
Article
Stimulus-response signali
ng dynamics characterize
macrophage polarization states
Graphical abstract
Highlights
d Polarization of macrophages affects stimulus-response NF-

kB dynamics

d Signaling codons reveal how NF-kB dynamics are changed

by polarizers

d NF-kB stimulus-response dynamics define a landscape of

macrophage functional states

d Model-inferred biochemical parameters define underlying

molecular network states
Singh et al., 2024, Cell Systems 15, 1–15
June 19, 2024 ª 2024 The Author(s). Published by Elsevier Inc.
https://doi.org/10.1016/j.cels.2024.05.002
Authors

Apeksha Singh, Supriya Sen,

Michael Iter, Adewunmi Adelaja,

Stefanie Luecke, Xiaolu Guo,

Alexander Hoffmann

Correspondence
ahoffmann@ucla.edu

In brief

Cellular functions are modulated by their

microenvironment but are typically

characterized by static molecular

profiles. We quantified how macrophage

dynamic signaling responses to 8

immune stimuli are affected by 6

polarizing cytokines. Measuring the

dynamics of a single analyte revealed

distinct stimulus-discrimination patterns

and informed new maps of functional cell

states.
ll

mailto:ahoffmann@ucla.�edu
https://doi.org/10.1016/j.cels.2024.05.002


Please cite this article in press as: Singh et al., Stimulus-response signaling dynamics characterize macrophage polarization states, Cell Systems
(2024), https://doi.org/10.1016/j.cels.2024.05.002
ll
Article

Stimulus-response signaling dynamics characterize
macrophage polarization states
Apeksha Singh,1,5 Supriya Sen,1,2,5 Michael Iter,1,3 Adewunmi Adelaja,1,4 Stefanie Luecke,1 Xiaolu Guo,1

and Alexander Hoffmann1,6,*
1Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and

Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
2Present address: Amgen, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
3Present address: Bioinformatics and SystemsBiologyGraduate Program, University of California San Diego, 9500Gilman Drive, La Jolla, CA

92093, USA
4Present address: Harvard Combined Dermatology Residence Training Program, Boston, MA 02114, USA
5These authors contributed equally
6Lead contact

*Correspondence: ahoffmann@ucla.edu

https://doi.org/10.1016/j.cels.2024.05.002
SUMMARY
The functional state of cells is dependent on their microenvironmental context. Prior studies described how
polarizing cytokines alter macrophage transcriptomes and epigenomes. Here, we characterized the func-
tional responses of 6 differentially polarized macrophage populations by measuring the dynamics of tran-
scription factor nuclear factor kB (NF-kB) in response to 8 stimuli. The resulting dataset of single-cell
NF-kB trajectories was analyzed by three approaches: (1) machine learning on time-series data revealed los-
ses of stimulus distinguishability with polarization, reflecting canalized effector functions. (2) Informative tra-
jectory features driving stimulus distinguishability (‘‘signaling codons’’) were identified and used for mapping
a cell state landscape that could then locate macrophages conditioned by an unrelated condition. (3) Kinetic
parameters, inferred using a mechanistic NF-kB network model, provided an alternative mapping of cell
states and correctly predicted biochemical findings. Together, this work demonstrates that a single analyte’s
dynamic trajectories may distinguish the functional states of single cells and molecular network states
underlying them. A record of this paper’s transparent peer review process is included in the supplemental
information.
INTRODUCTION

Powerful new experimental single-cell measurement modalities

have motivated the development of a number of analytical ap-

proaches for data-driven cell state characterization. In partic-

ular, single-cell RNA sequencing (scRNA-seq), which provides

thousands of data points for each cell, prompted the develop-

ment of dimensionality reduction and visualization workflows

that reveal the heterogeneity of cell types and cell states within

a given sample.1 However, functional cell states may involve

kinetic information that is not captured by scRNA-seq mea-

surements of mRNA abundances at a single time point. Using

live-cell imaging, pioneering work examined the response dy-

namics of calcium signaling to ATP exposure and showed

different cellular states within a heterogeneous population of

epithelial cells.2 Similarly, differences in extracellular signal-

regulated kinase (ERK) signaling dynamics in the mitogen-acti-

vated protein kinase (MAPK) pathway reflected spatial vari-

ability in the tumor microenvironment.3 Thus, high-throughput

measurements of single-cell signaling dynamics may offer a
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more complete or at least alternative means for characterizing

the states of cells in a population. However, given the

complexity of signaling dynamics data, it remains unclear

what strategies are best suited for revealing and visualizing het-

erogeneous cell states and rendering insights about how cells

differ from their dynamic signaling responses to stimuli. Here,

we addressed these questions using macrophages as a model

system. Macrophages not only need to detect different path-

ogen or host stimuli but also need to mount a response that is

appropriate to the stimulus encountered.4,5 The signaling sys-

tem that controls macrophage responses to pathogens, tissue

injury, or cytokines activates a handful of effectors, including

the central immune response transcription factor, nuclear

factor kB (NF-kB). NF-kB activation shows stimulus-specific

activation dynamics6–8 that can control the expression of im-

mune response genes9–13 and reprogram the epigenome.14 A

recent set of single-cell studies in primary macrophages char-

acterized a temporal signaling code that consists of 6 dynam-

ical features, termed ‘‘signaling codons,’’ that are deployed

stimulus-specifically.15 Upon recognition of an activating
une 19, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
NC license (http://creativecommons.org/licenses/by-nc/4.0/).

mailto:ahoffmann@ucla.edu
https://doi.org/10.1016/j.cels.2024.05.002
http://creativecommons.org/licenses/by-nc/4.0/


ll
Article

Please cite this article in press as: Singh et al., Stimulus-response signaling dynamics characterize macrophage polarization states, Cell Systems
(2024), https://doi.org/10.1016/j.cels.2024.05.002
stimulus, macrophages perform a wide range of tasks from the

phagocytosis of pathogen components and cellular debris, an-

tigen presentation, recruitment of other immune cells to sites of

infection, and activation of system-wide immune responses.16

The functional responses elicited depend not only on the iden-

tity of the activating stimulus but also on the microenviron-

mental context of the macrophage.17 More specifically, the

microenvironmental cytokine milieu polarizes macrophages

into different biological functional states to accentuate specific

functional stimulus-specific responses over others.18

Macrophage polarization was first described in terms of a M1

versus M2 dichotomy.19 M1 macrophages found in inflamed mi-

croenvironments defined by the presence of interferon (IFN)g

play critical roles in defending the host from pathogens, such

as in bacterial, viral, and fungal infections. M2 macrophages

have anti-inflammatory function and regulate wound healing

and repair functions.20,21 However, it is now recognized that

these M1 and M2 states are representative of a larger spectrum

of macrophage states in vivo.22–26 Many previous studies have

characterized differences in polarization states based on tran-

scriptomic,27–29 epigenomic,30,31 or proteomic32,33 profiling,

with recent advances in single-cell technologies revealing het-

erogeneity within these states.34–37 However, such snap-shot

measurements of molecular abundances (that may or may not

be at steady-state) merely provide markers for the actual func-

tional states of macrophages. A quantitative characterization of

macrophages in different polarization states based on their func-

tional responses at single-cell resolution has not yet been

reported.

Many studies have described molecular mechanisms by which

polarizing cytokines affect NF-kB activation.38–42 Here, we exam-

ined how macrophage polarization affects the stimulus-specific

dynamics of NF-kB activity and developed computational work-

flows to utilize these complex temporal trajectories to characterize

the functional signaling cell states induced bymicroenvironmental

cytokines.We leveraged a livemicroscopyworkflow to generate a

large dataset of single-cell nuclear NF-kB time course trajectories

in response to 8 stimuli and 6 polarization conditions. We applied

machine learning (ML) approaches to quantitatively compare NF-

kBresponsespecificityacrosspolarizationstatesanddecompose

NF-kB responses into informative dynamic trajectory features

(signaling codons). Applying machine-learning classifiers either

directly to the time-series data or the derived signaling codons,

we found that stimulus-response specificity was diminished with

polarization. However, which specific stimulus responses were

less distinct andwhich signaling codonswere driving these losses

in distinction variedwith polarization state.Given the observeddif-

ferential effects of polarization on NF-kB response dynamics, we

used the single-cell signaling trajectories to generate mappings

of macrophage polarization states. The first mapping was based

on a dimensionality reduction via functional principal-component

analysis (PCA). The secondmapping was based on decomposing

trajectories into signaling codons and was used to predict the cell

states ofmacrophages conditioned byan unrelated fatty acid. The

thirdmappingwasbasedonbiochemicalparameters inferred from

an established mechanistic mathematical model of the NF-kB

signaling network. These inferred biochemical parameters consti-

tuted an alternative dimensionality reduction of the trajectory data

and give insight about the state of the molecular network.
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RESULTS

Anexperimental pipeline for studyingNF-kBdynamics in
polarized macrophages
To study how polarization of macrophages by microenviron-

mental cytokines may affect NF-kB signaling responses to

various pro-inflammatory stimuli, we generated a large dataset

with mVenus-RelA knockin macrophages that were polarized in

6 different conditions and then stimulated with 8 different pro-

inflammatory stimulation ligands. Generating this large dataset

with 48 experimental conditions was made possible by produc-

ing macrophages from a HoxB4-transduced myeloid precursor

line43 derived from the mVenus-RelA knockin mouse strain.

Macrophages produced in this manner showed responses

that were close to indistinguishable from those observed in

bone marrow-derived macrophages in terms of NF-kB

signaling dynamics and endotoxin-induced gene expression

in contrast to the often-used Raw264.7 cell line (Figures S1A–

S1C). Importantly, cell cultures initiated with the myeloid pre-

cursor line may be more reproducible than when bone marrow

is used, as the latter contains macrophage precursor cells at

different stages of maturity and in variable relative abundances.

In addition, control experiments were performed to ensure that

Hoechst as nuclear marker did not cause signaling artifacts

(Figure S1D) and that potential photobleaching did not affect

the time course measurement of nuclear mVenus-RelA fluores-

cence (Figures S1E and S1F).

Within our experimental workflow, differentiated macro-

phageswere exposed to interferons, IFNb or IFNg, to polarize to-

ward M1, interleukin (IL)-10, IL-13, or IL-4 for M2 polarization, or

unexposed for naive (M0) polarization for 24 h, and then stimu-

lated with agonists for different toll-like receptors such as R848

(Toll-like receptor [TLR]8), poly(I:C) (TLR3), Pam3CSK (TLR1/2),

CpG (TLR9), Flagellin (TLR5), FSL1 (TLR2/6), or lipopolysaccha-

ride (LPS) (TLR4) as well as the pro-inflammatory cytokine tumor

necrosis factor (TNF) (Figure 1A). The resulting single-cell nu-

clear NF-kB trajectories were captured by an established live-

cell microscopy workflow and quantified by a robust image anal-

ysis pipeline15 (Figure S2A). For each experimental condition, we

obtained two biological replicates, with hundreds of single-cell

NF-kB trajectories that passed quality control metrics (see

STAR Methods) in each dataset (Table S1). This dataset encom-

passes a total of 68,056 cells, each characterized by a trajectory

derived from 98 microscopy images.

We examined the replicates by focusing on previously identi-

fied informative trajectory features, termed signaling codons,15

for quality control (Table S2; Figure 1B). Using the Jensen-

Shannon distance (JSD) of these quality control metrics between

each population of cells as a measure of dissimilarity, we found

that the maximum JSD between replicates was in general much

smaller than between cells stimulated in different conditions.

This assured us that the biological differences of interest are

larger than the technical variability associated with the experi-

mental and image analysis workflow.We used the JSD as amea-

sure of dissimilarity between distributions since it is a distance

metric and observes properties such as symmetry and the trian-

gle inequality. Amore detailed analysis revealed that some polar-

ization and stimulus combinations to be more similar than most

(Figure 1C), such as responses to R848 in cells polarized with
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Figure 1. Single-cell NF-kB trajectories across 6 polarization states following 8 different stimulations

(A) Experimental pipeline for obtaining single-cell NF-kB responses in different polarization and stimulation conditions to study the effect of polarization on

stimulus responses.

(B) Histogram of maximum Jensen-Shannon distance (JSD) between distributions of quality control (QC) metrics from experiments, with distances between

replicate experiments in orange and distances between different experimental conditions in blue.

(C) Along the diagonal of the distance matrix are the maximumQC JSD between replicates for each experimental condition. Experimental conditions are ordered

by stimuli and further sub-ordered by polarization state. The off-diagonal elements are the maximum QC JSD between replicates of different experimental

conditions. Maximum of color bar set to 0.4 to focus on smaller distances.

(D) Example replicate NF-kB trajectory datasets in M0, M:IFNg, and M:IL-4 polarization states with TNF, poly(I:C), and LPS stimulation. Each row in a heatmap

corresponds to a single macrophage in the experiment, and the color corresponds to the amount of nuclear (active) NF-kB.
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IL-13and IL-4or responses to Flagellin andCpG in cells polarized

with IFNb. Visual inspection of heatmaps that depict the actual

time course measurements (Figure 1D), as well as visualizations

of the trajectories in aggregate44–46 (Figure S2B), confirmed

that stimulus-specific signaling characteristics are preserved in

each replicate, while the precise fraction of seemingly non-re-

sponding cells varied between some replicates.

These preliminary visualizations demonstrate differences in

NF-kB activation dynamics under different polarizing cytokine
treatments. Given the importance of NF-kB for orchestrating im-

mune responses, these differences in activation likely underlie

functional differences between polarization states rather than

being simply indirect effects of polarization. Indeed, building a

linear model from our measurements of total NF-kB activity to

predict gene expression data from polarized human macro-

phages following stimulation47 (see STAR Methods), we find

for a majority of stimulus-responsive genes that better model

fits are achieved with the original versus permuted data
Cell Systems 15, 1–15, June 19, 2024 3
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(Figure S3A), indicating NF-kB signaling dynamics can carry in-

formation about differences in gene expression related to polar-

ization state. These predictions perhaps unsurprisingly can be

improved if measurements of baseline chromatin accessibility

for each polarization state are also included (see STARMethods;

Figure S3B), suggesting chromatin accessibility can add infor-

mation to NF-kB signaling dynamics to better inform differences

in gene expression related to polarization state. Considering this

functional relevance of NF-kB activation, we then turned to

computational data analysis methods that respect the single-

cell nature of the data to characterize the effect of polarization

on the stimulus-response NF-kB signaling dynamics.

An ML classifier characterizes stimulus-response
specificity
Given that polarization appears to alter NF-kB stimulus re-

sponses, we asked whether polarization may affect the degree

of stimulus-response specificity in NF-kB dynamics. To quantify

stimulus distinguishability based on NF-kB trajectories, we first

implemented a long short-term memory (LSTM)-based ML clas-

sifier.48 LSTM is a recurrent neural network (RNN) architecture

developed to handle the vanishing/exploding gradient problem

frequently encountered when training RNN’s. LSTM networks

are well suited to perform classification or prediction tasks on

time-series data because of their ability to learn long-term de-

pendencies in input sequences.49 This motivated our choice to

leverage an LSTM-based model, as we could reasonably utilize

the time-series data directly as input without needing to find an

appropriate transformation of the data into features first.

The classifier was trained on different ligand identification

tasks using 80% of the stimulus-response trajectories from all

polarization states as input data (Figure 2A; see STARMethods).

By comparing the output model’s classification performance on

the remaining 20% of the data, which was unseen during

training, we were able to quantify how stimulus distinguishability

was affected by polarization (Figure 2A). For each classification

task, the data were resampled, and the training procedure was

repeated 15 times to estimate uncertainty in the obtained perfor-

mancemetrics. To quantify classification performance, twomet-

rics were used. First, the F1 score, the harmonic mean of the ac-

curacy and precision for each class, is a measure of

classification performance and hence stimulus distinguishability.

Second, the confusion fraction, the mean incorrect prediction

probability between pairs of classes, quantifies the convergence

of the NF-kB trajectories associated with two stimuli. We

observed that the LSTM-based classifier achieved better perfor-

mance than a random forest classifier and a simple feedforward

network classifier using the time-series data across all polariza-

tion states as input (Figure S4A).

We first applied the LSTM-based classifier to the tasks of

discriminating individual ligands. We found that macrophages

showed higher macro-averaged F1 scores in unpolarized naive

conditions than any of the five polarization conditions, suggest-

ing naive macrophages have greater stimulus-response speci-

ficity than their polarized counterparts (Figure 2B). This remained

true even when using different classifier models and when sepa-

rate models were trained for each polarization state (Figures S4B

and S4C). We then considered ligand source classes: we com-

bined NF-kB trajectories from poly(I:C) and R848 under the
4 Cell Systems 15, 1–15, June 19, 2024
‘‘viral’’ label, Pam3CSK, Flagellin, CpG, FSL1, and LPS under

the ‘‘bacterial’’ label, and considered TNF as ‘‘host.’’ Naive mac-

rophages still showed the greatest macro-averaged F1 score for

the task of classifying ligand sources as well (Figures S4D–S4F),

confirming the loss of stimulus-specificity with polarization.

Examining the performance of each ligand individually, how-

ever, we found that the decrease to stimulus-response speci-

ficity with polarization was caused by different ligand identifiabil-

ity losses depending on the state (Figure 2C). For example, the

ability to distinguish host cytokine TNF was maintained across

polarization states, whereas other pathogen-associated molec-

ular pattern (PAMP) distinguishability like Pam3CSK dropped

with IL-10 polarization and Flagellin dropped with IFN polariza-

tion. We then asked what caused the diminished identifiability

by inspecting the confusion fractions between ligands (Fig-

ure 2D). Confusion with unstimulated cells (0.21 ± 0.01, 0.22 ±

0.01) suggested the most diminished responses to poly(I:C)

with IL-13 and IL-4 polarization. Confusion among bacterial li-

gands was common across polarization states; however, pairs

such as FSL1 and LPS (0.2 ± 0.01) were particularly elevated

with IFN conditioning. Overall, the ML analysis revealed losses

in the stimulus-specificity of NF-kB signaling with all polarizers,

but each polarization condition affected different ligand re-

sponses differentially.

Specific dynamical trajectory features are informative
for distinguishing stimuli
While the LSTM-based ML classifier revealed that the distin-

guishability of stimulus-response NF-kB trajectories was

affected by polarization, we next wanted to describe how alter-

ations in NF-kB response trajectories induced by polarization

drove these changes in stimulus identifiability. Hence, we sought

to first identify trajectory features that are important for stimulus-

response specificity. Refining a previously established strat-

egy,15 we generated a library of 190 trajectory features derived

from the NF-kB time-series data, which was further reduced to

71 features after filtering for highly correlated features

(Table S3; see STAR Methods). These 71 features were then

used as input for an XGBoost ML classifier (Figure 3A), a model

comprised of an ensemble of decision trees built in an additive

manner through boosting.50,51 The XGBoost model had similar

performance to the LSTM-based model and recapitulated the

loss in performance with polarization when tasked with discrim-

inating the individual ligands across the polarization states

(Figure 3B).

To identify trajectory features informative for response speci-

ficity, we then trained an XGBoost model for each polarization

state separately. We utilized the Shapley additive explanations

(SHAP) method52 that was developed to provide interpretability

to ML models to assess feature importance (see STARMethods).

Comparing the SHAP-derived feature importance values between

polarization states did reveal somedifferences; for example, ‘‘time

to ½ max’’ and ‘‘max amplitude < 2 h’’ were more important for

classification of IL-10 and IL-4 responses, respectively, compared

with M0 responses (Figure 3C). Overall, however, comparisons

across polarization states demonstrated similar utilization of tra-

jectory features in model predictions (Figure 3D; Table S4).

To define a minimal subset of informative features to utilize in

subsequent analyses, we started with the top 20 most important
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Figure 2. An LSTM-based ML classifier re-

veals decreased stimulus-response speci-

ficity with macrophage polarization

(A) For each classification task, data were sampled

from all polarization states to train and test the LSTM

ML model. Input data were split into training (60%),

validation (20%), and testing sets (20%), where

validation loss was used to monitor model over-

fitting.

(B) Macro-averaged class F1 score for the task of

classifying each ligand (including unstimulated)

across polarization states demonstrates loss of

stimulus-response specificity with polarization.

(C) Class F1 scores across polarization states from

the same model as in (B).

(D) Confusion fractions across polarization states for

different ligand stimulations reveal polarization-

dependent patterns in stimulus-response speci-

ficity. Error bars in (C) correspond to 95% confi-

dence intervals with n = 15.
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features identified through the SHAP method for each polariza-

tion state (Table S4) and then iteratively removed features from

this set until model performance declined (see STAR Methods).

The average F1 scores of the resulting models did not greatly

deteriorate until 14–15 features had been removed from the orig-

inal set of 20, resulting in 6 or 7 features retained for each polar-

ization state (Figure 3E). Using the union of the selected feature

subsets (18 features total) for training a model across the polar-

ization states resulted in performance not much less than that of

using all features (Figure 3F). The selected features (Table S5)

describe early, peak, and late activation speeds (EAS, PAS,

and LAS), range of amplitudes (ROA), early phase activity

(EPA), duration (DUR), and oscillations (OSC). As they convey in-

formation about extra-cellular stimuli to the nucleus, these seven

features have been dubbed signaling codons.15

To further reduce the dimensionality of these informative

features, we used linear discriminant analysis (LDA) to find a

linear combination of a representative subset of signaling co-

dons that attempts to discriminate all TNF from all PAMP re-
sponses in our dataset (Figure 4A). Prior

work has suggested that the level of im-

mune threat a macrophage encounters

(host cytokine versus PAMP) is encoded

by responsive NF-kB signaling dy-

namics,53 and we wondered how this

may be achieved via signaling codons.

Examining the coefficients of the LDA

model, we found increased immune

threat was associated with reduced

EAS, PAS, and OSC but increased

ROA, EPA, and DUR (Figure 4B). The

analysis provided a ranking of experi-

mental conditions by relative immune

threat, where, for example, maximal

macrophage activation is elicited by

LPS plus IFNg8,15,39 (Figure 4C). Overall,

M2 polarizers were associated with lower

immune threat values and M1 polarizers
with higher values; however, examining each stimulation con-

dition separately, the relative ordering of individual polariza-

tion conditions varied (Figure 4D).

Polarizing cytokines have distinct effects on NF-kB
stimulus-response specificities
We could now investigate how polarization affects the stimulus-

specific deployment of signaling codons and how these

changes drive losses in stimulus-response specificity. We first

examined the increased confusion of host cytokine TNF with

polarization. For IL-4 polarization, which had the lowest

discrimination of TNF (Figure 2C), increased confusion was

evident with R848, poly(I:C), CpG, and LPS (Figure 5A). IL-4 po-

larization caused R848 deployment of signaling codons, such

as EPA and DUR to become more TNF-like (Figures 5B and

5C). In other polarization states, we found that confusion of

PAMPs with TNF was partially driven by a reduction of the

EAS and OSC of TNF responses, rendering them more ‘‘path-

ogen-like’’ (Figures S5A–S5F).
Cell Systems 15, 1–15, June 19, 2024 5
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Figure 3. A feature-based ML classifier reca-

pitulates LSTM results and reveals features

informative for specificity

(A) A set of features was derived from the NF-kB

trajectories, and the resulting feature library was

used to train and test XGBoost classifiers on ligand

discrimination tasks.

(B) Comparison of macro-averaged class F1 scores

for the task of classifying ligands across polarization

states for XGBoost and LSTMmodels reveals similar

drop in performance with polarization.

(C) Comparison of mean absolute SHAP values

summed over classes for M0model versus IL-10 and

IL-4 models from XGBoost models trained inde-

pendently for each polarization state on the task of

classifying ligands (Amp., amplitude; Deriv., deriva-

tive; Int., integral; Osc., oscillatory).

(D) Pearson correlation of mean absolute SHAP

values summed over classes between different po-

larization models.

(E) Maximum macro-averaged F1 score obtained as

features are removed from the set of top 20 features

returned by the SHAP analysis for each polarization

state. Model performance deteriorates once 14–15

features are removed; hence, 6–7 features are re-

tained. Solid line with increased transparency dis-

plays threshold of 90% macro-averaged F1 score

using all features for training.

(F) Comparison of XGBoost model macro-averaged F1 score when trained across all polarization states using all features (samemodel as in B) versus union of the

selected features. Error bars in (E) correspond to 95% confidence intervals with n = 15.
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Next, we further investigated the convergence of distinct path-

ogen response signals with polarization. Confusion between viral

and bacterial ligands was elevated across all polarization states,

particularly IFNb (Figure S4F). We found that poly(I:C) and LPS

deployment of signaling codons became more similar with

IFNb polarization (Figure 5D), with the convergence driven

most by decreased PAS upon LPS stimulation and decreased

OSC upon poly(I:C) stimulation (Figures 5E and 5F), correspond-

ing to an increase in immune threat for both ligands. Inspecting

EPA and OSC in other polarization states (Figures S5G–S5L)

supported the notion that IFNb or IFNg polarization converged

responses to diverse PAMPs into a more monolithic or stereo-

typed pathogen-like response, whereas IL-10 and IL-13 polari-

zation diminished these pathogen-like features.

We then examined the ability of macrophages to distinguish

particular PAMPs within a pathogen class. We examined the

confusion fraction between the two viral ligands and the average

confusion fraction between all pairs of bacterial ligands across all

polarization conditions. Confusion fractions normalized to the

naive condition scores revealed polarization had a greater effect

on viral PAMPs distinguishability compared with bacterial,

particularly with IL-13 and IL-4 polarization (Figure 5G). A large

decrease in the response DUR for R848 and poly(I:C) responses

with IL-13 polarization, as well as increase in OSC for R848, drive

the convergence of these two viral PAMPs with polarization

(Figures 5H and 5I).

NF-kB stimulus-response dynamics can map
macrophage polarization states
The fact that NF-kB stimulus-response dynamics are affected by

polarization suggests that, conversely, polarization states may

be identifiable by the dynamical NF-kB response to a specific
6 Cell Systems 15, 1–15, June 19, 2024
stimulus. To investigate this, we trained an XGBoost model using

the library of 71 features to identify the polarizing cytokines

across stimulation conditions (Figure 6A) and identified the ten

features most important for this model’s predictions, using the

SHAP values (Table S6). We found that the classifier had the

greatest macro-averaged F1 score with Pam3CSK stimulation,

suggesting this stimulation condition best separates the polari-

zation states. In particular, responses to Pam3CSK stimulation

provided greater discrimination of IFNg and IL-10 polarization

(Figures 6B and 6C). To independently corroborate the discrim-

ination of polarization states, we trained an LSTM classifier that

also had a greater macro-averaged F1 score with Pam3CSK

stimulation (Figure S6A).

Examining the top 3 identified trajectory features revealed how

polarizers differentially alter NF-kB dynamics in response to

Pam3CSK, particularly among M1 and M2 type polarizers,

thereby permitting distinguishability of cell states. IL-10-polar-

ized responses to Pam3CSK differ from those polarized with

IL-13 and IL-4 due to their increased OSC, and IFNg-polarized

responses differ from those polarized with IFNb due to their

increased DUR (Figure 6D). Finally, we used the top ten impor-

tant features for uniform manifold approximation and projection

(UMAP) to display the 6 polarization states. To provide some

orientation, we first examined how the values of the trajectory

features varied over this map (Figure 6E), which revealed distinct

regions of increased OSC and DUR and decreased ROA. Visual

inspection of the UMAP colored by polarization states indicated

Pam3CSK stimulation did indeed best separate the six polariza-

tion states compared with other stimulation conditions (Fig-

ure 6F). In parallel, we also used functional principal-component

analysis (PCA)54 to directly dimensionality-reduce the single-cell

NF-kB trajectories and used the top ten principal components
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Figure 4. Characterization of informative features by immune threat

(A) The subset of signaling codons is calculated from the single-cell NF-kB trajectories, and then LDA finds a linear combination that best distinguishes threat level

(host TNF versus PAMP responses). Upsampling the smaller host TNF class to balance the classes gave an overall accuracy of approximately 68% for this binary

classifier (Deriv., derivative; Amp., amplitude; Int., integral; Act., activity).

(B) Coefficient applied to each informative feature to obtain the LDA projection, hence characterizing immune threat: decreased 5-min derivative, increased time

to max, increased 5-min amplitude, increased 2nd half-hour integral, increased time to quarter total activity, and decreased oscillations.

(C) Comparing mean LDA projection of host TNF versus pathogen (PAMPs) responses; this axis quantifies immune threat as pathogen responses are more

positive along it.

(D) Comparing mean LDA projection of different polarizer responses for each stimulation condition showsmoreM1-polarized responses with positive LDA values

and more M2 polarized responses with negative LDA values.
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for UMAP visualization (Figures S6B and S6C); these revealed

similar discrimination patterns but do not identify signaling fea-

tures that are responsible.

To explore the utility of characterizing macrophage polariza-

tion states with NF-kB signaling dynamics, we employed our

analysis to characterize an additional cell state. Deficiency of

docosahexaenoic acid (DHA) has been associated with several

diseases, and studies have reported health benefits of dietary

supplementation.55,56 These effects might be partially ex-

plained by DHA promoting an anti-inflammatory response,

and indeed, DHA has been described in recent studies as being

able to induce a M2-like macrophage polarization state.57,58

Given Pam3CSK stimulation demonstrated the greatest identi-

fiable distinction between polarization conditions, macro-

phages pretreated with DHA were stimulated with Pam3CSK,

resulting in 350 single-cell NF-kB trajectories (Figure 6G). The
top ten features identified from the polarization distinguish-

ability task were then used to train an XGBoost model on the

Pam3CSK-stimulated trajectories and then predict the polari-

zation states of the DHA-pretreated cells. A majority of the

DHA pretreated cells had the highest prediction probability

for an M2 polarization state, with very little prediction probabil-

ity for naive or M1 polarization states (Figure 6H). Finally, UMAP

visualization of the Pam3CSK-stimulated responses across the

polarization states plus pretreatment with DHA reveals IL-10

and IL-4 polarization states in closer proximity to the DHA pre-

treatment (Figure 6I).

Inferred biochemical parameters distinguish polarizers,
similar to signaling dynamics
Differential NF-kB signaling responses to stimulation among po-

larization states are due to differential kinetic rate constants that
Cell Systems 15, 1–15, June 19, 2024 7



TN
F

C
on

fu
si

on
Fr

ac
tio

n

0.10

0.05

M0
M:IL4

LSTM Model

XGBoost Model
M0
M:IL4

0.15

0.05

M0

1.15
TNF
R848

PC1 (27.83%)

PC
2

(1
3.

86
%

) M:IL4

1.06
40

4

-4

0

-4

Early Phase Activity (EPA)

Duration (DUR)

-1

0

1

M0

TNF
R848

M:IL4

0.96

1.13

-1

1

0

In
te

gr
al

0.
5-

1h
r

Ti
m

e
to

¼
Ac

tiv
ity

Peak Activation Speed (PAS)

Oscillatory (OSC)
-1

0

1

PIC
LPS

M:IFNβ

2.00

0.81

1

3

Ti
m

e
to

M
ax

O
sc

po
w

er

2

-1
M0

Duration (DUR)

Oscillatory (OSC)
-1

0

1

R848
PIC

M:IL13

1.03

1.51

1

2D
ur

at
io

n 
>

50
%

Pe
ak

O
sc

po
w

er

2

0

-1
M0

0.10
0.05

Li
ga

nd
 C

on
fu

si
on

Fr
ac

tio
n

(M
:IF

N
β)

R848
Poly(I:C)

LSTM Model

XGBoost Model
0.15 R848

Poly(I:C)

M0

Poly(I:C)
LPS 1.17

M:IFNβ

1.06

PC1 (27.83%)

PC
2

(1
3.

86
%

)

40

4

-4

0

-4

1.0

Av
er

ag
e 

C
on

fu
si

on
Fr

ac
tio

n
N

or
m

al
iz

ed
to

M
0

LSTM Model

XGBoost Model
Viral
Bacterial

1.5
Viral
Bacterial

1.0

1.5

M0

R848
Poly(I:C) 1.28

M:IL13

1.23

PC1 (27.83%)

PC
2

(1
3.

86
%

)

40

4

-4

0

-4

0.15

0.10

0.15

0.10
0.05

Figure 5. Macrophage polarization affects

ligand distinguishability uniquely

(A) Confusion fraction derived from both the LSTM

and XGBoost models between the host ligand (TNF)

and the pathogen ligands (R848, poly(I:C),

Pam3CSK, Flagellin, CpG, FSL1, and LPS) in the

IL-4 and M0 polarization states shows larger in-

crease with R848, poly(I:C), CpG, and LPS stimu-

lation.

(B) PCA projection of the 18 signaling codons from

the single-cell responses to TNF and R848 with M0

and IL-4 polarization; dispersion measure in red

(average pairwise distance between classes divided

by average pairwise distance within classes) illus-

trates convergence of stimulus responses with IL-4

polarization.

(C) Decreased early phase activity and duration

feature distributions of R848 responses with IL-4

polarization contribute to convergence; log2 fold

reduction in Jensen-Shannon distance between

ligand responses with polarization in red.

(D) Confusion fraction derived from both the LSTM

and XGBoost models between the viral ligands

(R848, poly(I:C)) and the bacterial ligands

(Pam3CSK, Flagellin, CpG, FSL1, and LPS) in the

IFNb polarization state; illustrates greatest confu-

sion between poly(I:C) and LPS.

(E) PCA projection of the single-cell responses to

poly(I:C) and LPS with M0 and IFNb polarization il-

lustrates convergence with IFNb polarization.

(F) Decreased peak activation speed of LPS and

decreased oscillations of poly(I:C) (PIC) contribute

to convergence of stimulus responses with polari-

zation.

(G) Average confusion fraction within viral and bac-

terial ligands normalized to M0 performance from

the same LSTMand XGBoostmodels shows greater

relative viral ligand confusion with polarization

compared with bacterial.

(H) PCA projection of the single-cell responses to

R848 and poly(I:C) with M0 and IL-13 polarization

illustrates convergence of stimulus responses with

IL-13 polarization.

(I) Decreased duration and increased oscillations of

R848 responses contribute to convergence of

stimulus responses with polarization.

ll
Article

Please cite this article in press as: Singh et al., Stimulus-response signaling dynamics characterize macrophage polarization states, Cell Systems
(2024), https://doi.org/10.1016/j.cels.2024.05.002
control the dynamics of NF-kB signaling. Such biochemical pa-

rameters define the molecular network state that underlies what

is phenomenologically described as ‘‘cell state.’’ We therefore

asked whether we could use an established mathematical model

of the NF-kB signaling network to derive biochemical parameter

distributions for each polarization condition based on the single-

cell NF-kB trajectory data and thereby characterize the cell state

not merely based on phenomenological features but molecular

network features.We leveraged amechanistic ordinary differential

equation (ODE) model that connects upstream ligand-receptor in-

teractions to downstream NF-kB nuclear translocation via IkB ki-

nase (IKK) activation and negative feedback via inhibitor of NF-kB

alpha (IkBa) production.15

We focused on NF-kB activation following Pam3CSK stimula-

tion since these data demonstrated the greatest distinction
8 Cell Systems 15, 1–15, June 19, 2024
among polarization states and hence utilized only the upstream

TLR1/2 module of the mechanistic model (Figure S7A). We

selected a subset of biochemical parameters from this model

to optimize that spanned across the topology and demonstrated

greater sensitivity when varied (Figure S7B). From each polariza-

tion state, 300 single cells were randomly sampled, and param-

eter fits for each cell were obtained. Briefly, for each cell, a local

optimization procedure was repeated 100 times, each time

initialized at a different set of biochemical parameter values.

This optimization procedure aimed to minimize the deviation be-

tween the experimental and model NF-kB trajectories and the

deviation of the optimized parameter values from the published

parameter values. The top ten parameter fits among the 100 iter-

ations based on this objective were retained for downstream

analysis (Figure 7A; see STAR Methods).
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Figure 6. Mapping macrophage polarization

states with NF-kB signaling response dy-

namics

(A) Macro-averaged class F1 scores from an

XGBoost model trained (using the library of 71

features) for the task of classifying each polarizer

across stimulation conditions provide a quantifica-

tion of polarizer distinguishability for each stimulus.

(B) F1 scores for Pam3CSK stimulation responses

reveal identification of IFNg and IL-10 drive distin-

guishability.

(C) Confusion fractions highlights distinguishability

of IL-10.

(D) Distributions for top 3 informative feature from

the single-cell responses to Pam3CSK across all

polarization conditions. Oscillatory values separate

IL-10 from other M2 polarizers and M1 polarizers

from the other states. Duration values separate IL-

13 and IL-4 from other states and slightly separate

IFNb from IFNg. Minimum amplitude separates IL-

13 from IL-4.

(E) Uniform manifold approximation and projection

(UMAP) of all NF-kB responses (sampled such that

number of cells per condition is equivalent, 1,338)

using the top 10 features identified by SHAP anal-

ysis colored by feature values.

(F) UMAP of the NF-kB responses (same as in E)

split by each stimulus colored by polarization state.

(G) Single-cell nuclear NF-kB trajectories from

hMPDMs pretreated with docosahexaenoic acid

(DHA) and stimulated with Pam3CSK.

(H) Single-cell classification probabilities for DHA-

pretreated Pam3CSK-stimulated macrophages

from XGBoost model trained on polarized

Pam3CSK responses defined by the top ten fea-

tures identified in the polarization classification

task.

(I) UMAP of Pam3CSK-stimulated response colored

by polarization states (colors same as F) or pre-

treated with DHA.
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Visualizing the model simulations corresponding to the top

parameter fit alongside the experimental trajectories demon-

strates good agreement (Figure 7B). Quantifying the root-

mean-square deviation (RMSD) between the top 10 model fits

and the corresponding experimental trajectory for all cells

sampled within each polarization state reveals average RMSD

values below 0.03 across all states. For comparison, the average

RMSD between the model simulation using the published base-

line parameter values and the experimental trajectories was

greater than 0.06, and randomly shuffling the parameter fits
across the experimental trajectories gave

an average RMSD greater than 0.04 (Fig-

ure 7C), highlighting the improvements ob-

tained by the optimization procedure.

Examining the distribution of fit

biochemical parameters demonstrates dif-

ferences in values across polarization

states (Figure S7C). Utilizing a cell-cell

dissimilarity measure based on the

average JSD between the retained param-

eter fits (see STAR Methods), we gener-
ated a UMAP visualization of the sampled Pam3CSK-stimulated

cells (Figure 7D). Similar to the prior analysis of Pam3CSK re-

sponses based on NF-kB trajectory features, distinguishability

of polarizers appears to be driven by IL-10-polarized cells sepa-

rating from other M2 polarized cells and IFNg cells separating

from other M1-polarized cells. For a more quantitative assess-

ment, we compared the pairwise cell dissimilarity matrix based

on the fit parameter values and the pairwise cell distance matrix

based on the previously identified top 10 informative trajectory

features. We found a significant positive Pearson correlation
Cell Systems 15, 1–15, June 19, 2024 9
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Figure 7. Characterizing macrophage polari-

zation states with inferred biochemical pa-

rameters

(A) General pipeline for obtaining model parameter

fits for a single-cell NF-kB response to Pam3CSK

consists of randomly initializing the optimization

procedure 100 times and retaining the ten fits with

theminimum objective value. This objective function

is composed of a root-mean-square deviation

(RMSD) term that captures the discrepancy

between the experimental (exp.) and model (mdl.)

NF-kB trajectory and a penalty term that captures

deviation of the parameters (param.) from the pub-

lished baseline values.

(B) Experimental NF-kB trajectories of 300 sampled

cells per polarization state alongside the model

simulations corresponding to their best parameter

fits.

(C) RMSD between the model simulations resulting

from the top 10 parameter fits and the corre-

sponding experimental trajectory across the polari-

zation states (left) and the RMSD between the

experimental trajectories and the best-fit parameter

model simulations, the baseline published param-

eter model simulation, and shuffled fit parameter

model simulations (right).

(D) UMAP visualization based on biochemical

parameter fits of sampled single cells colored by

polarization states.

(E) Pearson correlation between cell-cell parameter

dissimilarities and feature distances (red dashed

line) compared with null distribution of Pearson

correlation values computed from permuting the

data 100 times.

(F) Average neighborhood composition for each

polarization state based off the parameter dissimi-

larities (left) and feature distances (right). The 15

nearest neighbors were chosen to define the

neighborhood for each cell (equivalent to UMAP).

(G) UMAP visualization (as in D) with cells colored

with average parameter value across the top ten fits.
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between corresponding cell-cell parameter dissimilarity and

feature distance values (Figure 7E; see STAR Methods). Finally,

we utilized these matrices to define the k-nearest neighbors

(KNN) for each cell. These KNN graphs are the input ultimately

visualized in the UMAP illustrations. For each polarization state,

we report the average composition of their neighborhoods,

revealing similarities between the parameter and feature KNN

(Figure 7F). We found with both the parameter and feature

KNN, IL-10-polarized cells have on average the greatest propor-

tion of their own polarization state in their neighborhoods, fol-

lowed by IFNg cells, which have a greater proportion of their

neighborhoods occupied by IFNb cells.

Finally, we asked what biochemical parameter perturbations

might be associated with specific polarization treatments. For
10 Cell Systems 15, 1–15, June 19, 2024
IL-10 polarization, we observed an

increased predicted Km for NF-kB-

induced transcription of IkBa (Figure 7G),

suggesting a potential reduced sensitivity

of IkBa transcription in response to NF-

kB activity. A Kolmogorov-Smirnov test
performed between the IL-10 and naive parameter distribution

found a statistically significant difference (p = 1.32e�71). The

model-inferred free IkBa degradation rate was increased among

IFNg polarized cells (IFNg versus M0 p = 3.40e�16), which is

consistent with prior experimental observations of IFNg induc-

tion of proteasome activators, which accelerate IkBa degrada-

tion.39 We also observed increased TLR2 synthesis rates pre-

dicted for M1 type polarizers and decreased synthesis rates

predicted for M2 type polarizers, especially IL-13 and IL-4 (IL-4

versus IFNg p = 3.71e�148). This finding is consistent with

recent scRNA-seq measurements of polarized hMPDMs,59

which demonstrates reduced expression of TLR2 with IL-4 po-

larization (Figure S7D). These studies demonstrate the feasibility

of using phenomenological stimulus-response data to infer
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kinetic biochemical parameters that may provide a molecular-

mechanistic characterization of distinct functional cell states.

DISCUSSION

The ‘‘cell states’’ of macrophages induced by polarizing cyto-

kines have been profiled via steady-state measurements of the

transcriptome or epigenome. However, these snap-shot profiles

may not fully describe the dynamic functions of macrophages.

One functionally important indicator of the dynamic response

of macrophages is the transcription factor NF-kB, for which we

recently developed a fluorescent reporter mouse that allows

tracking of its nuclear activity in single cells by live-cell imaging.

Here, we explored the ability to utilize NF-kB stimulus-respon-

sive activation dynamics to characterize the functional states

of macrophages exposed to different polarizing cytokines. We

first generated an unprecedented dataset of single-cell NF-kB

response trajectories associated with a wide array of polarizing

cytokines and stimulating ligands and then developed analytical

workflows for interpreting these complex datasets. Our analyses

revealed polarization-specific effects on the dynamics and spec-

ificity of NF-kB signaling that could be traced to specific stimuli

and specific trajectory features. Thus, our results revealed that,

for a given stimulus, NF-kB dynamics contain information about

the polarization state of the macrophage. This allowed us to use

stimulus-response NF-kB dynamics to map distinct macro-

phage functional states onto a multi-dimensional landscape

and infer alterations to the molecular signaling network underly-

ing these states.

Given the unprecedented quantity and quality of dynamic sin-

gle-cell signaling data, appropriate considerations for trajectory

data were essential for their analysis. First, simply treating a

n-time point trajectory as a n-dimensional vector disregards

the relationship between time points. For example, quantifying

the distinction between trajectories as the Euclidean distance

between time points can fail to capture differences of highly dy-

namic or oscillatory trajectories appropriately. Two single-cell

trajectories with similar dynamical patterns but slightly displaced

in time could be computed to be highly distinct.60 Secondly,

although summary statistics of time-series data are easy to

compute, they are often insufficient. For example, taking the

time point by time point mean of single-cell trajectories can

obscure asynchronous oscillatory dynamics observed at the sin-

gle-cell level.61 Average behavior descriptions furthermore mask

the heterogeneity of single-cell responses and the overlap be-

tween distributions from distinct conditions.62 Employing mea-

sures of spread or shape that are used to characterize distribu-

tions is also not fully informative if taken from time series

because they also do not recognize the inter-time point correla-

tions and so risk overestimating the dispersion.

We addressed these challenges using two approaches. The

first is applying an ML approach that allowed for trajectory distin-

guishability to be explored in a feature-free manner. Indeed, the

LSTM classifier performed with higher accuracy than alternative

classifiers trained on the time-series data. The LSTM architecture

allows direct analysis of time-series data as its underlying RNN-

type architecture treats time points in a sequence rather than as

discrete features by considering the output of previous timepoints

in calculating the output of the current time point.63 Furthermore,
ML classification permits an interrogation of distinguishability at a

single-cell resolution as it samples distinct single cells in its

training, and unique classification predictions can be made for

each cell in testing. We used the LSTM-based ML classifier for

a quantitative assessment of stimulus-response specificity. We

found that classifier performance dropped for the polarized re-

sponses, suggesting broadly a loss of response specificity with

polarization. Examining the confusion fractions across the polari-

zation states revealed however that different stimulus responses

contributed to the losses in specificity for each polarization state.

Our second approach to address the challenges of time-series

data analysis was to reduce these data into informative trajectory

features. These signaling codons,15 sufficiently describe the

stimulus-specific dynamical NF-kB trajectories, and their values

are more robust to the temporal shifts previously discussed. In

essence, signaling codons constitute a lower dimensional repre-

sentation of the data, thereby expanding the range of analysis

tools that can be used and provide greater interpretability.

Although our previous study presented amethod based onmaxi-

mizing mutual information to select dynamical features that

correlate with the stimulus, this approach is computationally

impractical as more features are to be considered because of

the combinatorial explosion. Here, we explored an ML approach

for this purpose. Classifiers based on the XGBoost architecture

have been shown to outperform other ML methods64 and

SHAP analysis on these trained models provides a way of quan-

tifying feature importance that accounts for feature interactions.

After training an XGBoost ML classifier on the stimulus-response

data from each polarization state and SHAP analysis to give an

initial feature ranking, we used a recursive feature elimination

approach to select a subset of 6–7 informative features per po-

larization state, totaling a combined set of 18 dynamical features.

Using these selected dynamical features, or signaling codons,

for classification resulted inmodels nearly as accurate asmodels

trained on all 71 features. Further analysis of these features asso-

ciated them with elevated or reduced immune threat, and com-

parison of these features across polarization states revealed that

convergence of several stimulus responses in M1 polarization

states was facilitated by a gain in pathogen-like features,

whereas in M2 polarization states the opposite was observed.

These findings emphasized that NF-kB trajectories not only

contain information about the stimulus but also about the micro-

environmental context of the cell. Thus, we explored methods to

extract that context-specific information from NF-kB response

trajectories that result from a particular stimulus. We used the

aforementioned ML approaches to identify with which stimula-

tion condition the greatest distinction among polarization states

could be achieved. We then utilized two methods to map the po-

larization states, which consistently demonstrated Pam3CSK as

the stimuli that could best distinguish them. Functional PCA,

which uses a basis of trajectories for decomposition, allowed

for dimensionality reduction of the time-series data directly.

However, using a set of informative trajectory features as input

for a UMAP visualization allowed for greater interpretability of dif-

ferences between polarization states. Ultimately, we can

leverage these data and analyses to characterize macrophages

exposed to novel polarizing substances, and here, we demon-

strated our ability to predict DHA pretreatment as an M2-like po-

larizer, consistent with recent findings.57
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Stimulus-response NF-kB dynamics ultimately reflect the

expression levels and kinetic reaction rates of signaling media-

tors within that network, such as rates of synthesis, degradation,

complex association and dissociation, and catalysis. Leveraging

an established mechanistic model of the NF-kB signaling

network, we inferred how polarization modifies these biochem-

ical parameters. Focusing on Pam3CSK single-cell responses,

we determined the distribution of biochemical parameters for

each polarization state. The resulting biochemical parameters

represent in effect a dimensionality reduction of the complex dy-

namic trajectories based on knownmolecular mechanisms. That

mapping revealed similar discrimination patterns among polar-

izers as the mapping based on trajectory features. However,

this analysis additionally suggests potential biochemical alter-

ations to the NF-kB signaling network state that underlie the

observed phenotypic changes in signaling dynamics. For

example, NF-kB activation dynamics in IFNg polarized macro-

phages separate from other states likely due to increased degra-

dation of free IkBa and synthesis of TLR2, in line with prior

biochemical analyses.39,65

Mapping cells onto a multi-dimensional cell state landscape

using dynamic measurements of a single analyte is remarkable.

Snap-shot measurements of multiple cell surface makers are

often used to distinguish one cell type from another.66,67

scRNA-seq and multiplexed single-molecule fluorescence in

situ hybridization (FISH) allow for an even larger number of ana-

lytes to bemeasured achieving finer, or unbiasedmapping of cell

types or cell states.68,69 NF-kB RelA expression is ubiquitous

and not cell-type-specific. Instead, it is NF-kB’s nuclear translo-

cation dynamics that reflect the state of the signaling network

when stimulated with a specific ligand that allow for discrimina-

tion of cell states. Signaling network dynamics may also capture

information not contained in mRNA abundance measurements

at steady-state.70 Importantly, the biological functions of macro-

phages are their dynamic immune responses, and these are only

deployed in response to stimulus. Future studies will undoubt-

edly explore the relationship between alternative cell state map-

ping strategies. This study demonstrates that mapping cell

states based on dynamical responses to a perturbation is

possible and provides workflows that may be transferrable to

other cells, analytes, and perturbations.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

lipopolysaccharide (LPS) Sigma Aldrich, B5:055 L2880

Murine TNF Roche 11271156001

Pam3CSK4 InvivoGen tlrl-pms

polyinosine-polycytidylic acid (Poly(I:C)) InvivoGen tlrl-picw

Synthetic CpG ODN 1668 InvivoGen tlrl-1668

Recombinant flagellin (FLA) InvivoGen tlrl-flic

FSL1 InvivoGen tlrl-fsl

R848 InvivoGen tlrl-r848

Recombinant Mouse-IFNb PBL Assay Science 12401-1

Recombinant-Murine-IFNg PeproTech 315-05

Recombinant-Murine -IL10 PeproTech 210-10

Recombinant-Murine-IL13 PeproTech 210-13

Recombinant-Murine-IL4 PeproTech 214-14

Docosahexaenoic acid Sigma-Aldrich D-2534

TRIzol reagent Invitrogen 15596018

Hoechst 33342 dye Thermo Fisher 62249

Critical commercial assays

Direct-zol RNA isolation kit Zymo Research R2060

KAPA Stranded RNA-Seq Kit KAPA Biosystems KK8421

Deposited data

Single cell NFkB signaling dynamics This paper Mendeley Data: https://doi.org/10.17632/gkxzb5hcmk.1

RNA-seq data of hMPDM, BMDM,

and RAW 264.7 cells stimulated with LPS

This paper GEO: GSE246566

Experimental models: Cell lines

RelA-mVenus hMPs This paper hMPs

RAW 264.7 ATCC TIB-71

Experimental models: Organisms/strains

RelAmVenus/mVenus (C57BL/6) Adelaja et al.15 JAX stock 38987

Software and algorithms

MACKtrack - Image Analysis

(single cell tracking and measurement)

Adelaja et al.15 https://github.com/brookstaylorjr/MACKtrack

NFkB trajectory feature calculations This paper https://github.com/signalingsystemslab/

polarized_macs_NFkB_response_dynamics

https://doi.org/10.5281/zenodo.11099125

NFkB math model and parameter inference This paper https://github.com/michaeliter/nfkb_param_fitting

https://doi.org/10.5281/zenodo.11099470

Cutadapt Martin71 https://github.com/marcelm/cutadapt

PRINSEQ Schmieder and Edwards72 https://sourceforge.net/projects/prinseq/files/

STAR Dobin et al.73 https://github.com/alexdobin/STAR

Samtools Danecek et al.74 https://github.com/samtools/samtools

featureCounts Liao et al.75 https://subread.sourceforge.net/

DESeq2 Love et al.76 https://github.com/thelovelab/DESeq2

https://doi.org/10.18129/B9.bioc.DESeq2

edgeR Robinson et al.77 https://bioinf.wehi.edu.au/edgeR/

https://doi.org/10.18129/B9.bioc.edgeR
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stats-package (R4.1.1) R Core Team78 https://www.r-project.org/

Tslearn Tavenard et al.46 https://github.com/tslearn-team/tslearn/

TensorFlow 2 Abadi et al.79 https://github.com/tensorflow/tensorflow

https://doi.org/10.5281/zenodo.4724125

Keras API Chollet80 https://github.com/keras-team/keras

scikit-learn Pedregosa et al.81 https://scikit-learn.org/stable/

Google Colaboratory Google https://colab.google/

XGboost Chen and Guestrin51 https://github.com/dmlc/xgboost

SHAP (SHapley Additive exPlanations) Lundberg et al.82 https://github.com/shap/shap

scikit-fda Suárez et al.83 https://github.com/GAA-UAM/scikit-fda

Uniform Manifold Approximation &

Projection (UMAP)

McInnes et al.84 https://github.com/lmcinnes/umap

MATLAB ODE simulation & optimization The MathWorks Inc.85 https://www.mathworks.com/
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Hoffmann (ahoffmann@ucla.edu).

Materials availability
All resources generated in this study are available from the lead contact.

Data and code availability
RNA-seq data have been deposited at SRA under BioProject: PRJNA819468 and GEO: GSE246566 and are publicly available as of

the date of publication. Accession numbers are listed in the key resources table. Trajectory data generated from microscopy exper-

iments have been deposited at Mendeley Data: https://doi.org/10.17632/gkxzb5hcmk.1 and are publicly available as of the date of

publication. Available on GitHub is software used for image analysis (https://github.com/brookstaylorjr/MACKtrack), code to calcu-

late trajectory features (https://github.com/signalingsystemslab/polarized_macs_NFkB_response_dynamics), and code for mathe-

matical modeling and inferred parameter fits (https://github.com/michaeliter/nfkb_param_fitting). Any additional information

required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Macrophage Cell Culture and Stimulation
Myeloid precursor cells were prepared from RelA-mVenus mouse strain15 by HoxB4-mediated transduction (hMP).43 hMP-Derived

Macrophages (hMPDMs) were prepared by culturing hMPs in L929-conditioned medium using standard Bone-Marrow Derived

Macrophage (BMDM) culture method.15 hMPDMs were re-plated in imaging dishes on day 6 at 20,000 cells/well in an 8-well ibidi

SlideTek chamber, for imaging at an appropriate density on day 10 or day 11. hMPDMs were treated with polarization reagents

(IL4 (10 ng/mL) (PeproTech), IL13 (50 ng/mL) (PeproTech), IL10 (20 ng/ML) (PeproTech), IFNg (10 ng/mL) (PeproTech), IFNb

(100 U/ML) (PBL Assay Science)) or left untreated (M0) 24 hours before stimulation. Stimulation was done with the toll-like receptor

(TLR) 4 agonist, lipopolysaccharide (LPS) (10 ng/mL) (Sigma Aldrich), TLR3 agonist, polyinosine-polycytidylic acid (Poly(I:C)

(50 mg/mL) (InvivoGen), TLR9 agonist, CpG B ODN (100 nM) (InvivoGen); TLR2 agonists, Pam3CSK4 (100 ng/mL) (InvivoGen) and

FSL1 (3 ng/mL) (InvivoGen), TLR8 agonist, R848 (1 mg/mL) (InvivoGen), TLR5 agonist, Flagellin (10 ng/mL) (InvivoGen), or cytokine

TNF (1 ng/mL) (R&D Systems) without media replacement. Doses were selected to give maximal response. For the experiment

with DHA pretreatment (docosahexaenoic acid, 200 mM (Sigma Aldrich)) and Pam3CSK stimulation, replating was performed on

day 5 and imaging performed on day 10.

METHOD DETAILS

RNA Isolation and Sequencing
Bone-Marrow Derived Macrophages (BMDMs) were cultured with standard methods, L929-conditioned medium.15 Raw 264.7 cells

were cultured in DMEM 10% FBS media. After stimulation, cells were harvested at desired time points. For PolyA+ RNA, cells were

harvested in TRIzol reagent (Life Technologies, Carlsbad, CA). Then, DNA-free RNA was extracted from cell using DIRECTzol kit
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(Zymo Research, Irvine, CA) according to manufacturer’s instructions. After RNA extraction, libraries for polyA+ RNA were prepared

using KAPA Stranded RNA-Seq Kit for Illumina Platforms (KAPA Biosystems, Wilmington, MA) according to the manufacturer’s in-

structions. Resulting cDNA libraries were single-end sequenced with a length of 50bp on an Illumina HiSeq 2000 (Illumina, San

Diego, CA).

Analysis of RNA-seq data
After adapter trimmingwith cutadapt,71 sequenceswerepreprocessedwithPRINSEQ72using the ‘‘dust’’method tofilter lowcomplexity

sequences with themaximum allowed score set to 7 and sequences withmore than 10% ambiguous bases were removed. Single-end

reads were mapped to reference mouse genome (mm10) using STAR73 with the following options: –outFilterMultimapNmax 20–alignS

JoverhangMin 8 –alignSJDBoverhangMin 1 –outFilterMismatchNmax 999 –outFilterMismatchNoverLmax 0.04 –alignIntronMin 20

–alignIntronMax 1000000 –alignMatesGapMax 1000000 –seedSearchStartLmax 30. Only primary mapped reads with alignment

score (MAPQ)>30were then selectedbySamtools.74Ribosomal RNAwas filtered out using the intersect function in bedtoolswith amin-

imaloverlap fractionof0.1andfinally readsmapped to theYchromosomeormitochondriawere removed fordownstreamanalysis. Tran-

script abundancewas quantified based onGENECODEM4annotation using featureCounts75 using option ‘-t exon -ggene_id. For anal-

ysis, geneswithnocountsacrossall experimentswerefilteredout.Anaveragepseudocount of2wasadded to the rawcounts,where the

exact value added to each library was proportional to the library size. The counts were then normalized for differences in library size by

calculating the counts permillion (CPM) and then the base 2 log fold changeswere calculated from those values. Genes induced by LPS

were determined to be those that had a log2 Fold Change greater than or equal to 1 after 3 hours post LPS stimulation in two replicate

experiments of BMDM’s.

Live-cell imaging
Macrophages were stained with nuclear staining dye, Hoechst 33342 (5 ng/mL) two hours prior to imaging within ibidi chambers.

Cells were imaged at 5-minute intervals on a Zeiss AxioObserver platform with live-cell incubation, using epifluorescent excitation

from a Sutter Lambda XL light source. The first three images collected (pre-stimulation) were used to determine the baseline activity

of NFkB for each cell. After 15 minutes of the start of imaging, conditioned culture media containing stimulus was injected into the

respective well of ibidi chamber in situ. Images were recorded on a Hamamatsu Orca Flash 2.0 CCD camera for 12.5 hours.

Image processing and quality control
Microscopy time-lapse images were exported for single-cell tracking and measurement in MATLAB R2018a,used in earlier work.15

Briefly, cells were identified using DIC images, then segmented, guided by nuclear staining from the Hoechst image. Segmented cells

were linked into trajectories across successive images, then nuclear and cytoplasmic boundaries were defined and used for mea-

surement in fluorescent channel for mVenus-NFkB. Nuclear NFkB levels were quantified on a per-cell basis, normalized to image

background levels, then were baseline-subtracted. The first three images collected (pre-stimulation) were used to determine the

baseline activity of NFkB for each cell. The mean fluorescence value from these three frames was subtracted from the complete tra-

jectory to normalize each cell. For downstream analysis and visualization, the third timepoint corresponds to time = 0 and 97 time-

points after that were included (� 8 hour trajectories). Mitotic cells, as well as cells that drifted out of the field of view, were excluded

from analysis. The code (MACKtrack) used for this analysis are publicly available at GitHub (https://github.com/brookstaylorjr/

MACKtrack).

To quantify the 6 quality control (QC) metrics, 11 features were obtained from the NFkB trajectories (Table S2). For quality control

metrics formed by more than one trajectory feature, the trajectory features were z-scored and the mean of the z-scores was taken to

get the QC metric value. During quality control analysis to determine biological replicates, z-scoring was performed over cells in the

experimental condition of interest. Additionally, for the quality control analysis, the trajectory features from only ‘‘responding’’ cells

were considered. A cell was deemed a responder if its trajectory exceeded three times the standard deviation of the baseline for at

least 5 consecutive time points. Experiments were finally deemed biological replicates if the Jensen-Shannon distance (JSD) be-

tween each of their quality control metric distributions were below a pre-specified threshold, 0.3. This threshold was selected based

off a set of pilot experiments containing replicates for several conditions and visual inspection of the trajectories. For the visualiza-

tions presented in Figure 1, z-scoring was performed over all cells in all experimental conditions listed in Figure S3A to calculate qual-

ity control metrics.

To calculate the Jensen-Shannon distances (JSD) between quality control metric distributions, the Freedman-Diaconis rule86 was

first used to select a bin width for each quality control metric. Using this bin width and the extremum quality control metric values, a

histogram that approximates the probability density function for each experiment can be constructed and used to calculate the JSD

(the square root of the Jensen Shannon Divergence using the base 2 logarithm).

QUANTIFICATION AND STATISTICAL ANALYSIS

Relating NF-kB dynamics to Gene Expression in polarized macrophages
RNAseq and ATACseq data was obtained from a prior study of human macrophages.47 Briefly this study conditioned human mac-

rophages 64 hours prior to stimulation with either 10 ng/ml IFNg, 200 U/ml INFb, or left untreated (naı̈ve condition). Macrophages

were stimulated with 100 ng/ml Lipid A, 5 ng/ml TNFa, 100 ng/ml Pam3CSK, 20 mg/ml poly(I:C), or 200 U/ml IFNb. ATACseq was
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performed on the conditioned macrophages prior to stimulation and RNAseq was performed on both unstimulated and stimulated

macrophages (1.5, 3, 5.5, and 10 hours). Genes with less than 4 RPKM across all samples were eliminated from the RNAseq data-

set76 and genes with significant upregulation (adjusted (BH) pVal <= 0.05, log2FC >= 2) upon stimulation at any time-point from any

precondition-stimulation treatment were detected with edgeR77 (2299 genes) and retained for downstream analysis. For each con-

dition, the total gene expression over the time course (integral of normalized CPM values76 with unstimulated value deducted) was

calculated for each replicate. NFkB trajectory data was utilized from the naı̈ve, IFNb, and IFNg polarized hMPDMs treated with LPS

(paired with Lipid A RNAseq data), TNF, Pam3CSK4, and Poly(I:C). For each condition, the total activity (integral of baseline deducted

values) was averaged over the single cells of each replicate.

First a linear model (stats package in R4.1.178) was constructed to predict gene expression activity from the NFkB total activity

averaged over replicates. More specifically the formula GE � LPS_NA + TNF_NA + P3K_NA + PIC_NA was used, where GE is the

average gene expression activity for the gene of interest and NA are the average NFkB total activity with the stimulations specified.

Each stimulation condition has a separate variable as genes respond to multiple transcription factors and stimuli activate these tran-

scription factors differently. NA values are only nonzero for data where that stimulation was used. For each gene model, 12 data

points were fit (3 polarization conditions x 4 stimulation conditions). Next the linear models were constructed after permuting the

gene expression activity across polarization states. NFkB signaling dynamics can carry information about the polarization-induced

changes in gene expression if the model fits on the original data outperform those on the permuted data. In the next analysis, peaks

overlapping with the region ± 1 kilobase of the transcription start site of each upregulated gene were identified from the ATACseq

dataset. 947 genes had at least one peak and these were retained for downstream analysis. Now the linear model to predict gene

expression activity used both NFkB total activity and the ATAC peak values (normalized by size factors76) averaged over the repli-

cates. Genes containing more than one peak within the promoter region had these ATAC values summed. The formula GE �
LPS_NA + TNF_NA + P3K_NA + PIC_NA + LPS_CA + TNF_CA + P3K_CA + PIC_CA was used, where CA are the average chromatin

accessibility. These data do not vary with stimulation condition, however their effect on gene expression might. CA values are only

nonzero for data where that stimulation was used. The Akaike Information Criterion (AIC) was used to compare the models con-

structed from only NFkB signaling dynamics to the models constructed with additional chromatin accessibility information.

LSTM-based ML Classifier
The LSTM-based Machine Learning (ML) Classifier was implemented in TensorFlow 2 79 using the Keras API.80 The classifier utilized

the trajectories from time = 0 to 8.083 hours for a total of 98 timepoints. Trajectories withmissing (nan) values were excluded from this

analysis. For each classification task described, the data was split 60% for training, 20% for validation, and 20% for testing. The tra-

jectories were sampled such that for each combination of ligand stimulation and polarization state the number of trajectories were

equivalent. More specifically, for each combination of ligand stimulation and polarization state the trajectories were either down-

sampled or resampled to reach the mean number of trajectories across the ligand stimulation and polarization state combinations

(1329 cells per condition with tasks with unstimulated cells, 1338 without). A standard scaling, fit from the training data, was addi-

tionally applied across each time point. For each classification task, the data was shuffled and resplit 15 times to estimate uncertainty

in output performance metrics. The confidence intervals reported were two-sided and used a T-distribution with degrees of freedom

one less than the sample size (n-1).

The architecture of themachine learning classifier consisted of a LSTM layer with the dimensionality of the output set to the number

of timepoints, 98, followed by a fully connected layer with the dimensionality of the output set to the number of classes. A softmax

activation function was finally applied to the output of the fully connected layer. The weights of the classifier were optimized by mini-

mizing the categorical cross-entropy loss objective function with the Adam algorithm using the following default parameters: learning

rate=0.001, beta 1=0.9, beta 2=0.99, epsilon = 1e-08, batch size=32. With increasing number of training epochs, the value of the loss

function over the training datawill continue to decreasewhereas eventually the value of the loss function over the validation data (data

unseen during optimization) will begin to increase. This signals overfitting, as the trained model loses generalizability of its perfor-

mance on new data. We employed a simple early stopping technique to address this. For each classification task, the validation

loss was monitored during training and the epoch number corresponding approximately to the start of the rise in validation loss

was determined. Training was then terminated just prior to this epoch.

The testing data held out during training was finally used to evaluate the performance of the trained model. The output of the clas-

sifier is the probability that a trajectory belongs to each class. To assign the trajectory to a class, the class with the highest prediction

probability for each trajectory gave the assignment. These output prediction probabilities and class assignments from the testing

data were then used to calculate the performance metrics as described.

A random forest classifier and feedforward neural network classifier were also trained and tested in the same manner for compar-

ison. The random forest model was implemented using the scikit-learn Python package81 with default parameters (n_estima-

tors=100, criterion=’gini’, max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_fea-

tures= sqrt(n_features), max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, max_samples= X.shape[0]). The

feedforward network model was implemented identically to the LSTM network model, except the LSTM layer was replaced with a

Dense layer with output set to the number of timepoints, 98, and a ReLU activation function. All machine learning models were

run in the Google Colaboratory environment.87
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Feature Library and XGBoost ML Classifier
An initial library of 190 trajectory features was further reduced to a size of 71, eliminating features that contributed to high pairwise

correlations based off of Kendall’s Tau (maximum pairwise correlation reduced to 0.76 from 0.91, Table S3). The code to calculate

these features are provided on the GitHub site. The XGBoost model was implemented using the XGboost Python Package51 (version

0.90). Once again, trajectories with missing (nan) timeseries values were excluded from this analysis. For each classification task, the

data was sampled as previously described for the LSTM-based models and similarly the training was repeated 15 times to estimate

uncertainty in output performance. A standard scaling, fit from the training data, was also applied to each feature.

All XGBoost models used a ‘multi:softmax’ objective and up to 1000 estimators. An early stopping criterion was applied to prevent

overfitting, where if the multiclass log loss (cross-entropy) value did not improve after 10 rounds, training was terminated. All other

parameters were set to the package defaults (max_depth = 6, max_leaves = 0, grow_policy = depthwise, eta(learning_rate) = 0.3,

tree_method = auto, gamma = 0, min_child_weight = 1, max_delta_step = 0, subsample = 1, sampling_method = uniform, colsam-

ple_bytree = 1, colsample_bylevel = 1, colsample_bynode = 1, reg_alpha = 0, reg_lambda = 1, scale_pos_weight = 1).

To assess feature importance in model predictions, the SHAP package (version 0.41.0) was used.82 The function TreeExplainer

was run on the trained models and the resulting ‘‘shap_values’’ were saved. An importance score for each feature was then obtained

by taking the absolute value of the ‘‘shap_values’’, averaging them across all instances, and then summing them over all classes.

Uncertainty in these importance scores was once again obtained by repeating this measure for the 15 trained models. To further

select features from the top 20 features identified as most important for each polarization state, a recursive feature elimination pro-

cedure was pursued. Starting with the original 20 features, each feature was trialed for removal (i.e. a model was trained using the 19

remaining features and the resulting performance was recorded, taking the average over three samplings to account for variability).

The feature whose removal resulted in the best model performance (hence this feature was the least essential for maintaining per-

formance) was removed from the set and the process began again with this set of 19 features. The procedure was repeated until only

one feature remained in the set. Best model performance was monitored as features were removed to identify at what point feature

removal resulted in a substantial loss in performance and the features remaining beyond this point defined the selected minimal set.

For LDA and PCA calculations using the trajectory features, the scikit-learn Python package81 (version 1.0.2) was used, cells with

missing values were excluded, and the standard scaler was applied. The confidence intervals reported were two-sided and used a

normal distribution with associated z-scores.

Functional Principal Component Analysis
Functional principal component analysis of the NFkB response trajectories across all stimulation and polarization conditions was per-

formed using scikit-fda83 (version 0.7.1). An equal number of samples from each experimental condition was used. This analysis

operated directly on the centered raw data (discretized FPCA) without first converting the data using a basis representation. The first

ten principal components were then utilized to create a UMAP projection of the data using the Uniform Manifold Approximation &

Projection package84 (version 0.5.3) with default parameters.

Mathematical Modeling of NFkB Signaling
The NFkB signaling network and ordinary differential equation (ODE) mechanistic model was adapted from prior work.15 Biochemical

parameters relevant to Pam3CSK stimulation were selected from the model topology (Figure S7A). To evaluate their sensitivity, each

parameter was varied across a constraint region centered around their published values (Figure S7B). Seven sensitive parameters

were chosen for optimization: IkBa protein degradation rate, IkBamRNA synthesis Km, IkBa transcriptional delay, NFkB initial abun-

dance, TLR2 synthesis rate, ligand-receptor complex degradation rate, and TAK1 inactivation rate. The constraint region utilized was

0.1x-10x the baseline value for IkBa protein degradation rate, IkBamRNA synthesis Km, TLR2 synthesis rate, ligand-receptor com-

plex degradation rate, and TAK1 inactivation rate. The IkBa transcriptional delay parameter was constrained between 0.5x-2x the

baseline value and NFkB initial abundance was constrained between 0.04 to 0.3 mM.

Experimental nuclear NFkB trajectories (A.U.) were converted to mM to permit comparison with model simulations. A scaling factor

of 0.0313 was applied that was previously derived by considering the experimentally measured macrophage volume and expected

range of NFkB nuclear concentration following maximum stimulation with LPS. From each of the six polarization states, 300 single

cells were sampled from the Pam3CSK responses. For each cell, the optimization process was repeated 100 times. Each time, the

optimization process was initialized at a different biochemical parameter set from a collection of 100 randomly sampled parameter

sets. The MATLAB (version R2020b)85 function, fminsearch, was utilized for optimization. This function implements the Nelder-Mead

simplex method, a gradient-free local optimization algorithm which excels at quickly optimizing complex multi-dimensional func-

tions.88 The parameter ‘MaxIter’ was set to 100 with all other parameters set to default values. This MATLAB implementation of

the Nelder-Mead simplex method does not natively support lower and upper bound constraints on optimization variables, so the

biochemical parameter constraint regions were enforced by utilizing transformations to map between each biochemical parameter

constraint region and the real line. More specifically, the following function was applied to the optimization variables to project them

into the constraint region of the corresponding parameter during each iteration of the optimization procedure. Here, a and b are the

lower and upper bounds of parameter p, and v is the corresponding optimization variable:

p = ðb � aÞ ev

ev+1
+ a
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The objective function that wasminimized by this optimization process has twomain components: trajectory RMSDand parameter

distance penalty. The trajectory RMSD value refers to the root-mean-square deviation between a cell’s experimental and model-

simulated nuclear NFkB time series. Due to the increased biological relevance of capturing the first few peaks of these trajectories,

the first four hours of the time series are weighted two times more in the RMSD calculation. The parameter distance penalty refers

to the root-mean-square (RMS) value of the ratio between the altered parameters and their published values in log space. The base of

the logarithm applied depended on the constraint region for each parameter. For example, the penalty for parameters with a 0.1x-10x

constraint would be base 10. This penalty value was scaled by 0.1 to weigh it equally against the trajectory RMSD in the objective

function. For every cell, the optimized parameter sets associated with the 10 lowest objective function values were retained for sub-

sequent analyses. The objective function (F) can be summarized as follows:

FðparamsÞ= RMSDðmodel simulation; experimental measurmentÞ+ 0:1 � RMSðlogðparams =published valuesÞ ÞÞ
After completion of the parameter fitting pipeline, the difference between parameter distributions across polarization states was

evaluated using the two-sample Kolmogorov-Smirnov test (kstest2, ‘unequal’ alternative hypothesis) in MATLAB.85 Next, the pair-

wise cell dissimilarities were computed using the parameter distributions composed of the top 10 model fits. For each pair of cells,

the Jenson-Shannon distance (JSD) was calculated for each set of parameter distributions. The parameter distribution JSD values

were then averaged to produce the calculated dissimilarity measure between two cells. This dissimilarity calculation can be summa-

rized as follows, where piðCÞ is the parameter distribution for parameter i in cell C:

disimilarityðcell A; cell BÞ =
1

7

X7

i = 1

JSDðpiðAÞ;piðBÞÞ

These distances formed the parameter-based dissimilarity matrix that was utilized in the UMAP visualizations. In the subsequent

correlation analyses, the parameter-based dissimilarity matrix was compared to a feature-based distance matrix, which was ob-

tained by calculating the Euclidean distance between the 10 trajectory features for each pair of cells. The Pearson correlation coef-

ficient was calculated by flattening the upper triangles of each matrix into a 1D vector.
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