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Abstract 

Acute and chronic inflammatory pathologies involve misregulation of macrophage functions. 
Physiologically, macrophages are immune sentinels that initiate inflammatory responses via the 

transcription factor NFkB. The temporal pattern of NFkB activity determines which genes are 

expressed, suggesting that a temporal signaling code specifies a stimulus-appropriate immune 
response. To identify the signaling codewords, we developed tools to enable high-throughput 
analysis of live, primary macrophages responding to host- and pathogen-derived stimuli. An 
information-theoretic workflow identified six dynamical features that constitute codewords that 
convey stimulus information to the nucleus. In particular, “oscillatory” trajectories are a 
hallmark of the responses to host cytokine TNF. Remarkably, examining macrophages derived 

from a systemic autoimmune disease model suggests that confusion of two NFkB signaling 

codewords, and thus miscoding of TNF as a pathogen-derived stimulus, may underlie sporadic 

inflammatory pathology. Overall, this study identifies six codewords of the temporal NFkB 

signaling code for classifying immune threats and demonstrates their biological significance. 
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INTRODUCTION 

 
Autoimmune pathologies are characterized by the presence of auto-antibodies and immune 
attack of specific tissues, but the etiology is not uniform 1. One cause may be found in errors in 
the negative selection of auto-reactive B-cell or T-cell clones in secondary lymphoid organs 1; 
another contributor may be inappropriate immune activation by immune sentinel cells 1. 
Sjögren’s syndrome (SS) is a systemic autoimmune disorder, which is characterized by 
progressive destruction of tissues exposed to the environment, such as eye, mouth and throat, 
and skin rashes 1. Interestingly, several genetic variants in regulators of the inflammatory 

transcription factor NFkB are associated with SS patients 2–5 and a mouse strain containing 

similar variants recapitulates some of the SS pathognomonic characteristics 6. However, it 

remains unknown how these alleles affect control of NFkB dynamics.   

 
Macrophages are immune sentinel cells that respond to pathogen invasion and tissue injury by 
initiating and coordinating both local and system-wide immunity 7. These cells are ubiquitously 
distributed in tissues 8 and can sensitively detect inflammatory cytokines and pathogen-
associated molecular patterns (PAMPs), which indicate viral, bacterial, or fungal invasion 9. 
Immune activation must be appropriate to each stimulus: the functional response to the 
cytokine TNF must be distinct from the response to a pathogen; further, the needs of a 
macrophage responding to bacterial or viral invasion are distinct.  
 
The temporal coding hypothesis posits that information about the extracellular stimulus is 
represented in the time-domain, i.e. the temporal pattern of a signaling activity 10–12. 

Biochemical studies in primary fibroblasts showed that the temporal pattern of NFkB RelA 

activity is stimulus-specific at the cell population level 13,14, and that it controls the expression 
of immune response genes 18, 15. Although pioneering single-cell microscopy studies confirmed 

complex temporal patterns 16–18, they relied upon fluorescent-protein-NFkB RelA fusion 

proteins ectopically expressed in immortalized cell lines (Supplementary Table 1). Potential 
artefacts arising from ectopic expression of a reporter-effector protein have been reported 19,20, 
and prolonged cell culture adaptation of immortalized cell lines was found to diminish their 
responsiveness to immune threats 21. These limitations have not allowed the literature to 
explore the biological significance of temporal coding in primary immune cells and whether it is 
a useful concept for understanding immune pathology. Reasons for why no studies of single-

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.23.112862doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.23.112862
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

cell NFkB trajectories in primary macrophages have been reported thus far include challenges 

associated with imaging knockin fluorescent protein reporters that are not overexpressed and 
reliable high-throughput image analysis of morphologically heterogeneous cells. 
 
Here, we report a new mVenus-RelA knockin mouse strain and a high-throughput imaging and 

analysis workflow to investigate the NFkB temporal code in single, primary macrophages. An 

information-theoretic approach was used to identify dynamical features of the NFκB 

trajectories that convey information about the extra-cellular stimulus to the nucleus. Teaching 
these codewords to a machine demonstrated their sufficiency and requirement for ligand and 
dose identification. Indeed, examination of a SS mouse model revealed confusion of specific 
signaling codewords and suggested that such confusion may contribute to the etiology of 
systemic autoimmune diseases. Finally, mathematical modeling allowed us to identify the 
molecular circuit design principles that enable encoding of these newly identified signaling 
codewords, and confirmed that ‘oscillations’ are a hallmark of responses to the host cytokine 
TNF, in contrast to PAMPs transduced by the signaling adaptor MyD88.  

 

RESULTS 
 

Primary macrophages show immune threat ligand- and dose-specific NFκB dynamics  

To study temporal patterns of nuclear NFκB in primary macrophages in response to 
prototypical immune threats (Fig. 1A) at single-cell resolution, we generated a mouse strain 
expressing a mVenus-RelA fusion protein (Supplementary Fig. 1A, B), similar to a previous 
GFP-RelA design 22 whose low fluorescence limited experimental studies 23. Macrophages, 
differentiated from primary bone-marrow cells derived from homozygous mVenus-RelA mice, 

showed normal levels of nuclear NFkB binding activity (Supplementary Fig. 1C). Upon 

stimulation with a variety of different ligands and doses, and time-lapse imaging over 21 hours 

(Fig. 1B), the amount of nuclear NFkB fluorescence was quantitated in single cells using a fully 

automated image processing pipeline that enabled tracking of live cells using minimal levels of 
a nuclear marker 24,25 and label-free identification and segmentation of cell cytoplasm. The live-
cell imaging and image processing proved robustly reproducible in biological replicates 
(Supplementary Fig. 1D), and independent of image frame location (Supplementary Fig. 1E). 
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We noted striking differences in the NFκB dynamics induced by prototypical PAMP (LPS) and 
cytokine (TNF) stimuli (Movie S1), apparent at the single-cell level (Fig. 1C). TNF induced 
oscillatory translocations between cytoplasm and nucleus that rapidly became 
desynchronized, matching biochemical data 15. By contrast, LPS induced more than 4 hours of 
sustained nuclear localization that also matched biochemical data from primary fibroblasts 13,14.  
 
With an experimental workflow established, we recorded NFκB translocation dynamics in 
response to a large number of stimulation conditions, encompassing TNF and four different 
PAMPs, associated with diverse bacterial and viral pathogen classes (the TLR ligands CpG 
(TLR9), Pam3CSK4 (TLR1/2, referred to as P3C4), LPS (TLR4), and Poly(I:C) (TLR3)) each 
tested at 4-7 concentrations covering a 102 to 103-fold range. In each condition, 300-600 cells 
were examined with at least two preparations of BMDMs, thus constituting a total dataset of 
12203 single-cell trajectories captured with more than 3 million cell images and associated 

NFkB activity datapoints (Fig. 1D, Supplementary Table 2).  

 

Given the NFkB trajectory, each cell was classified based on its first harmonic frequency profile 

generated by Fourier analysis (Fig. 1E) as either unresponsive (regime 1), responsive but non-
oscillatory (regime 2), or oscillatory (regime 3) with a period of 1.1-2.2 hours characteristic of 
NFκB oscillations 26. Analysis of the data indicated that the lowest stimulus concentration 
activated about half the cells but that a log10 increase activated almost all (Fig. 1F). Plotting the 
percentage of cells classified as oscillators in responders, we found that the host factor TNF 
elicited oscillatory dynamics regardless of dose (Fig. 1G). While the number of peaks increased 
with increasing doses of TNF, the period remained constant (Supplementary Fig. 1F). In 
contrast, PAMPs produced largely non-oscillatory responses at high ligand concentrations (Fig. 
1G). Unlike experimental systems with ectopically expressed RelA, which produced a first peak 
of NFκB activity that is much higher than later peaks 17,18,27, the response of primary 
macrophages to TNF showed a constant, gradual fall-off in amplitude (Supplementary Fig. 1G).  
 

Informative dynamical features are identifiable 

Oscillations are just one dynamical feature by which complex time course trajectories can be 
characterized. We developed a method for identifying dynamical features that are associated 

with stimulus- and dose-specific NFkB trajectories. We constructed a novel multivariate 

information-theoretic algorithm, based on an estimate of channel capacity 24,28. In addition to 
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the primary timeseries data, we considered 918 derived metrics (Supplementary Table 3) such 
as integrals, derivatives, peak activities, durations, or frequencies (Fig. 2A). Our algorithm 
searched this library for combinations of metric that maximized channel capacity 
(Supplementary Fig. 2A), iteratively expanding the number of metrics within each combination 
from two up to ten. 
 
First, we considered the available dose response dataset for each ligand separately. 
Combinations of five metrics were sufficient to capture the mutual information of dose 
responses, with TNF, CpG and Poly(I:C) achieving about 1 bit and LPS and Pam3CSK4 about 
1.5 bits (Fig. 2B), in agreement with previous reports for TNF and LPS 24,28. When considering 
all ligands tested (26 dose-ligand conditions), the calculated channel capacity was markedly 
higher (>2 bits) and required a seven-dimensional vector to yield ≥ 95% of the maximum 
measured information content (Supplementary Table 4).  
 
Of these most informative metrics identified across the full dataset (Fig. 2C), two defined the 
activation speed (1), one defined the peak amplitude (2), another defined the post-induction 
repression, a distinguishing feature of oscillatory versus non-oscillatory trajectories (3), one 
defined the accumulated activity (integral) at a late time (4), one was measure of the degree to 
which NFκB activity is ‘front-loaded’ (5); and one defined the total duration of NFκB activity 

above a low threshold (6). Thus the information-theoretic analysis identifies six NFkB 

dynamical features that are informative about the stimulus ligand and dose. Plotting three 
features allowed for only incomplete separation of ligands (Supplementary Fig. 2B). 
 
Further analysis of the channel capacity calculations indicated that the highest dose generally 
provided the most ligand-specific information (Fig. 2D). Indeed, when we restricted the 
calculation to only the highest dose of each of our five ligands we still obtained a channel 
capacity of 1.86 bits. It is remarkable that unlike the dose response profiles of pharmacological 
agents, which tend to show cross-reactivity at high doses, ligand-specific signaling dynamics 
occur at highest doses, indicating that there are true differences in the signal processing 
characteristics of receptor-associated signaling pathways.  
 

Machine learning of NFkB codewords distinguishes stimuli 
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The six NFkB dynamical features, identified as conveying information about the extra-cellular 

stimulus to the nucleus, represent potential codewords of the temporal NFkB signaling code. 

Visualizing codeword deployment for the five ligands at high doses (Fig. 3A, Supplementary 
Table 5), the speed of activation is generally high for Pam3CSK4 and LPS-triggered signaling, 
but low for CpG and Poly(I:C), and intermediate for TNF; peak amplitude is high for 

Pam3CSK4, CpG and LPS and lower for TNF and Poly(I:C); the oscillatory content is highest 
for TNF compared to any of the PAMPs; the amount of total activity is highest for LPS followed 
by Poly(I:C) and Pam3CSK4, but lower for TNF and CpG; the total duration, in contrast, is high 
for TNF and Poly(I:C), and relatively low for Pam3CSK4, CpG, and LPS; and the fraction of the 
activity that is early is much higher for TNF, Pam3CSK4, and LPS than Poly(I:C), with CpG 
being intermediate. Similarly, we find that different doses of the same ligand may deploy the 
codewords differentially (Supplementary Fig. 3A). For example, while the peak activity is 
generally positively correlated with dose 29, the duration of activity increases with increasing 
doses of TNF or LPS, but decreases with increasing doses of CpG. 
 

To determine whether NFkB signaling codewords suffice to distinguish these ligands, we used 

supervised machine learning and trained an ensemble-of-decision-trees model either with all 
918 metrics or the set of six signaling codewords (Supplementary Fig. 3B). We chose this 
classification algorithm because of its performance and interpretability 30,31. Assessing 
prediction performance, we found that F1 scores (harmonic mean of precision and recall, a 
measure of specificity and sensitivity of the predictions) were remarkably similar for predictions 
generated using all metrics or just signaling codewords (Fig. 3B, Supplementary Table 6A). 
Other performance measures confirm this conclusion (Supplementary Fig. 3C), indicating that 
signaling codewords alone suffice to distinguish NFκB ligands. Using the same approach, we 
examined whether signaling codewords suffice to distinguish the doses of each ligand. The 
differences in F1 scores of dose predictions generated by classifiers trained using all features 
versus six signaling codewords were minimal (Fig. 3C, Supplementary Table 6B).  
 
We quantified the certainty of stimulus classification (classification margin; difference of the 
true ligand probability and maximum false ligand probability) using all features, signaling 
codewords, and subsets of signaling codewords (Supplementary Fig. 3D). To examine the 
necessity of each signaling codeword, we computed ΔΔMean Margin, which is the difference 
in the mean classification margin (using either all features or merely the six signaling 
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codewords, ΔMean Margin) subtracted by the difference in the mean classification margin 
when one codeword is removed. This analysis revealed the stimulus-specific dependence of 
classification certainty on signaling codeword: speed is important in classifying CpG and 
Poly(I:C), peak amplitude is important for classifying Pam3CSK4, and oscillatory dynamics are 
important for classifying TNF (Fig. 3D). 
 
To examine the necessity of each signaling codeword in distinguishing doses, we quantified 
the ΔΔMean Margin across all doses for each ligand (Fig. 3E, Supplementary Fig. 3E). The 
maximum ΔΔMean Margin across all doses of each ligand revealed that speed is important to 
distinguish doses of TNF, Pam3CSK4, and LPS, and early-vs.-late activity is important to 
distinguish doses of Poly(I:C). Furthermore, this analysis suggests that the importance of a 
signaling codeword for classifying a ligand may differ from its importance in distinguishing the 
doses of that ligand (Fig. 3D and E). Using binary classification of stimulated condition vs. 
vehicle control indicated that ligand identification increases with the dose of the stimulus 
(Supplementary Fig. 3F), confirming the results of the information theoretic analysis (Fig. 2D). 
  

Increased codeword confusion in autoimmune disease  

The availability of a validated machine learning classifier allowed us to quantify not only how 
precise stimulus identification is, but which other stimuli a given stimulus may be confused 
with. We characterized the points of confusion by quantifying classification accuracy 
(precision) in the matrix of five ligands, choosing their highest doses as they are most 
distinguishable (Fig. 4A, Supplementary Fig. 4A). Correct classification of ligand identities 
occurred in the majority, but misclassifications (off-diagonal values) were not uniformly 
distributed. For example, while confusion of viral PAMP Poly(I:C) and bacterial PAMP LPS was 
rare, it was more common between the bacterial PAMPs, LPS and Pam3CSK4. Indeed, when 
we grouped ligands into their source classes such as host (cytokine), bacteria, or virus, we 
found that bacteria-derived ligands are reliably distinguished and show little confusion with 
either virus- or host-derived ligands (Fig. 4B, Supplementary Fig. 4B).  
 
We assessed whether a mouse model of Sjögren’s syndrome (SS) 32, which harbors genetic 

variants in the regulatory region of the NFkB regulator IkBα, may be associated with signaling 

codeword confusion, such that cells exposed to one stimulus might in fact miscommunicate 
the presence of a different stimulus to nuclear target genes. We bred our mVenus-RelA 
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reporter into this mouse model and then derived bone marrow-derived macrophages for 
stimulation with the cytokine TNF, the bacterial PAMP LPS, and the viral PAMP poly(I:C). 
Unlike macrophages from healthy mice, these SS macrophages showed non-oscillatory NFκB 
trajectories in response to all stimuli (Supplementary Fig. 4C - E). Visualizing the six codewords 
revealed that the stimulus-specific deployment of particular NFκB signaling codewords was 
impaired in macrophages from the Sjögren’s mouse model (Fig. 4C). The stimulus-specificity of 
the “oscillatory” codeword was markedly diminished in SS macrophages, and the stimulus-
specificity of the “duration” and the “early vs. late” codewords was also affected.  
 
Then, we examined the accuracy of stimulus classification using the ensemble-of-decision 
trees algorithm (Supplementary Table S6C). The mean margin scores of ligand classification 
were greatly diminished in SS macrophages, concomitant with an elevation in the false positive 
and false discovery rates for TNF and LPS (Fig. 4D). Furthermore, the sensitivity of TNF and 
poly(I:C) classification in SS macrophages was greatly diminished (24.3%/47.4%, respectively, 
versus 80.3%/92.8% in healthy controls, Fig. 4E), as there is increased confusion between 
Poly(I:C) versus LPS, and TNF versus LPS. These analyses indicate that SS macrophages have 

diminished ability to generate stimulus-specific NFkB signaling dynamics and suggest that 

signaling codeword confusion and mistranslation may play a role in the etiology of sporadic 
inflammatory diseases. 
 

Molecular circuits that produce signaling codewords 

Having identified essential dynamical features of NFκB activity for encoding ligand identity and 
dose, we sought to understand the molecular mechanisms that provide for the diversity of 
stimulus-specific dynamics. The known topology of the NFκB network is that signals 
emanating from receptor-associated signaling modules converge to activate canonical IKK, 

which functions as the input to the IkB-NFkB signaling module whose most prominent 

regulator is IκBα (Fig. 5A, Supplementary Fig. 5A). A prominent signaling codeword that 
distinguishes the cytokine TNF from PAMPs is the oscillatory content. Using macrophages 
from an IκBα-deficient mouse (interbred with the mVenus-RelA reporter, see methods), we 
found at the single-cell level that oscillatory dynamics are dependent on IκBα negative 
feedback (Fig. 5B), in agreement with prior population level experiments 15,33. 
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Then, we examined whether the IκBα feedback loop may also mediate non-oscillatory 
responses characteristic of PAMPs or whether other IκB isoforms may be required. After 
adapting the mathematical model of the negative-feedback containing IKK-IκBα-NFκB 
signaling module to the primary macrophage (see Methods), we examined its dynamical 
properties using Hopf-bifurcation analysis, specifically the propensity for oscillatory responses 
as a function of the magnitude of IKK activity (Fig. 5C). The first bifurcation point defines the 
threshold between (1) "off" (indistinguishable from baseline activity) and (2) an oscillatory 
steady-state. As IKK activity increases, oscillation troughs rise in amplitude (3) though the 
period changes little. The second bifurcation point occurs as the system shifts to highly 
damped oscillations (4). Our analysis thus led to the prediction that non-oscillatory NFκB 
responses of LPS are not mediated by other IκB isoforms (IκBβ and IκBε), as previously 
hypothesized 34,35, but that the NFκB-IκBα feedback circuit alone could sustain such non-
oscillatory behavior. To test this hypothesis, we bred our RelA-mVenus reporter into IκBβ-/-IκBε-

/- mice and gathered single-cell responses to TNF and LPS (Fig. 5D). In this genotype, TNF 
induced an even higher fraction of oscillatory cells (95% versus 75% in wild-type, Fig. 1G), 
while LPS responses were, as before, largely non-oscillatory. We conclude that both oscillatory 

and non-oscillatory NFκB dynamics may be generated by the IkBα-NFkB signaling module; the 

deployment of the “oscillatory” signaling codeword is determined merely by controlling the 
amount of IKK activity over time.   
 
To build a full, multi-stimulus model, capable of generating proper IKK activity timecourses in 
response to any of the ligands and doses used in this study, we carefully examined the 
regulatory mechanisms associated with each ligand receptor (Supplementary Fig. 5A), and 
drafted ordinary differential equations to describe them. Parameter values were based on prior 

literature (Supplementary Table 7) and adjusted to produce model simulations of NFkB that 

qualitatively matched trajectories of median-responding cells in each tested condition (Fig. 5E-
I). For TNF and LPS, available literature datasets on receptor and IKK dynamics were fit 
(Supplementary Fig. 5B, C). Within the core IKK-IκB-NFκB module, multi-parameter sampling 
confirmed that the oscillatory-non-oscillatory distinction based on the magnitude of IKK activity 
was a robust feature (Supplementary Fig. 5D). In addition, model-simulated IKK trajectories 
(Fig. 5E-I) were tested at key timepoints using immunoblotting of the active, phosphorylated 
IKK species (Supplementary Fig. 6A - E) and revealed a general concordance in this semi-
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quantitative comparison. While this increases our confidence in the insights derived from the 
model, we cannot rule out alternative models or mechanisms. 
 
Signaling within each signaling module is governed largely by the kinetic properties of a few 
constituents such as ligand half-life, receptor downregulation and replenishment, and the dose 
response properties of the receptor-associated signaling adaptor. For example, in the case of 
TNF, rapid receptor downregulation and short ligand half-life 36,37 diminish IKK activity into a 
regime that allows for deployment of the ‘oscillatory’ codeword and the dose-dependent 
deployment of the ‘duration’ codeword, respectively (Fig. 5E). For Pam3CSK4 and CpG (Fig. 
5F and G), the signaling characteristics of cooperative adaptor interactions lead to digital dose 
response behavior 21 and low values for the ‘oscillatory’ (due to high IKK activity) and ‘duration’ 
codewords at high doses. In the case of LPS-TLR4 (Fig. 5H) the combination of ultrasensitive 
and linear dose response behavior of MyD88 and TRIF adaptors 21,38, aided by CD14-mediated 
TLR4 internalization 39, provide for dose-dependent deployment of the codewords of 
‘oscillatory’ and ‘total activity’. In contrast, endosomal availability of TLR3 and Poly(I:C) 40 limit 
the ‘response speed’ codeword but allow for long ‘duration’ (Fig. 5I). Overall, the comparison 
of five signaling modules revealed shared molecular circuit design principles whose pathway-

specific parameter values yield diverse, ligand- and dose-specific deployment of NFkB 

signaling codewords.  
 

Oscillatory NFkB dynamics are a hallmark of paracrine TNF signaling  

Overall, model simulations qualitatively matched measured trajectories at the respective doses. 
However, we identified a notable discrepancy in the responses of the MyD88-dependent 
pathway downstream of TLR9 at low doses (33 nM CpG, Fig. 5G). Simulations in this condition 
did not show substantial NFκB activation, but the measured trajectories showed oscillatory 
responses.  
 
To address this discrepancy, we noticed that within the population of diverse responses to 
CpG, oscillatory trajectories were generally slightly delayed compared to transient and non-
oscillatory trajectories (Fig. 6A). We therefore wondered whether cytokine feedback, especially 
by TNF 41, not represented in the simple mathematical models, might be responsible for this 
discrepancy between model simulations and experimental observations. Indeed, we found that 
a small but statistically significant amount of TNF was detectable in the cell culture medium at 
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the early 5-minute timepoint of CpG stimulation (Fig. 6B). Furthermore, flow cytometry for the 
TNF receptor revealed a rapid internalization of TNFR1 not only in response to TNF but also 
CpG, which was also TNF-dependent (Fig. 6C). To test whether paracrine TNF signaling was in 

fact responsible for oscillatory NFkB responses, we measured single-cell dynamic responses 

to CpG in the presence or absence of saturating levels of recombinant soluble TNFRII (Fig. 6D). 
We noted a substantial decrease in oscillatory trajectories and the fraction of non-responding 
cells increased in the TNF blocking condition (Fig. 6D, 6E). Our data suggests that TNF 
produces oscillatory NFκB activity within cell populations exposed to low levels of CpG. We 
imagine that cells, which are unresponsive to CpG due to for example low TLR9 levels, may 
still respond to TNF produced by cells in the population that are responsive to CpG, possibly 
because of higher levels of TLR9 (Fig. 6F). Thus, in the context of MyD88-mediated PAMPs, 

oscillatory NFkB may be an indicator of paracrine signaling by host factor TNF.  

 

DISCUSSION 

In this work, we report the identification of six dynamical features that characterize complex, 

stimulus-specific timecourse trajectories of NFkB activities in single primary macrophage cells. 

Using information-theoretic and machine learning approaches, we show that these function as 
signaling codewords to convey information about the extra-cellular environment to nuclear 
target genes. Strikingly, in an inflammatory disease mouse model, diminished ligand-specific 
deployment of two codewords – “oscillation” and “duration” – results in greater confusion of 
ligand sensing that may contribute to the etiology of autoimmune diseases. Our investigation of 

the molecular mechanisms underlying the stimulus-specific generation of NFkB signaling 

codewords revealed simple circuit motifs responsible for each; plus the recognition that NFkB 

oscillations observed in macrophages are in fact often a hallmark of paracrine TNF. 
 
These finding were made possible by our development of new experimental and computational 
tools that provided an unprecedented quantity and quality of experimental data in primary cells 
responding to diverse immune threats. As cell lines show reduced responsiveness42, and 
ectopic expression of reporters can lead to artefactual oscillatory dynamics 43, we generated a 

new NFκB RelA-Venus knock-in mouse strain allowing us to image primary macrophages, the 
cell type that functions as the sentinels of the immune system. We were able to study not only 

the dose-response relationships but also characterize NFkB responses to pathogen-derived 

and host-derived ligands to which these primary macrophages respond vigorously. A robust 
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automated image analysis pipeline and newly developed information-theoretic analysis and 
machine learning classification workflows enabled a rigorous, quantitative analysis of over 4.9 
million single-cell data points derived from 44 distinct time-course conditions.  
 
To identify signaling codewords, informative dynamical features, we employed an information 
theoretic framework. Previous applications of an information theoretic framework related the 

timeseries of nuclear NFkB abundance at either one or several timepoints to different doses of 

stimulus 24,28. While it was shown that timecourse measurements can provide more information 
about ligand and dose than a single timepoint, 44 it remained unclear which dynamical features 

are important in conveying this information. Prior studies sought to characterize temporal NFkB 

trajectories in terms of ad-hoc-defined dynamical features such “duration” 45,46 or “inter-peak 
time/frequency” 26. However, these features were not tested for information content, though 
some appear to correlate with gene expression responses 47,48. Our datasets and analytical 
workflow allowed for an unbiased evaluation of hundreds of potential features and yielded six 
specific dynamical features that essentially define stimulus-specific NFκB dynamics for the five 
ligands at multiple doses tested here. As the identified dynamic signaling features optimally 
provide the nucleus with information about the extra-cellular environment, they are codewords 
of a signaling code. We showed that signaling codewords identified by the information-

theoretic approach are sufficient for a machine to learn to correctly classify NFkB trajectories in 

terms of stimulus and dose. Interestingly, “inter-peak time” or “period” were not represented, 
but instead, the presence or absence of oscillatory content emerged as an important 
“codeword” – it is key to distinguishing PAMP-responsive and cytokine TNF-responsive NFκB 
dynamics. It will be of interest to determine whether with additional datasets from 
macrophages or other cell types, additional codewords of the NFκB signaling code may be 
identified. 
 
We have begun to characterize the key mechanisms that encode the six signaling codewords 

of the NFkB signaling code. Building upon prior mathematical models that have investigated 

NFκB dynamics in response to a single ligand in immortalized cell lines 49, a new model 

presented here recapitulates for the first time both oscillatory and non-oscillatory trajectories in 
primary macrophages in response to five ligands at several different doses and provides 
insights into the molecular mechanisms. As the IκB-NFκB signaling module is common to all 
stimulus-response pathways, and the IκBα negative feedback loop indeed supports both 
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oscillatory and non-oscillatory activities (Fig. 5C), stimulus-specific deployment of the six 
signaling codewords depends on the biochemical characteristics of components in the 
receptor-associated signaling modules. Key characteristics are (i) the ligand half-life, as short 
half-lives (e.g. TNF) render the duration of the response dependent on stimulus-
concentration37,43, (ii) the receptor translocation and replenishment rates that may either allow 
for post-stimulation shutdown or second phase signaling 50, (iii) the dose-response of the 
adaptor (TRAFs, MyD88, TRIF), as for example MyD88 tends to digitize responses, but TRIF 
does not42, and (iv) the de-activation kinetics of adaptors and ubiquitin chain networks that are 
likely key determinants of the termination of signaling but require further biochemical 
characterization.  
 
It is well established that the temporal trajectories of NFkB activity are correlated with gene 
expression45–48. Our results suggest that the codewords identified here may specify the 
stimulus-specific expression of those genes that are able to differentiate between their relative 
presence or absence. Some prior work has described molecular mechanisms that particular 
target genes employ to “decode” specific NFκB signaling codewords. “Peak amplitude/fold 
change” for example was described to be sensed effectively by an incoherent feedforward 
loop involving the NFκB-responsive generation of p50 homodimers51. Stimulus-specific 
“Duration” was found to be differentiated by two mechanisms: whereas stimulus-specific 
expression of core regulators of the inflammatory response was mediated by an mRNA half-life 
of a few hours, pro-inflammatory initiators tend to employ a chromatin-based mechanism that 
involves the movement of a nucleosome 52. Interestingly, the “oscillatory/non-oscillatory” 
codeword does not necessarily control the stimulus-specific expression of primary response 
target genes 43, but appears to determine the capacity of NFκB to generate de novo enhancers 

in macrophages and thus affects the potential for gene expression induced by subsequent 

stimuli 53. 

 
A hallmark of all single-cell datasets is the heterogeneity within an isogenic, identically 
stimulated population. Hence it is not surprising that the stimulus-specificity of the dynamical 
features identified here is by no means perfect, and that a machine learning classifier applied 
to all features or the six most informative “codewords” reveals some confusion, particularly 

among the NFkB responses to three bacterial PAMPs. Confusion here means for example that 

some (but not all) cells stimulated with CpG produces NFkB responses that are 
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indistinguishable from some (but not all) cells stimulated with Pam3CSK4. We suggest that the 
capacity (or lack thereof, i.e. confusion) for mounting specific responses is a fundamental 
functional characteristic of macrophages as immune sentinel cells. Furthermore, given 
macrophage’s functional plasticity, we expect that this characteristic of capacity for stimulus-
discrimination be similarly tuned—determined by the context of microenvironmental cytokines 
and exposure histories. In this study, macrophages derived from a mouse model of the 
systemic inflammatory disease, Sjögren’s syndrome, showed dramatically increased levels of 
ligand confusion. This particular model involves genetic variants in the IκBα promoter but the 

impact on NFkB signaling dynamics at the single cell level was unknown. While cells are 

capable of responding to diverse immune threats, the reduction in specificity adds to our 
understanding of this systemic autoimmune disease and may contribute to its etiology. Future 
studies will address whether these concepts apply to other autoimmune or inflammatory 
diseases. 
 

Within the context of the innate immune signaling network, NFkB is only one of four prominent 

PAMP-responsive pathways, and therefore functions in conjunction with the JNK-AP1, 
MAPKp38/ERK-TTP/CREB, TBK-IRF3-ISGF3 axes to control gene expression responses 54. 

While bacterial ligands LPS, CpG, Pam3CSK4 are poorly distinguished at the level of NFkB 

dynamics (Fig. 4A), only LPS activates TBK-IRF3-ISGF3 and thus produces highly distinct gene 
expression program. Furthermore, MAPKp38 activation is specific to the high dose of LPS 55 

allowing for much better dose distinction than that based on NFkB dynamics alone. Elucidating 

how coordinated combinatorial and temporal codes specify macrophage responses to diverse 
stimuli will be a major undertaking of future research.  
 

METHODS 
Experimental Methods 

Mouse Models. The mVenus-RelA endogenously-tagged mouse line was generated by Ingenious 
Targeting Laboratory. A donor sequence encoding the monomeric variant of the Venus fluorescent 
protein 56 joined by a short flexible linker sequence directly upstream of the start codon of the 

murine Rela locus was used to generate, via homologous recombination, a tagged embryonic stem 
cell line, that was implanted to yield heterozygous mice. These mice were then bred with a mouse 

line constitutively expressing the Flp recombinase to remove the Neo resistance marker included in 
the homologous donor sequence. We then back-crossed the resultant mice with wild-type 
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C57BL/6J mice to remove the Flp background and generate homozygously tagged mice (RelAV/V). 
mVenus-RelA mice were crossed into a IκBα-/-TNF-/+cRel+/- line (TNF and cRel heterozygosity are 
required to rescue embryonic lethality of the IκBα-/- genotype) 57, as well as into an IκBβ-/- IκBε-/- 
knockout line 45. For the Sjӧgren’s syndrome mouse model, we crossed mVenus-RelA mice into a 
strain that harbors mutated κB sites in the IκBα promoter 6.  

 

Macrophage Cell Culture. Bone marrow-derived macrophages (BMDMs) were prepared by culturing 
bone marrow monocytes from femurs of 8-12 week old mice in CMG 14-12-conditioned medium 
using standard methods 42,58. BMDMs were re-plated in experimental dishes on day 4, then were 
stimulated on day 7. BMDMs were stimulated with indicated concentrations of lipopolysaccharide 
(LPS, Sigma Aldrich), murine TNF (R&D), a TLR1/2 agonist, the synthetic triacylated lipoprotein 

Pam3CSK4 (PAM), a TLR3 agonist, low molecular weight polyinosine-polycytidylic acid (Poly(I:C) 
(PIC)), a TLR9 agonist, the synthetic CpG ODN 1668 (CpG).  
 

Biochemical assays. For immunoblots of whole cell lysates, bone-marrow derived macrophages 
were replated on day 4 at 20,000/cm2 in 6-cm dishes. After stimulation on day 7, sample buffer was 
added to 6-well plates directly after washing cells with PBS. Immunoblots followed standard 

procedure with anti-RelA (sc-372, Santa Cruz Biotechnology), anti-pIKK (CST2697), and IKK2 
(CST2678). Western blot band intensities were quantified using ImageJ. Nuclear extract preparation 
and electrophoretic mobility shift assays followed published procedures59. 

 

Live-cell imaging. Bone-marrow macrophages were replated on day 4 at 20,000 or 15,000/cm2 in 
an 8-well ibidi SlideTek chamber, for imaging at an appropriate density (approx. 60,000/cm2) on day 
6 or day 7. 2 hours prior to stimulation, cells were incubated for 5 minutes at room temperature in a 
solution of 2.5 ng/mL Hoechst 33342 in PBS, then BMDM culture media was replaced. This staining 
condition was optimized to ensure no loss of cell viability and no aberrant morphological changes 

over a 24 hr period of imaging in the conditions described below. Cells were imaged at 5-minute 
intervals on a Zeiss Axio Observer platform with live-cell incubation, using epifluorescent excitation 
from a Sutter Lambda XL light source. Images were recorded on a Hamamatsu Orca Flash 2.0 CCD 

camera. After the start of imaging, additional culture media containing stimulus (TNF, LPS, poly(I:C), 

CpG, or Pam3CSK4) was injected into the chamber in situ. We have documented the reliability of 
the imaging workflow by establishing that distinct biological replicates give reproducible data 
(Supplementary Fig. 1D) and that distinct imaging frames of the same well provide reproducible 
data (Supplementary Fig. 1E). All data are available at 
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https://data.mendeley.com/datasets/6wksmvh5p4/draft?a=832656ba-2bde-40a4-8bbc-
4cecb1d9543d. 

 

Measurement of TNF secretion (ELISA). Bone-marrow macrophages were replated on day 4 at 
25,000/cm2 in a 96-well format. On day 6, media was refreshed with 80 μL media containing 

indicated treatment (TNF, LPS, or CpG). Supernatants were collected from wells, in triplicate, at 
indicated timepoints, using procedures from the murine TNF alpha ELISA Ready-SET-Go! kit 
(eBioscience #88-7324-88). To optimize assay sensitivity, measurement was performed in a half-

area 96-well plate (Corning #3690), and sample incubation was performed overnight at 4°C. 
Fluorescence measurements were performed using a standard spectrophotometer. 
 

Measurement of surface receptor expression (FACS). Bone-marrow-derived macrophages were 
replated on day 4 at 20,000/cm2 in 6-cm dishes. On day 6, media was refreshed with 3 ml media 
containing indicated treatment (TNF, LPS, or CpG). At indicated time point, media was rinsed out 

with cold PBS. Cells were incubated with fluorophore-conjugated antibodies for TNFR, CD11b, and 
F4/80 (BioLegend #113005, eBioscience #11-0112-82, eBioscience #12-4801-82) and analyzed, in 
triplicate. Antibody concentration and staining conditions were performed according to 

manufacturer recommendations. Stained cells were measured using an Accuri C6 Flow Cytometer 
(BD Biosystems). Fluorescence compensation and live/dead cell filtering was performed in FlowJo 
v10. 

 

Image analysis  

Microscopy time-lapse images were exported for single-cell tracking and measurement in MATLAB 
R2016a. The tracking routines followed those used in earlier work 44. Briefly, cells were identified 
using DIC images, then segmented, guided by markers from the Hoechst image. Segmented cells 

were linked into trajectories across successive images, then nuclear and cytoplasmic boundaries 
were saved and used to define measurement regions in other fluorescent channels, including 
mVenus-NFκB. Nuclear NFκB levels were quantified on a per-cell basis, normalized to image 

background levels, then were baseline-subtracted. Mitotic cells, as well as cells that drifted out of 
the field of view, were excluded from analysis. The toolboxes used for this analysis are available at 
https://github.com/brookstaylorjr/MACKtrack. 

 

Channel capacity calculation and codeword identification 
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Feature selection. As there are ~ 9.3 x 1016 seven-dimensional combinations of 918 features 
(Supplementary Table 3) and each channel capacity calculation takes ~90 seconds per 
combination, evaluating channel capacity of all combinations of features would take ~2.3 x 1015 
hours (~2.7 x 1011 years) to compute and is therefore is computationally infeasible. To narrow the 
search space, we utilized a feature selection approach. Since the channel capacities of individual 

features combine nonlinearly, there is no guarantee a high-ranking feature in low dimensional space 
will also be a subset of a high-ranking feature vector in high-dimensional space. Consequently, we 
utilized a forward feature selection approach that balances channel capacity rankings in lower 

dimensional space and diversity of candidates. Channel capacity calculations are performed on 
single dimensional features, ranked, and a subset of features above a threshold are selected to 
maximize diversity. As such 1D candidates are combined to form a set of 2D feature vectors. 

Channel capacity calculations are calculated on the 2D feature vectors, ranked and selected as in 
the 1D case. This iterative ranking and selection processes are repeated until additional dimensions 
offer no gain in channel capacity (Supplementary Table 4). Details are found in Supplementary Note 
1.  

 

Machine Learning Classifier 

Construction of classification models. We trained an ensemble of 100 decision trees using the 
fitcensemble function from the Statistics and Machine Learning Toolbox from MathWorks. Decision 
tree models are simple, highly interpretable, and can be displayed graphically 60. Consequently, the 
decision process of the classifier can be easily interrogated. However, decision tree models have 

two key disadvantages: (1) mediocre prediction performance 61 and (2) high variance due to 
overfitting 60. Both disadvantages can be mitigated by aggregating an ensemble of decision trees. 
Empirical comparison of classification models show that ensembles of decision trees outperform 
other classification algorithms across of a variety of problem sets 61.  

 
We used a bootstrap aggregation (bag) method for constructing the ensembles. Each tree in the 
ensemble is trained on a bootstrapped replica of the data—each replica is a random selection of 

the data with replacement. The predictions from the ensemble model are determined by a majority 
vote from each individual tree prediction. We trained the ensemble to learn the stimulus labels (TNF, 
Pam3CSK4, CpG, LPS, and Poly(I:C)) from either the entire set of predictors (all 918 metrics, 

Supplementary Table 3) or a subset of predictors termed “signaling codewords” (Supplementary 
Table 3).  
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Decision tree parameters. To construct each decision tree, the software considers all possible ways 
to split the data into two nodes based on the values of every predictor. Then, it chooses the best 
splitting decision based on constraints imposed by training parameters, such as the minimum 
number of observations that must be present in a child node (MinLeafSize) and a predictor 
selection criterion. The software recursively splits each child node until a stopping criterion is 

reached. The stopping criteria include (1) obtaining a pure node that contains only observations 
from a single class, (2) reaching the minimum number of observations for a parent node 
(MinParentSize), (3) reaching a split that would produce a child node with fewer observations than 

MinLeafSize, and (4) reaching the maximum number of splits (MaxNumSplits). We used default 
values for MinLeafSize, MinParentSize, and MaxNumSplits: 1, 10, sample size – 1, respectively 62. 
Loadings flor classification models are listed in Supplementary Table S6. 

 
Since the standard prediction selection process at each node may be biased, we used a predictor 
selection technique, interaction-curvature test, which minimizes predictor selection bias, enhances 
interpretation of the model, and facilitates inference of predictor importance. The interaction-

curvature technique selects a predictor to split at each node based on the p-values of curvature 
and interaction tests. Whereas the curvature test examines the null hypothesis that the predictor 

and response variables are unassociated, the interaction test examines the null hypothesis that a 
pair of predictor variables and the response variable are unassociated. A node with no tests that 

yield p-values ≤ 0.05 is not split. At each node, the predictor or pair of predictors that yield the 

minimum significant p-value (0.05) is chosen for splitting. To split the node, the software chooses 
the splitting rule that maximizes the impurity gain—difference in the impurity of the node (calculated 

using Gini’s diversity index) and the impurity of its children nodes 62.  
 

Evaluation. We evaluated the performance of the classifiers using 5-fold cross validation, an 
independent testing data set, or out of bag cross validation. We used the following performance 
metrics: true positive rate (recall), positive predictive value (precision), area under the Receiver 

Operating Characteristic (ROC) curve,  F1 score, Matthews correlation coefficient, markedness, 
informedness and mean classification margin 63–65. 
 

Mathematical Modeling 

Model structure. Several related models of NFκB activation in response to TNF have been 
established and iteratively parameterized 45,66,67, and used as a basis for modeling the NFκB 
response to LPS and other stimuli in immortalized cell lines with exogenously introduced (and 
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overexpressed) fluorescent RelA 42,68. The model presented here to account for NFkB dynamics in 

primary macrophages is closely based on these previous studies, inheriting identical model 

topologies where possible and minimizing any changes to parameter values.  
 

Key experimental data constraints. As a first step towards parameterizing our model, we quantified 
characteristics of oscillatory endogenous BMDM signaling. We observed only slight differences in 
peak periodicity and amplitude between conditions (roughly a 10-minute difference in median 
period for the lowest dose of TNF which induced robust oscillations, 0.33 ng/mL, and the highest 

dose tested). We did, however, observe pronounced differences in duration as the dose of TNF is 
increased (Supplementary Figure 1F). Median period was determined to generally fall within 90-95 
min, in the same range of oscillations measured in other cell types 66,67. 

  
These oscillations appeared to be remarkably stable across an extremely broad range of induction 
levels. Indeed, the variation observed across single cells in a particular condition (or even within the 

same cell) is much smaller than any differences in oscillations observed between conditions. Even 
when other stimuli are considered, the "signature" first harmonic of the oscillatory subpopulation 
remains consistent. This consistency across a wide range of input conditions agrees, notably, with 
predictions made using simplified discrete delay model of the NFκB network 69. These delays could 

plausibly arise from IκB mRNA (measured to be some 10-12 minutes) 70 and protein processing.  
 
Biochemical assays indicate that the major difference between TNF and LPS-induced IKK 

activation is not in the maximum amplitude, but the duration of IKK induction 57,71. TNF strongly but 
transiently activates IKK. Peak IKK activity is limited in duration by rapid internalization and 
degradation of the ligand-bound receptor 72–74. LPS-bound TLR4 is also rapidly internalized, but 
continues to strongly activate IKK from the endosome 75. This difference is reflected in single-cell 

NFκB activation: while the speed of NFκB activation (roughly proportional to the peak of IKK 
activity) is similar between TNF and LPS, sustained high levels of IKK activity in response to LPS 
leads to higher peak activity (Supplementary Figure 5B, C). 

 

Model Fitting. We first sought to fit models for TNFR signaling and TLR4 signaling. We employed a 
screen where repeated, random initialization of parameters was followed by their optimization, 
fitting model predictions to IKK activation dynamics established by kinase assay measurements 
42,76. The resultant model required rapid IKK de- and re-activation 77, which allowed IKK responses 
to be both adaptive (in the case of TNF) and long duration (as in TLR4 responses). 
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For the IKK-IκB-NFκB core module, model topology and parameters were confined to be near 

previously established values (Supplementary Table 7). We performed a multidimensional sweep of 
transport rates and found a narrow range of parameters that could account for the observed 
frequency invariance, with high IKK activity diminishing oscillatory behavior (Supplementary Figure 
5D). A subsequent fitting process allowed us to optimize other parameters, including the induced 

synthesis rate constant of IκBα and the activation rate constant of IKK. We repeated this two-stage 
sweep/fitting process until parameter values converged. 
 

For signaling via TLR1/2, TLR3, and TLR9, we used prior estimates of each receptor's abundance 
in monocytes/macrophages 40 to estimate synthesis and degradation rates. In many cases, 
receptor-ligand affinities were also known 78–80 and were therefore used to estimate association and 

dissociation of the receptor. The kinetics of each receptor's association with a downstream adaptor 
(TRIF or MyD88) were taken from estimates from our TLR4 model. NFκB responses to TLR9 were 
observed to be more transient than to either TLR4 or TLR1/2, in agreement with previous data 59 
and the observed self-inactivation of TLR9 81. 

 

The software to run the model is available at https://github.com/Adewunmi91/nfkb_model. 
 
DATA AND SOFTWARE AVAILABILITY 
Data is available in https://data.mendeley.com/datasets/6wksmvh5p4/draft?a=832656ba-2bde-

40a4-8bbc-4cecb1d9543d. Software associated with the image processing and computational 

modeling are available at https://github.com/brookstaylorjr/MACKtrack, 

https://github.com/Adewunmi91/nfkb_model.  
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Figure 1. Complex NFkB dynamics induced by diverse immune threats.  
(A) Schematic of the innate immune signaling network activating NFkB. Environmental information is 
transmitted via ligand-specific signaling pathways that converge on a few key transcription factors, including 
NFkB, but produce stimulus-specific physiological responses.  
(B) Workflow diagram: a knockin mouse line expressing mVenus-RelA was generated. Bone marrow-derived 
macrophages (BMDMs) were differentiated, imaged, tracked, and quantified in multiple stimulus conditions.  
(C) Single-cell heatmaps of fluorescent nuclear NFκB levels over time, in BMDMs expressing endogenously 
tagged mVenus-RelA, in response to 10 ng/mL TNF or LPS. Each row is one cell’s trajectory. 
(D) Table indicating the number of single cell trajectories quantified in each indicated experimental condition. 
This analysis involved 12,203 cell trajectories produced by quantifying more than 3 million cell images. More 
details in Supplementary Table 2. All single-cell imaging data was confirmed, here and elsewhere, with at 
least two independent experiments per condition.  
(E) First-harmonic distributions for other stimuli. Shaded region corresponds to the period of 1-2.2 hrs that is 
characteristic of NFκB oscillations. 
(F) Fraction of cells in which a response is detected, by stimulus and dose.  
(G) Fraction of responder cells that show characteristic NFκB oscillations. 

  

A
E. coli

Rotavirus ATNF
mVenus Rela (Mus musculus)

B Isolate C

Time (hrs)

Stimulate

Quantitate

10 ng/mL TNF 10 ng/mL LPS

10 ng/mL TNF 10 ng/mL LPS

Time (hrs)Time (hrs)
12 0

0

Si
ng

le
 C

el
ls

1
XFOHDU�1

)͋%

7

0 6 6 12

TLR9TNFR TLR2 TLR3TLR4

S. pneumoniae
M. tuberculosis

MyD88 TRIF

MAPK IRF

1st harmonic frequency (1/hr)
0 0.5 1

0

0.1

0.2

0.5 10Re
la

tiv
e 

Fr
eq

ue
nc

y

D

31 2 31 2

Single-cell Harmonics
E

C
el

ls
 in

 re
gi

m
es

 2
 &

3 
(%

)

100

50

0 C
el

ls
 in

 re
gi

m
e 

3 
(%

) 100

50

0

G

.33 3.3 33 (ng/mL).33 3.3 33 (ng/mL)LPS
33 �ƄJ�P/�3.333 �ƄJ�P/�3.3PolyIC

10 100 1000 (nM)10 100 1000 (nM)CpG

.33 3.3 33 (ng/mL).33 3.3 33 (ng/mL)TNF
1 10 (ng/mL)1001 10 (ng/mL)P3C4 100

F

0.33x 1x 3.3x 10x 33x 100x
TNF 1 ng/mL 488 416 433 423 346
P3C4 1 ng/mL 287

378
375 354 467 448

CpG 10 nM 347 392 423 296
LPS 1 ng/mL 458 301 449 617 2019 546 577
poly(I:C) 1 эg/mL 360 370 423 359

330x
control of 

necroptosis,
apoptosis

&
survival

tissue 
remodeling

&
systemic 
immune 
activation

innate defense, 
engulfment

& 
recruitment
of immune 

effector cells

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.23.112862doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.23.112862
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

 
Figure 2. Informative features within complex NFkB dynamics.  
(A) Examples of metrics to be employed in an information theoretic analysis. Two single-cell NFκB responses 
(to LPS in red, and to TNF in blue) are shown. All NFkB trajectories were characterized using 918 metrics 
(Supplementary Table 3).  
(B) Channel capacity as a function of the number of most informative metrics (Supplementary Table 4), either 
using the entire dataset of all ligand types and doses (black line) or using the dose response data for each 
indicated ligand.  
(C) Dynamical features that are informative about ligand and dose, as revealed by the metrics selected by the 
information theoretic analysis. E: early activity; L: late activity. 
(D) Average probability distribution from the channel capacity calculations using all optimal vectors. 
Probabilities sum to 1 and indicate the input distribution that leads to a computationally-maximized mutual 
information.  
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Figure 3. Six NFkB Signaling ‘codewords’ are sufficient to classify immune threats. 
(A) Violin plots of dynamical features that optimally encode stimulus-specific NFκB dynamics: activation 
speed, peak amplitude, oscillatory dynamics, total activity, duration, and ratio of early to late activity. These 
are termed “signaling codewords”, and they are deployed in a stimulus-specific manner as shown.  
(B) Top: Schematic of supervised machine learning approach to predict ligand identity using NFκB dynamics. 
Bottom: F1 scores (harmonic mean of precision and recall) of ligand predictions using either all features or 
signaling codewords alone.  
(C) F1 score of dose predictions for each indicated ligand using either all features or only codewords.  
(D) The effect of each signaling codeword on the certainty of ligand prediction: The loss in classification 
confidence when the indicated codeword is missing from the set of six (versus all features). Mean 
classification margin: the difference between the true ligand probability and maximum false ligand probability, 
ΔMean Margin: difference in mean classification margin of codon classifier vs. all predictors classifier; 
ΔΔMean Margin: difference in ΔMean Margins when using codon classifier with all six codewords or with 
classifiers with indicated codewords missing vs. all predictor classifiers. 
(E) The effect of each signaling codeword on the certainty of dose prediction for each ligand: The loss in 
classification confidence when the indicated codeword is missing from the set of six (versus all features). 
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Figure 4. A Sjögren’s syndrome mouse model shows more confusion in classifying immune cytokine 
TNF and immune threat LPS based on NFkB dynamics.  
(A) Confusion matrices showing classification precision of ligand identity information. The machine learning 
model correctly identifies the ligand identity given an NFkB trajectory a majority of the time with the primary 
confusion being between bacterial ligands Pam3CSK4 and LPS most apparent.  
(B) Confusion matrices showing classification precision of ligand source information. Bacterial ligands are 
generally correctly identified as such.  
(C) Testing ligand confusion in macrophages isolated from a Sjögren’s disease model mouse 32. Violin plots 
depicting the signaling codewords deployed by macrophages, derived from healthy or Sjögren’s mice, 
stimulated with TNF, LPS or Poly(I:C).  
(D) Classification of ligand identity in healthy and Sjögren mouse model macrophages by a machine learning 
classifier trained on healthy macrophage data: False positive rate (FPR), false discovery rate (FDR), and mean 
margin.  
(E) Confusion matrices for sensitivity of recall for the healthy and Sjögren’s macrophage data. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.23.112862doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.23.112862
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

 

(3.3 ng/mL TNF)
Iы)у-/-Iы)ц-/- )4+4 Iы)у-/-Iы)ц-/- )4+4 

0 4
Time (hrs)

8

(10 ng/mL LPS)
D

0 4
Time (hrs)

8

0.5 1

Re
l. 

fre
q.

0

0.1

0.2

1st harmonic freq. (1/hr)
0 0.5 10

Si
ng

le
 C

el
ls

IKK level (nM) (log)
Time (hrs)

10

20

0

C

O
sc

ill
at

io
n 

pe
rio

d 
(h

r)
St

ea
dy

 s
ta

te
 (n

M
)

1

2

3

4

0

5-ы)

5-ы)

5-ы)

1 2 3 4

1 Off/sub-oscillatory

5-ы)
Stable oscillations2

3 Slightly stable oscillations

4 +HTWLK�Z\Z[HPULK

-1 1-3
0 3 6

4VKLSLK�Z[LHK`�Z[H[L

4VKLSLK�MYLX\LUJ`

-1 1-3

1 2 3 4

IKK level (nM) (log)

0 3 6

5-ы)��+(;(�

33 ng/mL Pam

10 ng/mL Pam

100 ng/mL Pam
022��:04��

0 3 6

5-ы)��:04��

0 3 6
Time (hrs)

F

TLR1/2

P3CSK4

TL
R

1

TL
R

2

4`+��

IKK 
p

to

Time (hrs)

33 ng/mL LPS

3.3 ng/mL LPS

0.33 ng/mL LPS

022��:04�� 5-ы)��+(;(�

0 3 6 60 30 3 6

5-ы)��:04��

TLR4

TL
R

4

4+�

TL
R

4

TL
R

4

4+�

TL
R

4

4`+��

TRIF

LPS 
H

IKK 
p
to

*W.

4`+��

TLR9

IKK 
p

to

100 nM CpG

33 nM CpG

330 nM CpG
022��:04��

0 3 6

5-ы)��:04��

0 3 6
Time (hrs)

5-ы)��+(;(�

0 3 6

Ø

TL
R

9
TL

R
9

G

I

Time (hrs)

TRIF

TLR3

IKK 
p

to

TL
R

3
TL

R
3

WVS`�0!*�

���ƄJ�P/�S�,�&�

����ƄJ�P/�S�,�&�
022��:04��

����ƄJ�P/�S�,�&�

0 3 6

5-ы)��:04��

0 3 6

5-ы)��+(;(�

0 3 6

Ø

Time (hrs)
0 3 6

5-ы)��+(;(�

0 3 6

022��:04��
33 ng/mL TNF

3.3 ng/mL TNF

0.33 ng/mL TNF

TNF

TN
FR TNFR1

TTR

3
TN

FR

TNF

ub

E

IKK 
p

to

Ø 5-ы)��:04��

0 3 6B

(3.3ng/mL TNF)

1
)͋
%

0 3 6
Time (hrs)

0 4
Time (hrs)

8

Iы)т-/- )4+4 

A

IKK 0ы)т 5-ы)
p

͓,͋%͂core model

TNFR TLR2 TLR3TLR4TLR9

̼

re
ce

pt
or

-
as

so
ci

at
ed

co
reSi
gn

al
lin

g 
M

od
ul

es

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.23.112862doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.23.112862
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

 
Figure 5. Kinetic models of receptor-associated signaling modules share circuit design principles that 
generate NFkB signaling codewords in a stimulus-specific manner. 
(A) A simple schematic suggesting that NFκB control is mediated by two regulatory networks: The core IkBa-
NFkB signaling module is downstream of receptor-associated signaling modules. Receptor-associated 
signaling modules determine IKK activity over time. Within the core module, IKK activity destabilizes IκBα, 
freeing NFκB to translocate to the nucleus, where it induces expression of IκBα.  
(B) The IkBa-feedback is required for generating the oscillatory component of NFkB dynamics characteristic 
of the response to TNF. Single-cell trajectories and heatmaps of NFκB responses to 3.3 ng/mL TNF in 
BMDMs derived from a mVenus-RelA, IkBa-deficient mouse.  
(C) A computational model predicts bifurcating behavior in NFκB dynamics based on the level of IKK 
activation. Left: model steady state values and primary oscillation frequency are shown as a function of 
sustained IKK level. Right: single simulated trajectories of IKK and NFκB activation, at each of four regimes 
identified in the steady state diagram.  
(D) The IkBa-feedback is sufficient sustain non-oscillatory NFkB characteristic of the response to LPS. Single 
cell heatmaps of NFκB responses to 3.3 ng/mL TNF and 10 ng/mL LPS in BMDMs derived from a mVenus-
RelA, IκBβ-/-IκBε-/- mouse. Below each heatmap is a histogram of each cell's first harmonic showing relative 
proportions of oscillatory cells. (n>400 individual cells for each experiment, representative of two independent 
replicates).  
 (E) - (I) Simplified schematics showing salient features of TNF, TLR1/2, TLR9, TLR4, and TLR3 signaling 
pathways, and the simulated IKK and NFκB activity (left/middle), and four measured median cell NFκB 
trajectories (right) at each of three log-spaced (TNF and TLR4) or four half-log spaced (TLR9, TLR1/2, and 
TLR3) doses of each receptor's cognate ligand. The complete reaction sets of the model are described in the 
Methods and Supplementary Table 7. 
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Figure 6. Oscillatory NFkB in response to PAMPs is a hallmark of feedforward TNF. 
(A) Activity onset times in single-cell NFκB responses to 100 nM CpG, grouped by dynamic subtypes of the 
response (persistent, oscillatory, or transient).  
(B) Early-phase TNF secretion dynamics from macrophages stimulated with 100 nM CpG, as measured by 
ELISA.  
(C) Top: median surface TNFR1 expression over time in BMDMs exposed to 1 ng/mL TNF or 100 nM CpG, 
monitored by flow cytometry. Bottom: median surface TNFR1 expression over time in wt or Tnf-/- BMDMs in 
response to 100 nM CpG (scaled to receptor levels before treatment). Error bars show standard deviations 
across 3 independently-performed experiments, and double asterisks indicate a p-value <0.001 using a 
Student's t-test comparing wild-type and knockout levels at a particular timepoint.  
(D) Single-cell heatmaps of NFκB activation mVenus-RelA BMDMs in response to 100 nM CpG, with or 
without feedforward TNF signaling blocked using saturating amounts (5 μg/mL) of soluble TNFRII co-injected 
with treatment.  
(E) Proportions of NFκB dynamic subtypes (off, transient, oscillatory, or persistent) as quantified from the data 
in (D). 
(F) Schematic depicting two cells; one cell (left) responds to CpG by activating NFkB and producing TNF that 
may act upon it in an autocrine manner. Another cell (right) does not respond to CpG (possibly because of 
low TLR9 expression), but responds to paracrine TNF and hence producing oscillatory NFκB activity. 
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