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ABSTRACT

A complementary DNA (cDNA) encoding a mouse TFIID
(mliD) was isolated from mouse brain cDNA libraries.
The 316 amino acid sequence deduced from cDNA
sequences revealed the presence of an amino-terminal
region enriched in serine, threonine, and proline (STP-
cluster), an uninterrupted stretch of 13 glutamine
residues (Q-run), a second STP-cluster, and a
conserved carboxy-terminal region. Amino acid
sequences of the first STP-cluster and the conserved
carboxy-terminal region were identical to those of the
human TFIID (hlID). However, the Q-run was
considerably shorter than that in hlID and sequences
in the second STP-cluster diverged from those of the
hiID. The murine TFIID transcript Is expressed as a 2
kilobase poly(A)* RNA In the mouse brain. Southern
blot analysis identified a single gene copy per haploid
mouse genome.

INTRODUCTION

The general transcription factors for RNA polymerase II identified
in human cells have been designated TFIIA, TFIIB, TFIID,
TFIIE, TFIIF, and TFIG (1, and references therein). Human
TFIID (hIID) binds to the TATA box element (2, 3) and initiates
the ordered assembly of RNA polymerase II and the other general
factors into a functional preinitiation complex (4, 5). The
demonstration of a yeast TFIID (yIID) that was functionally
interchangeable with the hIID (6 —8) led to the total purification
of this factor (9) and the cloning of corresponding cDNA
(10—14). This was followed by the cloning of TFIID ¢cDNAs
from fission yeast (15, 16), plants (17), Drosaphila (18, 19), and
human (20—22). Sequence comparisons revealed a highly

conserved 180 residue C-terminal domain, which earlier
mutational studies had shown to be necessary and sufficient for
basal level transcription by the yIID (23). In contrast, these
analyses failed to reveal significant sequence homologies in the
N-terminal domains.

Given previous indications that hIID is a target for the action
of at least some regulatory proteins (24 —27), as well as functional
comparisons of natural and recombinant TFIID species, these
results led to the speculation that the variable N-terminal regions
might be involved in species-specific interactions with regulatory
factors (20, 21, 28). However, the ability of several mammalian
activators to enhance promoter activity via yeast TFIID in HelL.a
cell-derived systems (22, 29) may indicate that at least some
interactions with regulatory factors might proceed via the
conserved core domain and suggest alternate or accessory roles
for the unique N-termini of hIID. To further investigate structure-
function and evolutionary relationships in mammalian TFIIDs,
we have isolated murine TFIID cDNA and demonstrated striking
sequence conservations between human and murine TFIIDs.

MATERIALS AND METHODS

Cloning and Sequencing of the Mouse TFIID cDNA

Two cDNA libraries in lambda-gtl1 were made from cerebellum
poly(A)*RNA of ICR mice by priming with oligo(dT) and with
a random hexamer (30). Libraries were screened as previously
described (31) using a 32P-labeled DNA probe corresponding to
nucleotide positions 576—971 (encoding amino acid residues
160—291) in a hIID cDNA (20). Nucleotide sequences were
determined by the dideoxy chain termination method in each
direction.
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Flg. 1. Structure of the mouse TFIID cDNA. a; Schematic representation of three
independent overlapping clones isolated from mouse brain cDNA libraries. b;
Nucleotide and predicted amino actd sequences of the mIID Shown is the combined
sequence of three overlapping clones, containing a 948 bp ORF encoding the
316 amino acid mlID. Straight and wave lines show the Q-run and the pro-ser-
thr or its derivative motifs, respectively. The conserved C-terminal core is specified
by the region between the two arrows.

Southern and Northern Blot Analyses

Southern blot analysis under stringent hybridization conditions
was carried out by the standard method with minor modifications
(32). Briefly, 12 ug amounts of the mouse DNA were digested
with BamHI and HindIll, electrophoresed on a 0.7% agarose gel,
blotted onto a nylon membrane, and probed with a random
primer-labeled mouse TFIID (mIID) cDNA fragment (8 X 108
cpm/ug) that extended from nucleotide positions 486 to 1006 and
covered the conserved C-terminal region. The hybridization
solution contained 10° cpm/ml probe, 5% Denhardt’s solution,
100 pg/ml denatured herring testis DNA, 5XSSC, 50 mM
sodium phosphate (pH 6.5), 0.1% SDS and 50% deionized
formamide. The blot was incubated with the probe at 42°C for
16 hr, washed in 0.1 XSSC, 0.1% SDS at room temperature and
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Fig. 2. Comparisons of mouse and human TFIID amino acid sequences. a;
Schematic representation of the mouse and human (20) TFIIDs. Amino acid
positions of the STP-1, Q-run, STP-2 and conserved C-terminal core are shown
Residues 71 to 95 show 80% sequence 1dentity between mIID and hlID. b; Amino
acid sequences around the Q-run. Amino acids are indicated by the single letter
code. Short bars indicated deleted residues while asterisks indicate identities
between the two sequences.

exposed to Kodak XAR films. A mouse myelin basic protein
(MBP) gene fragment from nucleotides —1318 to +223 relative
to the transcription start site (33) was also used as a probe for
checking the DNA digestion and for calibration of the copy
number. For Northern blot analysis (30), 2 ug of poly(A)TRNA
from the mouse brain was analyzed using a mIID probe (8% 108
cpm/pug) extending from positions 369 —675.

RESULTS

The TFIID species encoded by the several cDNAs reported thus
far show strong sequence conservations over 180 residues in their
respective C-termini (conserved C-terminal core). Assuming
sequence conservation at both the protein and DNA level, we
employed a hIID cDNA-derived probe encoding 132 residues
of the conserved core to screen an oligo(dT)- and random
hexamer-primed mouse brain cDNA libraries. The first screens
(1x107 phage each) yielded 2 positive clones from the
oligo(dT)-primed library and 6 from the random hexamer-primed
library. These clones (including 23S-1 and H3, Figure la)
contained sequences related to the conserved C-terminal core of
hIID, but lacked the expected N-terminal sequences. The mIID
sequence from nucleotide positions 369 to 675 (below) and the
hIID sequence from nucleotide positions 1 to 183 were then used
as probes to screen the random hexamer-primed library, which
yielded one positive clone (23S-2b) carrying a part of the
conserved C-terminal core and preceding N-terminal sequences.
Overlapping clones 235-2b, 23S-1 and H3 (Fig. la) were then
used to construct a 1652 base pair cDNA which contained one
long open reading frame (ORF) begining at position 65 (Fig. 1b).
The ORF encoded a 316 amino acid polypeptide which was
similar in size to the 335 residue hiID (20). The overall amino
acid sequence showed 92% identity with the hIID sequence, while
the C-terminal 221 amino acid sequence was identical with the
corresponding region of the hiID (Fig. 1b, 2a). Nucleotide
sequences between mIID and hIID cDNAs revealed a high (90%)
sequence identity in the coding regions. Sequence similarities
were weak in the short 5'- and proximal 3’-non-coding regions
(Fig. 3a), but stronger in the more distal 3'-untranslated region
(downstream from 1200) (Fig. 3b).

Analysis of the mIID amino acid sequence revealed motifs
observed in other site-specific DNA binding proteins (Figs. 1b
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Fig. 3. Comparison of nucleotide sequences between mouse and human TFIIDs. a; Harr plot analysis of the mouse and human (20) TFIID cDNA sequences. One
dot represents an 1dentical 9 nucleotides out of 10. Start points of the coding region (65), Q-run (236), STP-2 (275), conserved C-terminal core (470) and the terminus
of the coding region (1013) are indicated by arrowheads. b; Nucleotide sequence comparison of the 3’-flanking region between mouse (upper) and human (lower)
TFIID cDNAs. Sequences were aligned to have a maximum homology between two cDNAS, including deletion and insertions. The conserved C-terminal core and

matching nucleotides are indicated by a shaded area and asterisks, respectively.

and 2b). A stretch of 13 uninterrupted glutamine residues (Q-
run) was found between residues 58 —70. Regions enriched in
ser(S), thr(T), and pro(P) were detected on each side of the Q-
run and designated STP-1 and STP-2. The overall contents of
ser, thr, and pro residues in STP-1 and STP-2 were 35% and
50%, respectively. The region from residues 119—133 contained
an imperfect tripeptide repeat, either pro-ser-thr or a derivative
motif (20). In comparing these regions with those of hIID
(Fig. 2a, 2b), we found that the N-terminal 57 amino acids (the
first 5 amino acids and the STP-1 region) were identical between
both TFIIDs. However, the mIID Q-run (13 residues) was
considerably shorter than the 34 (20) or 38 (21, 22) residue
counterparts in hIID. Sequence deviations between mIID and hIID
were most evident in the beginning of STP-2; the mIID sequence
of residues 71 —95 had 80% identity with the corresponding
region of hIID and included two single residue insertions. As
described above, the nucleotide sequence of the two cDNAs also
diverged in this region.

In a Southern analysis, mouse DNA was digested with BarmHI
or Hindlll and probed with the conserved region (nucleotide
residue 486-to-1006) of the mIID cDNA. This analysis (Fig. 4a)
revealed single strong signals of 3.9 (BamHI) or 5.5 (HindIIl)
kilobase pairs, respectively. A control with a mouse myelin basic
protein (MBP) probe of similar specific activity also identified
single strong bands whose intensities were comparable to those
observed with the mIID probe. Since a single MBP gene is
present per haploid mouse genome (34), these data indicate that
the TFIID gene analyzed here exists as a single copy in the
haploid mouse genome. It may be noteworthy that the Southern
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Fig. 4. Analysis of the TFIID DNA in the mouse chromosome and its expression.
a; Southern analysis. Mouse DNA digested with BamHI (B) and HindIll (H)
was probed with the mIID (TFIID) or the mouse myelin basic in (MBP)
DNA. Specific activities of the two probes were the same (8 X 10° cpm/pg). The
MBP probe detects major signals of 3.7 and 15 kilobase pairs (kb) as demonstrated
by Okano et al. (34). Lane M denotes the positions (in kb) of the molecular size
markers. b; Northern blot analysis of the mouse poly(A)* RNA. Positions of the
18S (2 kilobases) and 28S (5.1 kilobases) rRNA are shown.
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analysis with the mIID probe also revealed a few minor bands
at 8.5 and 10 (BamH]I) and 1.9 and 4.4 (HindIll) kilobase pairs
(Fig. 4), whose possible significance is discussed below.

Expression of the TFIID sequence in the mouse brain was
studied by Northern analysis (Fig. 4b), which revealed a 2
kilobase signal. The size of the mIID RNA was quite similar
to that reported for human (HeLa) cells (22). Thus, we estimate
that the predominant mIID mRNA contains an additional
200—300 nucleotides (in the upstream non-coding region) beyond
that present on the cDNA of Fig. 1.

DISCUSSION

A cDNA from mouse brain libraries was isolated by cross-
hybridization with a cDNA encoding hIID. The mouse sequence
contained an ORF encoding a 316 amino acid protein with a
molecular mass (35 kDa) similar to that of hIID (37 —38 kDa)
(Fig. 1). The evolutionarily conserved C-terminal core of hIID
was totally conserved (below) in the mouse cDNA-encoded
protein. Since this region is sufficient for TFIID binding (to the
TATA-box) and for function in basal level transcription (22, 23),
we conclude that we have obtained a bona fide mouse TFIID
cDNA.

Overall amino acid sequence similarities between the mouse
and human TFIIDs were striking (Fig. 2a). Each protein had two
STP-rich domains separated by Q-run in the N-terminus and a
long conserved C-terminal region. We suggest that this structure
is a common feature of the mammalian TFIIDs. Most strikingly,
the amino acid sequences in the functionally important C-terminal
region were identical, indicating that the essential portion of the
TFIID remained unchanged during mammalian evolution.
Nucleotide sequence comparisons between the mIID and hIID
cDNAs (Fig. 3) indicated a high (90%) sequence identity in the
coding regions and a lower sequence identity (70%) in the non-
coding regions. These data imply that the non-coding flanking
sequences of the TFIID varied more rapidly during evolution than
did those in the coding region. The amino acid sequence
differences observed in two TFIIDs are potentially interesting,
notably the short Q-run (13 residues) in mIID versus the longer
(34 —138 residues) Q-run in hIID. Neither yeast nor plant TFIIDs
contain such uniterrupted Q-runs. However, the Drosophila
TFID has two short (6 and 8 residue) Q stretches (18, 19). The
intermediate length of the mIID Q-run indicates a possible
expansion during animal evolution, although present data suggest
that the length might vary even between different human cell lines
(20—-22). We suggest that sequences in the Q-run may mutate
more frequently than other portions.

The hIID clones isolated so far were derived from cultured
Hela cells while the present mIID clone was obtained from brain
c¢DNA libraries. Therefore, we cannot eliminate the possibility
that the differences found in miID and hiID may due to the cell
or tissue source. Thus far, TFIID heterogeneity has been
documented in plants (17) and humans; microheterogeneity in
the Q-run (20—22). If there were tissue-specific variants of
TFIID, the present study might have selected a TFIID cDNA
enriched in the brain. Since several studies (20, 22, 23, 28, 35)
have led to speculation of a possible role for the variable N-
terminal region of the TFIID molecules in transcriptional
activation by sequence-specific DNA-binding proteins, the N-
terminal sequence difference between miIID and hIID might
possibly be related to tissue-specific transcription.

The size and copy number of mIID transcripts appear to be
the same as those reported for hIID (21, 22). As suggested for
hIID (22), the present analysis with a conserved C-terminal probe
indicated a single TFIID gene in the haploid mouse genome.
However, the Southern analysis revealed not only one major
signal but several minor signals that most likely represent unique
DNA sequences. These minor bands may reflect intron-containing
(interrupted) genomic DNA fragments which hybridize only
weakly with the probe. Alternatively, the minor bands may reflect
TFIID-related sequences in the mouse genome. Consistent with
the latter possibility, the variant TFIID species in plants arise
from at least two TFIID genes with closely related but distinct
nucleotide sequences (17). The clarification of this issue will
require isolation of the corresponding genomic DNA fragments.
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