�
si
mi

���
S) across all stimuli S for each gene, or the mean squared deviation (MSD =

PS

i = 1
ðxi � xÞ2
S ).

To estimate themaximummutual information of the best combination of 1;2;3;.;N genes, we first started from a list of the top 20

genes that individually had the best max MI value. For each of these single dimension channels, we scanned every combination of

two genes, and again ranked the best combination of two genes and retained the top 20. This process was repeated for each addi-

tional gene until the gain in max MI for each additional gene leveled off. Retaining only the top 20 sets at each dimension made the

calculation more computationally feasible, while still allowing the possibility for gene combinations that are not simply additive of the

previous dimension’s highest max MI combination.

For gene-specific pairwise calculation of MI, maxMI between pairs of stimuli was calculated for each gene at 3hrs using the single-

cell RNAseq data. Max MI was plotted against gene regulatory groups between the two stimuli. Correlation coefficients were calcu-

lated using the max MI values for signaling pairs for every NFkB signaling codon, and the max MI values for the corresponding gene

expression pairs for every NFkB target gene. Genes without any correlation p-value < 0.25 across the six codons were removed from

the display. The Pearson’s coefficient was plotted on the heatmap, and genes were hierarchically clustered using complete linkage.

Response Specificity Profile
The Response Specificity Profile is a collection of values that collectively summarize the distinguishability of macrophage responses

to different stimuli. The response landscape on which the Response Specificity Profile is calculated was obtained first by principal

component analysis performed centered and unscaled on all stimuli across M0, M1(IFNg), andM2(IL4) cells. This initial matrix can be

written as = N3 P, where N is the total number of measured genes and P is the stimulated single cells of different macrophage

subtypes. This matrix rotation of M by PCA represents the landscape of physiological macrophage responses. Calculation of

maximum mutual information using the PC scores was then performed for all possible pairs of stimuli. The advantage of using PC

scores to perform mutual information analyses lies in the reduction of noise that would otherwise result in overfitting. Overfitting

due to the large number of features was observed to result in saturation of the maximummutual information values to the theoretical

maximum for all pairs. Max MI was therefore calculated on the top three PCs (capturing 42% of the variance in the data), using a

truncation based on the PCA scree plot, as each subsequent component after Component 5 added only �1%more to the variance

explained. All error bars were generated by 50 iterations of 50% bootstrap resampling of the complete single cell dataset.

The Response Specificity Profile of new samples were evaluated by projection of the new gene expression data onto the dimen-

sionality-reduced space. Letting the initial PCA be defined as

S = WT3 M, where S is the r3 P scores matrix, and W is the N3r loadings matrix, the scores of the new projected data is then

given by

Snew = WT 3Mnew:

Since cells from disease models are projected into the same basis, scores from any new projected data now sit in the same lower-

dimensional space and can be compared to the Response Specificity of samples within initially defined response landscape. For

new samples, the maximum mutual information between ligand and transcriptomic output was again calculated for all available

pairs of ligands using the PC scores. The summary score delta Response Specificity Index (DRSI) was generated by the following:

DRSI = O
P ðRSIp � RSIM0

p Þ2 across all pairs of stimuli p.
Cell Systems 14, 1–16.e1–e5, March 15, 2023 e5
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Figure S1
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Figure S1. Selection of targeted gene panel and stimuli. Related to Figure 1.
A) Top: Heatmap of all genes induced with log2(FC)>2 in any stimulus from bulk RNAseq data (Cheng et al, 

2017). Middle: PCA loadings from bulk RNAseq data. Genes were selected by scoring each gene based on 
loadings from the top 20 PCs. Bottom: Selected genes are marked (green) on the full heatmap.

B) Enriched motifs found in all 1502 induced genes vs. the 500 genes selected for target amplification. bZIP, 
basic leucine zipper; ETS, Erythroblast Transformation Specific; IRF, Interferon Regulatory Factor; RHD, 
Rel-Homology Domain.

C) Tensor components analysis on all stimuli and all timepoints. Red boxes highlight stimuli chosen. 
D) PCA performed on all data points together. Pairwise Euclidean distances between points in PCA space are 

calculated for each timepoint. 
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Figure S2

Figure S2. Comparison of single-cell RNAseq platforms, Rhapsody vs. 10x. Related to Figure 1.
A) Heatmap of bulk RNAseq, and pseudobulk values from Rhapsody or 10x, for the same set of genes. 
B) Violin plots of scRNAseq data for a few example genes for Rhapsody vs 10x.
C) Distributions of genes measured per cell (top row), or counts per gene (bottom row), comparing Rhapsody 

(left), 10x for all genes (middle), and 10x for the 500 genes in the Rhapsody panel (right). For genes 
detected by both platforms, there are similar distributions in the number of genes per cell and the number 
of read counts per gene, and most genes outside the custom panel had low or zero read counts 

D) Left: Violin plot of percentage of cells with 0 counts for each gene in the 10x or Rhapsody platforms. 100% 
indicates that all cells are measured at 0 for that gene. Right: Scatterplot comparing 10x vs Rhapsody 
“percentage of 0’s per gene”, across all common genes. 
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Figure S3

A

Figure S3. Reproducibility of the macrophage experimental system. Related to Figure 1.
A) Scatterplot of pseudobulk values across 4 stimuli at the 8hr timepoint for iMPDMs (immortalized myeloid 

progenitor-derived macrophages) vs. BMDMs (bone marrow derived macrophages), from the Rhapsody 
scRNAseq platform.

B) Single cell distributions for example genes for stimulated iMPDMs vs. BMDMs at the 8hr timepoint.
C) Scatterplot of pseudobulk values across 5 stimuli at the 3hr timepoint for 2 replicates from the Rhapsody 

scRNAseq platform. Rhapsody replicates of the single-cell data for five stimuli were concordant in means 
(avg. Pearson’s r = 0.86).

D) Single-cell distributions for example genes from each replicate across stimuli at the 3hr timepoint, 
indicating concordant stimulus-specific patterns in response distributions. 
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Figure S4
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Figure S4. Machine learning test probabilities and top gene combinations. Related to Figure 2.
A) Distribution of prediction probabilities across cells for the test data. Based on its transcriptome, each cell was 

given a probability of having encountered a particular ligand, and the highest probability ligand was assigned 
as the prediction. Prediction probabilities helped distinguish weak versus strong assignments: for instance, 
correct IFNβ predictions consistently had prediction probabilities close to 1, whereas correct CpG predictions 
had prediction probabilities of ~0.6-0.7 with the second-best choice being P3C. 

B) Comparison of overall accuracy for three different model types (neural net, random forest, k-nearest 
neighbors) show similar overall accuracies, resulting in a similar prediction accuracy from ensemble-based 
majority voting from all three models. 

C) Gene expression values for the top gene combinations providing the greatest ligand discrimination, as 
quantified by max MI, for M0 macrophages using 1, 2, or 3 genes. Units are log2(normalized counts + 1).
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Figure S5 

Figure S5. Gene regulatory strategy assignments and relationship between NFκB signaling dynamics 
and gene expression specificity. Related to Figure 4.
A) Graphical summary of Table S4, including mathematically modeled gene-assignments (first row), motif 

analyses, assignments made in prior literature, and assignments used in the present paper (last row). GRS 
assignments are not definitive but remain working hypotheses. Wang et al, 2021 made multiple possible 
assignments per gene, and gray bars in the “Wang 2021 BMDMs” row indicate additional assignments. 

B) Motif enrichment for genes in each of the assigned clusters. Only motifs significantly enriched at α < 0.001 in 
at least one cluster are shown. 

C) Correlation between max MI provided by features of NFκB signaling dynamics and max MI retained in gene 
expression at 3hrs after stimulation. Stimulus information in Cxcl10 expression best correlates with 
information provided by pairwise differences in NFκB Total activity, Tnf with Oscillations, and Clec4e with 
Speed.

D) As counterexamples, Cxcl10 does not correlate with pairwise differences in NFκB Oscillations or Duration.
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Figure S6. Stimulus-specific genes and changes to their Response Specificity in polarized 
macrophages. Related to Figure 5.
A) PCA and UMAP of M0, M1, and M2 macrophages at baseline, 0hrs. M1 and M2 macrophages have 

been treated with IFNγ or IL4 for 24hrs. 
B) Macrophage marker gene Adgre1 is expressed in all three conditions. 
C) M1 marker Cd86 at 0hrs, and M1 marker Nos2 at 0.25hour, combining cells from all stimuli. 
D) M2 marker genes Arg1, Retnla, Chil3, at 0hrs. 
E) Left: UMAP of M0, M1, M2 cells together, using the top 20 principal components. Right: PCA loadings 

from PCA on M0, M1, M2 cells together. 
F) Correlation of the change in max MI for M1 vs M2 macrophages, each compared to M0, for all genes. 

Colors indicate categories of genes that increase or decrease in Specificity in M1 or M2 vs. M0.
G) Biological processes that lose specificity in M1 or M2 macrophages compared to M0 naïve 

macrophages.
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A

Figure S7. Mouse peritoneal macrophage subpopulations at steady-state. Related to Figure 7. 
A) tSNE of scRNAseq data of all peritoneal cells from young and old mice.
B) Overlay of marker genes for macrophages, T-cells, and B-cells, to identify macrophages.
C) Overlay of marker genes for potential macrophage subpopulations on the tSNE plot of all cells.
D) Top: Clustering of all young and old peritoneal cells. Bottom: Zoom-in of identified macrophage clusters.
E) Clusters 2,7,8,10,11 are positive for macrophage marker Adgre1 or are Ccr2-dependent. Other marker genes 

clarify additional subpopulations.
F) Subpopulation proportions are similar in young and old mice, with old mice having proportionally more Ccr2+ 

(clusters 8, 10) macrophages, as well as proportionally more cluster 2 macrophages.
G) Cluster marker genes on the tSNE of the Rhapsody stimulus-response scRNAseq data of macrophages from 

LFD, OLD, HFD mice. Violin plots show cluster marker gene expression within each of the mouse types. 
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