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Abstract
Cells convey information about their extracellular environment to their core functional
machineries. Studying the capacity of intracellular signaling pathways to transmit information
addresses fundamental questions about living systems. Here, we review how
information-theoretic approaches have been used to quantify information transmission by
signaling pathways that are functionally pleiotropic and subject to molecular stochasticity. We
describe how recent advances in machine learning have been leveraged to address the
challenges of complex temporal trajectory datasets and how these have contributed to our
understanding of how cells employ temporal coding to appropriately adapt to environmental
perturbations.

Keywords: information processing, immune responses, mutual information, machine
learning, cellular signaling, regulatory dynamics

(Some figures may appear in colour only in the online journal)

1. Introduction

Cells are capable of sensing changes to their external envi-
ronment and adapting their functions appropriately, a process
known as cellular decision-making [1, 2]. This involves the
transmission of information gathered by molecular sensors or
receptors through biochemical signaling pathways that can
be functionally pleiotropic [3, 4]. Signaling transduction is
also subject to stochastic noise that affects molecular activi-
ties and mediates biological information transfer [5–9]. Cells
may evolve to fine-tune noise levels to maximize informa-
tion transmission [10], to distinguish stimulus conditions with

∗ Authors to whom any correspondence should be addressed.
Corresponding editor: Dr Jose Onuchic.

specificity [11, 12], or to allow for a degree of indetermi-
nacy in decision-making within a population in a physiological
strategy referred as bet-hedging [13]. An accurate quantifi-
cation of the information flow within living systems is crit-
ical for characterizing such cellular behaviors and how their
decision-making plays a role in physiology and pathology.

At a conceptual level, ‘information’ is a quantification on
the amount of uncertainty. To formally quantify information,
information theory was originally developed for the digital
information transmitted through noisy channels [14]. Then,
studies of electrical dynamics in neurons pioneered the appli-
cation of information theory to biological systems [15–19].
Quantitative investigations addressed the information trans-
mitted by neural spike trains elicited by the stimulus [20, 21]
and the information encoded in temporal patterns of firing [22].
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Inspired by these studies, information-theoretic approaches
have further been applied and adapted to study intracellular
signaling processes [23, 24] of immune cells responding to
noxious substances [25, 26].

For intracellular signaling, identifying signaling chan-
nels requires careful biological measurements to classify the
groups of signaling molecules as pathways [4]. Thus, the term
‘signaling channel’ needs to be accompanied by particular sig-
naling molecules or defined by having separate time scales.
By viewing biochemical signaling as an information chan-
nel, the sender is usually regarded as an environmental stimu-
lus that is perceived by a receptor or sensor molecule. What
is considered as the receiver, however, varies among stud-
ies and depends on what the experimental approach actually
measures. Some studies measure the activities or subcellular
localization of major signaling molecules, others measure the
stimulus-induced expression of genes, and others measure cel-
lular scale responses such as growth, division, movement, or
death. Recent progress in measuring gene expression and sig-
naling activities in individual cells [27] enables a quantitative
investigation of intracellular information transmission based
on experimental data. Information-theoretic analysis of such
data may be used to quantify the extent of stimulus discrimi-
nation by the cell [28], as a focused biological problem of this
review.

Among the many information measures, mutual informa-
tion (equation (3)) is a special one with important properties.
It is a measure of correlation satisfying a set of requirements
in Shannon’s theory [29]. When the measured variables are
nonlinearly correlated, computing mutual information is still
convenient. In addition, mutual information provides a likeli-
hood for model inference [30]. This is especially useful when
writing a likelihood function is hard, as prevailing in bio-
logical systems, where the intervening steps between mea-
sured species typically do not have quantitative models. For
the stimulus discrimination process, mutual information has a
clear biological meaning (box 1); specifically, it indicates the
amount of stimulus that cells can effectively discriminate by
the intracellular signaling. Thus, mutual information is a major
quantity to be reviewed.

Information-theoretic approaches are data-driven and
involve a statistical estimation of the probability and entropy
of the data. However, accurate estimation is hindered by some
of the following properties of data. First, signaling-response
data may be high dimensional, especially when based on imag-
ing methods. Second, regulatory networks [31] of signaling
molecules are capable of complex temporal patterns due to
interdigitated feedback loops. Third, the data are affected by
multiple sources that cause variability: preexisting biologi-
cal heterogeneity within the population of cells, stochastic
molecular noise that affects the signaling process, and tech-
nical imperfections in measurements. These make the estima-
tion of the biologically relevant effective information capacity
challenging.

Recent works have shown that these challenges can be
approached by machine-learning approaches, where a class

of models are trained by data to recognize patterns in the
data, to infer probabilities and to inform the way unseen
data are treated. In recent decades, machine learning has had
great success in image classification, speech recognition, and
more [32–35]. Machine-learning models use labeled data,
known as training data, to learn the complex distribution of
data. The model can also cluster training data into differ-
ent categories, classify new data that are not seen during
training to the corresponding category, and assign an accu-
rate probability to new data when given a sufficient amount
of training data. Among the many applications of machine
learning, two specific tasks related to intracellular informa-
tion processing include pattern classification and time series
analysis.

First, for pattern classification where a specific number of
potential answers exist and training data have been labeled,
a machine-learning model can be trained to correctly classify
unseen data. An example is the MNIST dataset of handwritten
digits, where the trained model, such as a deep neural net-
work [33], performs well on the task of recognizing new digits.
Second, time series analysis aims to extract meaningful statis-
tics from the time series data, including stock prices, climate
change, and speech. Machine-learning models such as recur-
rent neural networks [36, 37], a class of neural networks where
connections between nodes form a temporal sequence, are able
to exhibit temporal dynamical behavior, learn the patterns in
the time series data, and further predict future values, known
as time series forecasting.

The machine-learning approaches for the above two tasks
are applicable for evaluating the information content of single-
cell signaling response data. The pattern classification may
classify distinct single-cell signaling responses when cells
encounter different ligands or concentrations of the same lig-
and [11]. The trained model is then used to classify the mea-
sured signaling responses from unknown stimulation condi-
tions. The truth table of the classification enables us to esti-
mate the intracellular information transmission. In addition,
since the signaling processes happen in a time course, time
series analysis is helpful to extract biologically meaningful
statistics from the measured data and evaluate the information
transmission over time.

Extending these approaches of machine learning to intracel-
lular signaling, the past five years have seen new advances both
in theory and in application. Although previous reviews have
described studies of intracellular information processing [24,
30, 38, 39] and specific applications in immuno-oncology [40]
or other biological problems [25, 41, 42], the new advances
have yet to be summarized and put into context. Here, we sum-
marize the foundational work on information-theoretic quanti-
ties and then describe recent advances in leveraging mathemat-
ical modeling and machine-learning approaches to quantify
information transmission via biochemical signaling pathways
(figure 1). A summary of data sources (table 2) and exist-
ing numerical packages (box 2) to estimate the information-
theoretic quantities is provided to help interested readers learn
more and contribute to this field.
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Figure 1. A summary on the major ingredients of information-theoretic approaches to be reviewed. (a) A schematic figure of the biological
question of transmitting environmental information through intracellular signaling. (b)–(e) We summarize the ingredients of quantitatively
studying information transmission: (b) the information metrics, (c) the mathematical models, (d) the data sources, and (e) the data-driven
approaches, which are further categorized as traditional statistical approaches and more recent machine-learning based methods. Each of the
topics will be covered in the following sections.

2. Foundational work on information theory for
intracellular signaling

We begin with an overview of the fundamental information-
theoretic quantities (table 1). First, we list the basic definitions
in information theory [45], which have also been summarized
in past reviews [40, 51]. We also review mathematical mod-
eling to study intracellular information processing, where the
model can also be used to generate data for the data-driven
approaches of quantifying intracellular information transmis-
sion. Thus, the survey of this section on the basic qualities and
mathematical modeling prepares us to review the data-driven
approaches in the next sections.

2.1. Basic definitions of information quantities

Shannon entropy. Historically, four major types of entropy
have been formulated, each of which provides a way of under-
standing the probabilistic nature of random variables. First,
originating from the understanding of gas laws in the mid-
1800s, Clausius introduced the concept entropy as the ratio
between heat and temperature [52]. Second, based on the
frequentist view of probabilities, Boltzmann formulated the
entropy with maximum multiplicity of the macroscopic states
[53] to obey the second law of thermodynamics at equilib-
rium, justifying the Maxwell–Boltzmann distribution [54].
Gibbs further developed this formulation as an ensemble of
options [55]. Third, following Shannon’s information theory
[14], Jaynes reframed statistical thermodynamics as inferences
with the least possible bias under limited data [29]. Fourth,
Shore and Johnson proved the principle of entropy maximiza-
tion as requirements to be satisfied by any distribution function
[44]. We refer readers to [56, 57] for more detailed discussions.

We start with the formulation of entropy in Shannon’s the-
ory, as it is more appropriate to provide biologically sound
interpretations for the major information measure of this
review, the mutual information introduced below. The Shan-
non entropy [14] for a discrete random variable x with possible
states X and a discrete probability distribution P(x) is defined
as:

H(X) = −
∑
x∈X

P(x)log2 P(x). (1)

Shannon entropy has a close connection to statistical
physics [29], providing a likelihood for inference on models
given data. Examples of such inferences in quantitative biol-
ogy include the protein 3D structure from genomic sequences
[58, 59], the prevalence landscape of mutated viral sequences
[60], and the diversity of the antibody sequence repertoire [61].

Differential entropy. For a continuous probability density
p(x), the Shannon entropy is defined as differential entropy
[45]:

Hdiff(X) = −
∫ +∞

−∞
dx p(x)log2 p(x). (2)

The estimate of entropy depends on estimating the probabil-
ity distribution. One typically uses the frequency from finitely
measured samples as an estimate of the probability to calculate
the entropy of the probability distribution. Such an estimation
of probabilities leads to an error in calculating the entropy,
which is proportional to the number of states and scales as 1
over the sample size [30].

Given N finite data, the cumulative probability distribution
in the prefactor of equation (2) can be approximated by its sam-

pling frequency [62]: Hdiff(X) = −
∑N

j=1 δ j log2 p
(
x j

)
, where

δ j is the frequency of observing the jth event. When the num-
ber of sampled data is infinitesimal compared with the number
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Table 1. The fundamental information quantities useful for intracellular information processing. The three categories of information
metrics: the basic definitions in information theory, the pointwise information measures, and the trajectory-wise measures.

Information quantities Mathematical definition References

Shannon entropy, differentiational entropy H(X) = −
∑

x∈X
P(x)log2 P(x), [14]

Hdiff(X) = −
∫ +∞
−∞ dx p(x)log2 p(x)

KL-divergence DKL(P‖Q) =
∑

x∈X
P(x)log2[P(x)/Q(x)] [43]

Cross entropy CE(P‖Q) = DKL(P||Q) + H(P) [44]
Mutual information, channel capacity I(Y; X) = H(Y) − H(Y|X), [45]

Imax(Y ; X) = max
PX (x)

I(Y ; X)

Transfer entropy TX→Y = H
(
yn|yn−1

)
− H(yn|yn−1, xn−1) [46]

General information metric for two timepoints ci
(

xi → y j
)
= min

q(xi, j,yi, j)
DKL[p(xi, j, yi, j)‖q(xi, j, yi, j)] [47]

(integrated information, stochastic interaction)
Trajectory entropy H(y1:n) = −log2 p(y1:n) [48]
Mutual information in trajectory space I(Y1:n; X) = H(Y1:n) − H(Y1:n|X) [49]

Mutual information rate in Fourier-frequency space IR(x1:n; y1:n) = − 1
4π

∫∞
−∞dω ln[1 − |Sxy(ω)|2

Sxx (ω)Syy(ω) ] [50]

of total configurations, the sampling frequency δ j can be cho-
sen as uniform for each sampled event, δ j = 1/N, giving an
averaged entropy (Boltzmann entropy−log2 p

(
x j

)
for the con-

figuration x j) of the finite samples. When the sampled data
are sufficient to cover the frequent configurations of the full
probability distribution, the averaged entropy from the samples
approximates the entropy of the full distribution. This approx-
imation was found useful to produce an accurate estimation of
the mutual information of intracellular signaling [62].

Kullback–Leibler (KL)-divergence. For two discrete prob-
ability distributions P(x), Q(x), the KL-divergence [43]
DKL(P‖Q) =

∑
x∈XP(x)log2[P(x)/Q(x)] quantifies the dis-

similarity between the two distributions. The KL divergence
is also named the relative entropy. As a symmetrized KL
divergence, the Jensen–Shannon divergence plays a simi-
lar role in measuring the similarity between two probability
distributions. The divergence can be used to quantify the
similarity between the data distribution and the distribution
generated from the model in various scientific disciplines.
In biology, it has been applied to quantify distributional dis-
similarity, including that between genes in tumors and healthy
samples [63] and that between transcriptional states of T
lymphocytes [64].

Cross entropy. The cross entropy [44] for discrete prob-
ability distributions is CE(P‖Q) = DKL(P||Q) + H(P), where
H(P) denotes the entropy of the probability distribution P as in
equation (1). It quantifies the information across the two proba-
bility distributions, which is extendable to the continuous case
similarly to the differential entropy. Cross-entropy between
distributions of data and models may serve as a loss function
in machine learning. Its application in biology is similar to the
KL divergence.

Mutual information. Given another random variable y with
possible states Y, the mutual information [45, 65, 66] between

the two random variables is:

I(Y; X) = H(Y) − H(Y|X), (3)

where the conditional entropy H(Y|X) = −
∑

x∈X,y∈Y P(x, y)
log2[P(x, y)/P(x)]. Mutual information quantifies the mutual
dependence between the random variables, i.e., the amount of
information about one random variable through observing the
other. It being zero is equivalent to the two random variables
being independent.

Mutual information is symmetric and represents the cor-
relation of two variables, which is termed ‘cooperativity’ in
physical biochemistry. In practice, one usually cares about the
maximum mutual information (channel capacity), and maxi-
mization is conducted for only one variable, such that the inter-
pretation becomes asymmetrical. The maximization is done by
inferring the probability distributions from limited data under
certain constraints, such as the probability normalization con-
dition. Thus, mutual information is closely related to the type
of entropy formulated by Jaynes [14, 29].

In addition, mutual information can also be regarded as a
KL divergence between the conditional distributions and the
prior distribution PX: I(Y; X) = EY[DKL(PX|Y |PX)], where EY

is the expected value over the random variable Y. That is,
mutual information is the expectation of the KL divergence of
the univariate distribution PX from the conditional distribution
PX|Y given Y. The more different the two distributions are on
average, the greater the information gain.

The mutual information is widely useful. It helps disen-
tangle interactions between a system’s internal variables and
their coupling to changing environments [67]. It has also been
extended to various contexts, for example, the renormalized
mutual information for continuous variables with a deter-
ministic dependence [68]. More importantly, it is the mutual
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information rather than the entropy that is more often used as
a likelihood for the model inference [30, 65].

Channel capacity. Channel capacity is obtained by maxi-
mizing mutual information between the input and output dis-
tributions PX(x) and PY(y), which measures the rate at which
information is transmitted over a communication channel. The
maximum mutual information is formally obtained as:

Box 1. The formulation of mutual information applied to
stimulus discrimination via intracellular signaling.
Mutual information for stimulus discrimination. Despite the inter-
est in noise [5–8], mutual information serves as a fundamen-
tal quantity to understand information processing in biology [69]
and has been widely used in biological systems [24, 30, 38].
For example, mutual information leads to a method to cluster
genes [70], reconstruct the network of gene interactions [71], and
quantify strengths of the influence between proteins [72].
For the focus of this review, intracellular signaling process, mutual
information can be employed to measure the stimulus discrimina-
tion by signaling responses, where one random variable is the cate-
gorical stimulus set and the other is a set of the signaling responses
under each stimulus. Specifically, the mutual information between
M conditions chosen in an experiment as the stimuli set (S) and the
signaling responses set (R) is:

I(R; S) = H(R) − H(R|S), (5)

where H(R|S) and H(R) are the conditional and unconditional
entropy from the definition in equation (3). The mutual informa-
tion between the extracellular stimulus conditions and the intra-
cellular signaling responses quantifies the amount of information
about the stimulus conditions (identity and dose).
Channel capacity of intracellular signaling channels. With
the probability distribution of the M stimulus conditions q =
{q1, q2, . . . , qM}, the maximum mutual information is obtained by
maximization with respect to this probability distribution:

Imax(R; S) = max
q

I(R; S), (6)

under the constraint of q1 + q2 + · · ·+ qM = 1 and qi � 0. The
maximization is useful especially when the stimulus distribution is
empirically unknown. This is a Bayesian approach [30], where the
prior for the probability distribution is typically assumed uniform,
as uniform priors seem especially effective [19, 73].
The maximum mutual information depends on the stimulus con-
ditions under consideration: if M distinct conditions were con-
sidered, perfectly transmitted information leads to log2 M bits,
corresponding to the prior of a uniform distribution. A smaller
value implies that the cells cannot fully discriminate the stimuli
via the signaling response. With increased stimulus conditions in
an experiment, the maximum mutual information approximates to
the channel capacity through the signaling molecules. In addition,
mutual information in trajectory space I(R1:n; S) can be formulated
similarly, where signaling responses are time series data. The max-
imization in Imax(R1:n; S) can be conducted by using data up to the
timepoint n, which quantifies the maximum extent of information
transmission cumulatively.

Imax(Y; X) = max
PX (x)

I(Y; X), (4)

where the maximization is with respect to the input marginal
distribution PX(x).

Mutual information and channel capacity are essential to
quantify the stimulus discrimination process by intracellular
signaling (box 1). Therefore, estimating the probabilities from
limited measurements requires dedicated approaches, which
will be elaborated in the next sections.

2.2. Pointwise information measures

We now review the pointwise information measures and mea-
sures that consider two consecutive timepoints. We denote two
time series (trajectories) by x1:n, y1:n, where the subscript rep-
resents the timepoints, 1 to n. The dynamics of the time series
can be incorporated by the transition probabilities, i.e., the con-
ditional probabilities of the time series. For clarity, we consider
a system with the Markov property: the conditional probabil-
ity p(xn|x1:n−1) = p(xn|xn−1). The information measures can
be extended to the case of a stationary Markov process with
higher order, i.e., longer memory.

Transfer entropy. Given the transition probabilities, the
transfer entropy [46] measures the amount of directed
transfer of information between two time series, which can dis-
tinguish the driving and responding elements. It is defined as
follows:

TX→Y = H
(
yn|yn−1

)
− H(yn|yn−1, xn−1), (7)

TX→Y = H
(
yn|yn−1

)
− H(yn|yn−1, xn−1), where the conditional

entropies are for the time series. Transfer entropy is a con-
ditional mutual information TX→Y = I(yn; xn−1|yn−1), which
has the history of the variable yn−1 in the condition.
Transfer entropy is a finite version of directed information
[74]. Restricted directed information was used to infer the
causal relation between genes from single-cell RNA (scRNA)
sequence data [75]. Similarly, for a single time series, the
excess entropy [76] measures the amount of uncertainty in the
future explained by the past information.

General information metric for two timepoints. The
strength of causal influences for two timepoints i, j between
two time series x1:n, y1:n can be demonstrated by a uni-
fied framework of information measures [47]. To derive
the framework, the authors approximated the joint probabil-
ity distribution p(xi, j, yi, j) by another probability distribution
q(xi, j, yi, j). The causal influences between two time series
ci(xi → y j) can be quantified by minimizing the KL diver-
gence between the two probability distributions p(X1:n, Y1:n),
q(X1:n, Y1:n):

ci
(
xi → y j

)
= min

q(xi, j,yi, j)
DKL[p(xi, j, yi, j)‖q(xi, j, yi, j)], (8)
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under the constraint of the Markov condition: q (xi, y j|yi) =
q(xi|yi)q (y j|yi) [47]. Note that here the two timepoints are
denoted by the subscript, whereas it is denoted by x, y in
[47]. This general information metric can be reduced to var-
ious information measures [77], including mutual information
and transfer entropy. It also generates integrated information
[78] that quantifies the extent of synergistic causal influences
between the two series and the stochastic interaction [79] that
measures the mixed strength of causal and simultaneous influ-
ences. We expect that it will have applications in understanding
the full information transfer between two dynamical variables
of biological systems.

2.3. Trajectory-wise information measures

The above measures do not estimate the mutual informa-
tion from an entire trajectory. To this end, the trajectory-wise
information measures will be covered as follows.

Trajectory entropy. Given the trajectory’s probability
p(y1:n) for the observed trajectory y1:n, the trajectory entropy
for each single trajectory is given by [48]:

H(y1:n) = −log2 p(y1:n). (9)

The trajectory entropy is for a single trajectory, rather than
the average on the trajectory ensemble [80]. The trajectory
entropy was originally formulated for mesoscopic nonequi-
librium systems [81]. Based on the trajectory entropy, a set
of thermodynamical quantities can be formulated [56, 82]. In
addition, the principle of maximum caliber [56] extends the
principle of entropy maximization to trajectories, and thus the
maximization with respect to trajectories can be conducted in
a similar procedure.

The trajectory entropy itself may be a stochastic quantity,
and different experimental realizations lead to different distri-
butions of the trajectory entropy. However, when the exper-
imental condition is fixed and only repeated measurements
are conducted, the entropy’s distribution is fixed and should
be fully determined by a fixed distribution of the trajectory
probability. Each trajectory configuration has a probability and
an entropy value. In this case, the trajectory entropy can be
inferred in the same way as the entropy for static variables,
and the concept of information is defined similarly.

The probability of trajectory is not well defined mathemat-
ically in continuous-time space because the trajectory config-
urations are infinite and the total probability volume is infi-
nite. Thus, discrete time is required to rigorously define the
probability space. In practice, one can use the frequency of
the trajectory with discrete time and finite state as an esti-
mate of the probability and employ the differential entropy
equation (2) to approximate the averaged trajectory entropy for
an ensemble of trajectories. For example, the probability can
be calculated by inferring a stochastic model from the data
of signaling responses and is useful to quantify the mutual
information from the time series data of intracellular signaling
responses [49].

Mutual information in trajectory space. In trajectory space,
mutual information can be formulated as in [49, 83]. We con-
sider the mutual information between the input set (X) and the

output trajectory set (Y1:n), where n = 1, 2, 3, . . . denotes the
timepoint. Up to each timepoint n,

I(Y1:n; X) = H(Y1:n) − H(Y1:n|X), (10)

where H(Y1:n|X) and H(Y1:n) are the conditional and uncon-
ditional trajectory entropy based on equation (9). When the
trajectory probability is generated from a dynamical model,
the probability depends on the dynamics. Then, the trajec-
tory entropy and the mutual information also depend on the
dynamics, such that the information embedded in dynamical
patterns of trajectories can be revealed by this mutual infor-
mation. The maximization for I(Y1:n; X) is done at each time
point, which is a quantification of the maximum extent of
distinguishing the stimuli cumulatively (see subsection ‘the
stochastic model-based method’).

Mutual information rate in Fourier-frequency space. The
mutual information rate at which the information between
trajectories increases with time has been formulated in
the Fourier-frequency space [50, 84]. The authors consid-
ered two ensembles of time series at steady state with
each obeying Gaussian statistics. The coupling between
ensembles can be linearized. Under the assumptions, the
joint probability distribution of the two series fluctuates
around the steady state mean values, and x1:n, y1:n is given
by ρ(z) = exp(−vTZ−1v/2)/[(2π)N |Z|1/2], where the vector
z
.
= (x1:n, y1:n). The covariance matrix Z has the matrix blocks

Cxx , Cxy, Cyx , Cyy, where each is defined as Cxx
i j = 〈xix j〉 with

〈〉 denoting the noise average.
In the continuous-time limit at a fixed time interval, the

mutual information rate between the two trajectory ensembles
IR(x1:n; y1:n)

.
= limn→∞ I(x1:n; y1:n)/n is calculated as:

IR(x1:n; y1:n) = − 1
4π

∫ ∞

−∞
dω ln

[
1 − |Sxy(ω)|2

Sxx(ω)Syy(ω)

]
, (11)

where Sxx(ω), Sxy(ω), Syy(ω) is the power spectrum from the
Fourier transform of Cxx , Cxy, Cyy. The mutual information rate
reveals the information transmission from the ligand concen-
tration to the flagellar motor in the chemotaxis network of
Escherichia coli [50].

2.4. Information theory to intracellular signaling with
mathematical modeling

With the above information quantities, information transmis-
sion through signaling networks has been characterized with
the help of mathematical models. A number of mathemat-
ical models have been constructed to model signaling net-
works [31] and analyze the information flow in the networks
[85]. More specifically, the information flow was estimated in
models of gene regulation [26, 86–88]. Optimal information
processing strategies have been studied in different network
topologies of gene regulation [89–95] using the data on noise
levels of gene expression [10]. Information transmission in the
MAPK/ERK pathway [96] and in the bacterial quorum sens-
ing signaling network [97] was analyzed. The channel capac-
ity was calculated from a discrete-time Markov model on the
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signaling transduction [98], and the mutual information was
evaluated through chemical reaction networks [99–101].

In addition to quantifying information transmitted through
one signaling molecule, the information flow through shared
network components for multiple inputs and outputs was stud-
ied in interferon signaling [102] and with a Boolean network
of fibroblast signal transduction [103]. The contribution of
duplicated components in the signaling pathway to channel
capacity was investigated [104]. Information transmission was
found to be maximized by synergistic control in noisy gene
regulatory networks [105]. The information transfer between
dynamical system components was formulated for both con-
tinuous and discrete systems [106], as well as stochastic
dynamical systems [107, 108], where noise was tuned to
improve information transmission [109]. Furthermore, infor-
mation theory was used in deterministic dynamical systems
to infer the structure of signaling networks [110]. The decod-
ing of signaling information to determine downstream gene
expression was explored [111, 112].

3. First data-driven approaches of information
theory to intracellular signaling

Henceforth, we focus on the mutual information between the
extracellular stimulus conditions and the intracellular single-
cell signaling responses, which provides an estimate of the
amount of information about the stimulus identity and dose
(box 1). We mainly review the methods using single-cell mea-
surements of signaling molecules by live-cell imaging, as it
provides real-time tracking of the signaling activities that are
crucial to quantify information transmission.

In this section, we review the first set of data-driven
approaches in historical developments. The prominent sta-
tistical approaches in quantifying information transmission
from the live-cell imaging data are listed in figure 2. A
pioneering work employed a single-timepoint measurement
[113, 114] (time-point method). A second approach [62] eval-
uated the information encoded in the signaling time course
from the multivariate measurement (vector method), includ-
ing a further extension by considering dynamical features of
the signaling responses [115]. Extracting information trans-
mission from long time series of signaling responses requires
alternative approaches, which will be reviewed in the next
section.

3.1. The time-point method

As a pioneering work in quantifying information transmis-
sion from measured single-cell signaling activity, the authors
in [113] estimated the mutual information and channel capac-
ity at a single timepoint. At each timepoint, the data from
single-cell measurement under one stimulus condition led to
a distribution of signaling activity across cells, and the dis-
tributions under various stimulus conditions provided mutual
information for stimulus discrimination.

The estimated mutual information is affected by noise
[28, 116] and the feedback of regulators [114, 117–119]. The
analysis has been extended to multiple signaling molecules,

enabling the noise decomposition of biochemical signaling
networks [120]. For measurements at multiple timepoints, the
method is applicable to each timepoint separately, without tak-
ing into account the time course of signaling responses. Thus,
the information transmission over a time course through the
signaling molecule may be lost.

3.2. The vector method applied to measurements

Remarkable progress was made in [62] to quantify the
information transmission over the time course of signaling
responses. The method treated the time series data from each
single cell as a multivariate vector and used the k-nearest
neighbor to estimate the probability of the time series [121,
122]. The performance of the k-nearest neighbor estimator
depends on the metric of the distance and the value of k
[123], which may need to be fine-tuned for each dataset.
The error bars and bias of this estimated mutual information
were evaluated [124, 125], and the accuracy was improved
by kernel estimation [126]. Furthermore, information
was coded by a combination of time series and molecular
species [127].

Although the method can evaluate the information of the
time course, the current limitation on the number of cells from
live-cell imaging data restricts the length of the time course
for an accurate estimation. As sampling the vectorial distri-
bution suffers from a combinatorial explosion, the estimation
becomes inaccurate when the number of timepoints increases
over ∼10 timepoints [49]. In addition, treating the time series
as vectors makes the density estimation independent of the
ordering of timepoints and thus does not distinguish dynamical
patterns encoded in the time series.

3.3. The vector method applied to dynamical features

The dynamical features of the temporal signaling responses
transmit information [128], such as through amplitude and fre-
quency regulation of transcription factor activity [129]. Infor-
mation transmission via the dynamical features of signaling
responses has been quantified [115] (figure 3). The effect of
representative features has been analyzed by adding one or
a few features [130]. By adding dynamical features simul-
taneously, more information encoded in the trajectories was
extracted [115]. This analysis uncovers the most informative
features that optimize stimulus discrimination. Note that cal-
culating each dynamical feature is subject to noise, which may
alter the estimation of mutual information.

4. Recent approaches for estimating information
transmission

To extract the information transmission from the long time
course of the signaling responses [131–134], recent works
have employed machine-learning methods. Below, we review
three representative examples. They include the decoding-
based approach [130] that uses the machine-learning clas-
sifier, the statistical learning-based method using logistic
regression, and the stochastic model-based method which
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Figure 2. The approaches for estimating information transmission by using single-cell signaling responses. (a) A schematic figure on using
the single-cell live imaging measurement on signaling responses to calculate mutual information, which quantifies the stimulus
discrimination. (b) A schematic on the methods of using (upper) a single-timepoint data, (middle) a few timepoints, and (below) long time
series. Reproduced from [49]. CC BY 4.0.

Figure 3. The vector method with dynamical features on estimating information transmission. (a) A library of dynamical features was
calculated for the long time series data of NFKB signaling responses. (b) The channel capacity was evaluated by the k-nearest neighbor
estimation on the most informative dynamical features, for all stimuli and for different doses of one stimulus, as indicated. (c) The protocol
of searching for the most informative combination of features. Reprinted from [115], Copyright (2021), with permission from Elsevier.

employs the hidden Markov model. In each case, the machine-
learning methods help estimate the probability and informa-
tion from the time series data. A comparison of the data-driven
approaches is provided in the end.

4.1. The decoding-based approach

One approach used a machine learning decoder to calculate the
mutual information [130] (figure 4). This method first trained
a classifier given the time series of signaling responses under
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Figure 4. The decoding-based approaches to calculate the mutual information from time series of signaling responses. (a) The measured
signaling responses under various stimulus conditions are used as the training data and the test data. (b) A classifier is trained by the training
data and used to recognize the stimulus condition for the test data. (c) The truth table by the classifier gives an estimated lower bound on the
mutual information for the stimulus discrimination. Reproduced with permission from [130]. © PNAS.

Figure 5. The SLEMI. (a) A schematic figure for the probabilities of discriminating two inputs. The input distribution P(X) and
the conditional output probabilities P(Y |X) lead to the conditional input distributions P(X|Y) by Bayes formula. (b) and (c)
Information-theoretic analysis of NFKB signaling responses to the TNFα stimulus. (b) The channel capacity as a function of time by
using a single-timepoint data individually and time series. (c) The probabilities (color filled fraction of the circle marks) of correct pairwise
discrimination between TNFα concentrations for the 21 min responses and time series. See a full description on the figure and symbols in
the original paper. Reproduced from [125]. CC BY 4.0.

each stimulus condition and used the classifier to separate new
data of signaling responses into the group with the best match.
It provided a lower bound on the mutual information, and the
deviation depended on the accuracy of the classifier. When
classifiers employ linear principal components, they may be

inadequate for discriminating oscillatory and nonoscillatory
trajectories. To overcome this issue, various machine-learning
models, such as neural networks, can be used for classifiers
to improve estimates [99]. In addition to the lower bound, an
upper bound on the mutual information was derived [135].
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The classifier can also use the most informative fea-
tures to discriminate stimulus conditions, where the top-
ranked features termed signaling codewords are identified by
information-theoretic analysis [115]. The codewords were fur-
ther used to construct a decision tree to classify the stimulus
conditions binarily by specific dynamical features. In addi-
tion, the dynamical signaling patterns to realize the optimal
transmission of information were obtained by optimal control
theory [136].

4.2. The statistical learning-based method

As an efficient method, a statistical learning-based estima-
tion of mutual information (SLEMI) was proposed in [125,
137] (figure 5). The method is applicable to high-dimensional
time series of signaling responses, without restriction on the
number of timepoints. The numerical package [125] enables
a broader use to various datasets, generating mutual informa-
tion, channel capacity and probabilities of correct pairwise
discrimination. SLEMI used a Bayesian framework based on
logistic regression to estimate the probabilities of stimuli given
measured trajectories. As logistic regression assumes a lin-
ear fitting on the trajectories to calculate the ratio of the tra-
jectory probabilities between stimulus conditions, it is not
clear whether this approach can fully account for the complex
dynamical patterns of observed signaling trajectories, such as
oscillatory behavior [115, 138]. Thus, the estimated mutual
information could be less accurate when applied to complex
trajectories, where logistic regression may be replaced by a
more advanced Bayesian classifier [125].

4.3. The stochastic model-based method

Inspired by the trajectory entropy defined along a single trajec-
tory [81], the data can be viewed from the trajectory perspec-
tive. Then, stochastic dynamical models, such as the hidden
Markov model that was used for speech recognition [139],
can be applied to learn and reproduce the time course of
the signaling responses [49] (figure 6). The hidden Markov
model (or the time-inhomogeneous Markov model) captures
the time-inhomogeneity of the trajectories and represents the
trajectory ensemble with approximately 80% accuracy. The
model further generates trajectory probabilities to calculate
mutual information. The limited number of measured cells and
timepoints in live-cell imaging may alter the accuracy of the
model training and the subsequent mutual information
estimation.

This framework provides an estimate of the informa-
tion encoded in the signaling dynamics over time. The
estimated information accumulation over time reveals the
temporal ordering of the discriminating different stimuli
and may decrease when the stimuli induce similar signaling
responses in a certain time regime that diminish the extent
of the stimulus discrimination. It also indicates the tempo-
ral phases of information transmission that can be mapped to
the functionality of the regulatory circuit and the amount of
information accumulation available to immune response genes
[49].

4.4. A comparison of the data-driven approaches

Applying each of the approaches above to the NFKB signal-
ing responses under 13 different immune stimulus conditions
characterizes their properties (figure 7). All the methods give
the maximum mutual information of approximately 1–2 bits,
smaller than log2 13 ≈ 3.7 bits under perfect transmission. The
loss of information may be caused by molecular noise in sig-
naling responses. For each method, the mutual information
calculated from a single timepoint [113] ignores the informa-
tion from time courses. The vector method [62] is ineffec-
tive when there are more than approximately 10 timepoints
because it becomes inaccurate to sample the vectorial distribu-
tion from the measured data. Both methods do not distinguish
the dynamical patterns with timepoints aligned properly.

The decoding-based method may not fully count the infor-
mation over long time courses, as mutual information esti-
mates are saturated after a handful of measurements. This
can be improved with the performance of the classifier [99]
and by using the optimal input distribution instead of the uni-
form distribution [130]. The random permutation of timepoints
does not significantly alter the estimation, indicating an incom-
plete discrimination of the dynamical patterns of signaling
responses and a lack of tracking information over time. Thus,
the scope of applying the decoding-based method depends
on the complexity of the time series and the quality of the
accessible classifiers.

Both the SLEMI [125] and stochastic model-based method
give increasing mutual information, implying distinct tem-
poral patterns of signaling responses at all times, as consis-
tently observed in the data [49]. After the random permutation
of timepoints, the mutual information from the two methods
decreases, corresponding to the information under the gen-
uine order of timepoints where the distinct stimuli become less
distinguishable. The stochastic model-based method provides
continuously increasing mutual information over time, even
after the random permutation of timepoints, as permuted sig-
naling responses have persistent differences in response ampli-
tudes [49]. However, mutual information, such as in the early
time regime, may be underestimated if the searched optimal
number of parameters has an underestimation or the stochastic
model does not accurately learn the dynamics.

5. Outlook

We have reviewed studies on quantifying the information
transmission of intracellular signaling with the aid of math-
ematical modeling and machine learning. Several outstanding
questions are guiding current and future studies.

To improve the quantification of information transmis-
sion, advanced models of machine learning [32, 34] may be
employed to learn the time course of signaling responses with
higher performance. They may also enable the extraction of
diverse useful information from the time series. Specifically,
the recurrent neural network [36, 37, 140] has achieved great
success in learning the dynamics of time series. The trans-
former with an attention-based architecture [141] performs
well in learning complex time series because it can capture
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Figure 6. Quantifying the dynamical mutual information by using the stochastic models. Stochastic models such as the hidden Markov
model can be used to learn the signaling dynamics, reproduce data, infer the trajectory probabilities, and evaluate the mutual information.
(a) The stochastic models to learn the data. (b) The evaluation on the model performance when identifying the proper number of parameters.
(c) The procedures on calculating the mutual information from the trained stochastic models. (d) The estimated mutual information encoded
in dynamics reveal the temporal ordering of discriminating certain stimuli pairs. Reproduced from [49]. CC BY 4.0.

Figure 7. A comparison on the data-driven approaches for time series data. The data is the NFKB signaling responses under 13 different
stimulus conditions (17 conditions in total with replicates) [49]. The y-axis is labeled as ‘maximum MI’, except for the decoding-based
method providing a lower bound (y-axis is ‘MI’ without ‘maximum’) (a) The time-point method [113] and the vector method [62]. (b) The
decoding-based method [130] by using the first 10 principle components and default parameters. (c) The SLEMI [125], with parameters
‘boot_num’ = 10, ‘boot_prob’ = 0.8, ‘testing_cores’ = 4 in the numerical package. (d) The stochastic model-based method [49] with 64
hidden states and 32 emission states for the hidden Markov model. The computational time of one bootstrap for the five methods is ∼10 min,
∼1 h, ∼10 min, ∼10 min, ∼10 h on personal desktop with Intel R© Core

TM
i7-8700 CPU@3.7 GHz. Reproduced from [49]. CC BY 4.0.

long-range dependencies between input and output by design-
ing neural networks with functional gates for memorizing and
updating. The application of these models to single-cell signal-
ing responses may have a better performance in reproducing
data and predicting future responses.

In addition to information transmission by signaling
molecules in single cells, the reliability of signal transduc-
tion is affected by cell populations [142, 143]. Cell subpop-
ulations can independently transmit information that gives
graded responses to stimuli [144]. Fractional response analy-
sis by using Rényi information further reveals that changes in
fractions of cells under various response levels scale linearly
with the log of the cytokine dose [145]. It is also attractive
to quantify the information content of the signaling process
in more realistic contexts [146], such as under mixed natural
signals. The mutual information estimates under time-varying
signals reveal the information flow when cells are subject to
environmental changes [99, 147]. The information flow can

be optimized by controlling the environment via reinforce-
ment learning [148], which models how agents take action
in an environment to maximize a cumulative reward, such as
the information gain. In addition, the positional information
from the spatially distributed signaling molecules has been
evaluated by mathematical modeling [149, 150] and by con-
structing the decoder [151]. Quantifying the information trans-
mission over large spatial and long time scales [152] awaits
further developments, such as by convolution neural networks
[153].

The increase of the single-cell data would continue to moti-
vate future work of evaluating information content in a data-
driven manner, and vice versa. In addition to live-cell imaging,
applying machine-learning models to other single-cell data
would reveal more insights into intracellular information pro-
cessing. For example, the causal relation between genes has
been inferred from scRNA sequence data by using restricted
directed information [75]. Both scRNA and single-molecule
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fluorescence in situ hybridization (smFISH) (table 2) data
can measure downstream gene expression of the signaling
molecule, providing a platform to test the hypothesis on con-
veying information of the signaling molecule to gene expres-
sion [49, 112]. The autoencoder [35] may help learn meaning-
ful representations from these multigene data. Furthermore,
predictions from information-theoretic approaches [112] can
be tested experimentally by optogenetic approaches [131, 154,
155]. Such experimental setups avoid the coactivation of other,
unknown factors involved in gene expression, providing an
unambiguous way to measure information transmission by the
signaling molecule to downstream genes. Exploring the decod-
ing of the signaling information to responsive gene expres-
sion for cell fate decisions documents the actual physiologi-
cal role of estimated information quantities and reveals evo-
lutionary perspectives of cellular information processing and
decision-making.

While machine-learning approaches show promising appli-
cations in understanding living information processing, we
would like to remind ourselves that simply applying machine
learning as a tool may have limitations. As quoted from Jaynes
[156]: ‘new data that we insist on analyzing in terms of old
ideas (that is, old models which are not questioned) cannot
lead us out of the old ideas. However, many data we record
and analyze, we may just keep repeating the same old errors,
and missing the same crucially important things that the exper-
iment was competent to find. That is what ignoring prior infor-
mation can do to us; no amount of analyzing coin tossing
data by a stochastic model could have led us to discovery of
Newtonian mechanics, which alone determines those data4’.
Therefore, machine learning and information theory should
be taken as frameworks to help design the experiment, such
as mutual information, which can frame an inference problem
for modeling biological systems [30] and provide a new angle
to understand and predict biological processes beyond exist-
ing data [157]. We anticipate that the cross-feeding between
quantitative biology, information theory, and machine learning
[158] will lead to significant advances in these areas.

5.1. Sources of single-cell data

We list sources of single-cell data useful for information-
theoretic analysis, including mathematical model simulations,
scRNA sequences [159], smFISH, and live-cell imaging [160]
(table 2). In the main text, we have mainly reviewed the
approaches using live-cell imaging, but other types of data may
find increasingly important roles in future studies. See a com-
plementary review on the data source for studying intracellular
signaling [27].

Data simulated from mathematical models. To evaluate
information transmission, the simulated data of signaling
molecules can be generated from differential equations for
modeling signaling transduction [62, 109, 112]. The trajecto-
ries of chemical species were also simulated from chemical

4 We thank an anonymous reviewer for mentioning this quote.

reaction networks [99, 100, 111] by the stochastic simulation
algorithm (or the Gillespie algorithm) [161]. To generate tra-
jectories that accurately simulate the real time-course of sig-
naling activities, the mathematical model needs to be experi-
mentally calibrated and verified, which may require massive
measurements on the modeled molecules and exploration of
the model parameters [162, 163].

Single-cell RNA sequencing (scRNA-seq). The development
of scRNA-seq has increased in recent years, as it generates
the sequence profiles of all transcripts with their relative abun-
dances in single cells. However, scRNA-seq data from method-
ologies such as droplet sequencing are subject to nonnegli-
gible noise, and accurately measured genes are sparse. Thus,
the data typically need dimension reduction to generate useful
statistics and do not meet the high resolution required for the
information-theoretic approaches of quantifying intracellular
information transmission. The specifically designed measure-
ment, e.g., targeted scRNA-seq, may be more suitable, with
a tradeoff between the number of measured genes and the
control on the noise level.

In addition, scRNA-seq technologies initially measure gene
expression at individual timepoints and do not track the tran-
scriptome over time. To overcome this limitation, the pseudo-
time can be inferred to map out the trajectories (e.g., devel-
opmental trajectories of gene expression) for single cells [164,
165], with multiple-timepoint measurements [166, 167]. How-
ever, the accuracy of trajectory inferences depends on the
dynamics of gene expression [168] and needs to be veri-
fied, such as by real-time tracking. The underlying dynamical
equations governing the cell state transition can be inferred
[169], which may provide high-resolution augmentation of the
noisy distribution of signaling molecules over time to estimate
intracellular information transmission.

Single molecule fluorescence in situ hybridization
(smFISH). As an imaging-based technique, smFISH enables
the measurement of the expression of endogenous genes
from ∼10 000 cells. A recent technique (MERFISH) can
simultaneously image 100 to 1000 RNA species in single cells
[170]. Nevertheless, smFISH needs to fix the sample and only
measure it at a single timepoint, which prohibits its usage in
quantifying information transmission over time.

Live-cell imaging. Live-cell imaging is a direct method
to measure the signaling activity of living cells in real time
[62, 62, 115, 130, 133, 138, 171, 172]. The time resolution
reaches the time scale of minutes, which can continue for
days. Approximately one thousand cells were measured in
each experiment. This technique has a limitation on the num-
ber of signaling molecules measured simultaneously, which
typically allows one or two molecules to be probed to date.
Live-cell imaging and smFISH are complementary based on
their pros and cons.

5.2. Software packages

To calculate the information-theoretic quantities, a number of
software packages are available (box 2). Some of these are also
listed in [40].
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Table 2. Sources of single-cell data. Reprinted from [27], Copyright (2018), with permission from Elsevier.

Typical measurements Data from mathematical models scRNA-seq smFISH Live-cell imaging

# of cells Model-specific ∼100 000 ∼10 000 ∼1000
# of molecules Model-specific ∼10 000 ∼1000 ∼1 or 2
Timepoints vs time series Time series Timepoints Timepoints Time series

Box 2. Software packages of calculating information-theoretic
quantities for intracellular signaling.
The estimation of entropy, KL divergence, mutual Information
and channel capacity can be found in the R package (http://
strimmerlab.org/software/entropy) and the MATLAB package
(https://github.com/maximumGain/information-theory-tool).
Another Python and MATLAB packages for calculating
entropy and mutual information can be found (https://github.
com/robince). The MATLAB toolbox to evaluate the transfer
entropy are provided by (https://figshare.com/articles/code/
MuTE_toolbox_to_evaluate_Multivariate_Transfer_Entropy/
1005245) and (https://github.com/trentool/TRENTOOL3) [173].
A Python package (https://github.com/wmayner/pyphi) computes
the integrated information [174].
For evaluating the mutual information from the time series data,
the k-nearest-neighbor approach [62, 66] was in a Python package
(https://github.com/pawel-czyz/channel-capacityestimator). The
decoding-based method [130] was implemented by a MAT-
LAB package and a R package (https://github.com/swainlab/
mi-by-decoding). The SLEMI [125, 137] has a R package in
CRAN (https://github.com/sysbiosig/SLEMI). The approach by
using stochastic dynamical models [49] has a MATLAB package
(https://github.com/signalingsystemslab/dMI).
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[91] Tkačik G, Walczak A M and Bialek W 2009 Optimizing infor-
mation flow in small genetic networks Phys. Rev. E 80
031920
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