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SUMMARY

The N-terminal nuclear export sequence (NES) of
inhibitor of nuclear factor kappa B (NF-kB) alpha
(IkBa) promotes NF-kB export from the cell nucleus
to the cytoplasm, but the physiological role of this
export regulation remains unknown. Here we report
the derivation and analysis of genetically targeted
mice harboring a germline mutation in IkBa NES.
Mature B cells in the mutant mice displayed nuclear
accumulation of inactive IkBa complexes containing
a NF-kB family member, cRel, causing their spatial
separation from the cytoplasmic IkB kinase. This re-
sulted in severe reductions in constitutive and
canonical NF-kB activities, synthesis of p100 and
RelB NF-kB members, noncanonical NF-kB activity,
NF-kB target gene induction, and proliferation and
survival responses in B cells. Consequently, mice
displayed defective B cell maturation, antibody
production, and formation of secondary lymphoid
organs and tissues. Thus, IkBa nuclear export is
essential to maintain constitutive, canonical, and
noncanonical NF-kB activation potentials in mature
B cells in vivo.

INTRODUCTION

The NF-kB-Rel family of transcription factors regulates multiple

physiologic processes, including innate and adaptive immunity

and various stress responses (Ghosh and Hayden, 2008;

Perkins, 2007). In mammals, this consists of five members,
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RelA (p65), cRel, RelB, NFkB1 (p50), and NFkB2 (p52), which

form dimers, such as the most widely expressed RelA:p50 or

more tissue-restricted cRel homo- and heterodimers. A key

feature of NF-kB dimers is their cytoplasmic localization as inac-

tive complexes while bound tomembers of the inhibitor of NF-kB

(IkB) family, such as IkBa and IkBb. Activation of NF-kB requires

its release from IkB to allow nuclear migration and target gene

regulation. ‘‘Canonical’’ activation involves the activation of the

cytoplasmic IkB kinase (IKK) complex composed of IKKa

(IKK1), IKKb (IKK2), and IKKg (NF-kB essential modulator,

NEMO) that induces phosphorylation-regulated degradation of

IkB, releasing NF-kB dimers to the nucleus. This activation

pathway is induced by a variety of extracellular stimuli or stress

conditions and is principle in many NF-kB activation processes

(Ghosh and Hayden, 2008; Perkins, 2007). An alternative ‘‘non-

canonical’’ pathway exists, where the precursor of p52, p100,

is phosphorylated by the IKKa complex, without the need for

IKKb and NEMO. After phosphorylation, p100 is processed to

selectively activate a RelB:p52 heterodimer in response to

specific inducers. RelB:p52 complexes do not associate with

canonical IkB proteins and therefore are not directly regulated

by them. The noncanonical pathway is critical for lymphoid organ

development and immune cell development, among others

(Hoffmann and Baltimore, 2006; Sen, 2006).

Classically, IkB is thought to mask the nuclear localization

sequence (NLS) of RelA to prevent its nuclear entry, thereby

‘‘sequestering’’ NF-kB in the cytoplasm (Baeuerle and Baltimore,

1988). This mode of regulation appears to be the case for

complexes containing IkBb (Huang et al., 2000; Malek et al.,

2001; Tam et al., 2001). However, studies employing the nuclear

export inhibitor leptomycin B (LMB) provide contrasting

evidence that RelA:IkBa, cRel:IkBa, and RelA:IkB3 complexes

shuttle between the cytoplasm and the nucleus in their inactive

state (Carlotti et al., 2000; Huang et al., 2000; Johnson et al.,
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1999; Malek et al., 2001; Tam et al., 2000). In support of this

dynamic ‘‘nucleocytoplasmic shuttling’’ model, RelA:p50:IkBa

cocrystal structures indicate that IkBa masks the NLS of RelA

but spares that of p50 (Huxford et al., 1998). Moreover, p50

NLS is found to be critical for nuclear import of RelA:p50:IkBa

complexes (Huang et al., 2000; Malek et al., 2001; Tam et al.,

2001). An alternative model has also been implicated in which

NF-kB and IkBa complexes enter the nucleus separately but

exit together (Carlotti et al., 2000; Tam et al., 2000). The mecha-

nism of nuclear export of the complexes also appears intricate,

possibly involving multiple distinct nuclear export sequences

(NESs) present on IkBa, IkB3, and RelA (Huang et al., 2000;

Johnson et al., 1999; Malek et al., 2001; Tam et al., 2000). Inter-

estingly, other NF-kB family members, such as cRel and p50, do

not contain NES motifs in their sequences, suggesting that their

export depends on a nuclear export function provided primarily

by IkBa. However, these studies employed cell culture models

often utilizing LMB and/or transient overexpression of respective

proteins, so the physiological importance of this NES-mediated

shuttling mechanism has been questioned (Ghosh and Karin,

2002). Indeed, there has not been any direct in vivo study to

evaluate the physiological role of nuclear export of any of the

NF-kB:IkB complexes and mechanisms implicated.

To address this question, we created a genetically targeted

mouse model harboring a germline mutation in the N-terminal

NES of IkBa (Huang et al., 2000). Here, we have described the

mechanistic and phenotypic characterization of the mutant

mice and cells derived from them. Our results reveal a surprising

finding that the nuclear export function mediated by IkBa N-NES

is essential for basal, canonical, and noncanonical NF-kB activa-

tion in B lymphocytes, maturation of B cells, and formation of

several secondary lymphoid tissues. Our study reveals insight

into important physiological and cell type-selective functions of

nuclear export regulation of the NF-kB-IkB signaling system

in vivo.

RESULTS

Generation of NfkbiaNES/NES Genetically Targeted Mice
We created NfkbiaNES/NES mice harboring a triple point mutation

in the N-terminal NES of IkBa, M45A, L49A, and I52A (Huang

et al., 2000) in the germline (Figures S1A and S1B available on-

line). The heterozygous Nfkbia+/NES mice were backcrossed

with C57BL/6J mice for 5–7 generations. Homozygous mutant

mice were also bred to each other. These studies demonstrated

that both male and female NfkbiaNES/NES mice were born in

a Mendelian ratio, fertile, and indistinguishable from their

wild-type (WT) counterparts based on size, weight, or general

appearance at sexual maturity (not shown). Allele-specific RT-

PCR analysis of total RNA (Figure S1C) and immunoblot analysis

of total protein extracts from several tissues (Figure S1D)

demonstrated the expression of the mutant gene and the protein

in NfkbiaNES/NES mice. The migration of the mutant protein in

sodium dodecyl sulfate polyacrylamide gel electrophoresis

was partially retarded compared to WT protein (Figure S1D),

a phenomenon also observed when the protein was transiently

expressed in HEK293 cells (not shown). This suggests that the

property is an intrinsic migration anomaly resulting from the

substitution mutations introduced.
Abnormal Formation of Secondary Lymphoid Organs
and Tissues in NfkbiaNES/NES Mice
A closer inspection revealed that the inguinal lymph nodes were

often bilaterally absent in the mutant mice (Figure 1A) and, when

present, they were considerably smaller and showed disrupted

B cell organization (Figures 1B and 1C). Therefore, we next

examined other lymphoid tissues and organs more closely.

Although other lymph nodes analyzed (cervical, mesenteric,

and lumber) were comparable to WT numbers, intestine-associ-

ated Peyer’s patches, mucosal lymphoid organs involved in

protection from intestinal microbes as well as production of

IgA, were markedly reduced in number and size in the mutant

mice (Figures 1D and 1E). Finally, although the size and weight

of spleens were indistinguishable between WT and mutant litter-

mates, the organization of B cells and marginal zone (MZ) archi-

tecture were also disrupted in the spleen of the mutant mice

(Figures 1F and 1G). In contrast, based on morphology, weight,

and histology, the thymus was indistinguishable between WT

and mutant mice (Figure 1H and data not shown). Thus, IkBa

N-NES is essential for proper formation of several secondary

lymphoid organs and tissues.

Impaired Maturation of B Cells in NfkbiaNES/NES Mice
We next assessed the development and maturation of

lymphocytes in the bone marrow (BM), spleen, and thymus of

NfkbiaNES/NES mice based on cell surface marker expression

(Hardy and Hayakawa, 2001). An expanded population of pre-

B cells (B220+CD43�IgM�) was observed inmutant mice leading

to slightly increased BM B cell numbers, but overall total BM cell

numbers were comparable between WT and mutant mice

(Figures S2A–S2D). Despite the increase in the absolute number

of immature B cells (B220+IgM+) in NfkbiaNES/NES mice, the pop-

ulation of mature B cells (B220hiIgM+) in BM was decreased

(Figures S2B and S2D). In the spleen, the percentage of T cells

was increased and that of B cells was decreased (Figure 2A),

but the number of total Thy1.2+ (Figure 2B) or CD4+ and CD8+

T cells in the spleen was similar in NfkbiaNES/NES mice (Table 1).

Similarly, thymic T cell development was indistinguishable

between mutant and WT mice based on CD4 and CD8 staining

(Figures 2C and 2D). The difference in the percentage of T and

B cells in the spleen was due to the reduction of the number of

B220+ B cells (Figure 2B), involving reductions of the transitional

2 (T2) and follicular (FO), but not transitional 1 (T1) B cell fractions

(Figures 2E, 2F, and 2I). The MZ B cells (Oliver et al., 1997) were

also decreased (Figures 2F–2I). Additionally, the self-renewing

mature B1a and B1b B cells that reside in the peritoneal and

pleural cavities (Fagarasan et al., 2000) were largely normal but

the population of peritoneal B2 B cells was substantially reduced

in NfkbiaNES/NES mice (Figures S2E and S2F). Finally, there was

a statistically significant reduction of serum IgA, IgG1, and

IgG2b amounts in the mutant mice (Figure 2J). Taken together,

we conclude that the NES mutation in IkBa impairs B cell

maturation, resulting in reduction of T2, FO, and MZ B cells.

Moreover, the failure of BM cells derived from NfkbiaNES/NES

mice to properly reconstitute T2, FO, andMZ B cells in irradiated

B cell-null Jak3�/� (Figures 3A–3D; Nosaka et al., 1995; Thomis

et al., 1995) or Rag2�/� (not shown) mice demonstrated that

these B cell defects in NfkbiaNES/NES mice were hematopoieti-

cally cell intrinsic. The above phenotypes observed in
Immunity 34, 188–200, February 25, 2011 ª2011 Elsevier Inc. 189



Figure 1. Defects of Proper Formation of Spleen, Inguinal LNs, and PPs in NfkbiaNES/NES Mice

(A) Photographs of inguinal LNs in situ fromWT andNfkbiaNES/NES littermates (top). LNs were counted inWT (n = 35) andNfkbiaNES/NES (n = 35) mice and displayed

graphically (bottom).

(B) Inguinal LNs in WT and NfkbiaNES/NES mice were analyzed by hematoxylin and eosin (H&E) stain and immunostaining with anti-B220.

(C) Inguinal LN volume was derived by the formula width2 3 length/2 of histologic sections from wild-type (n = 32) and NfkbiaNES/NES (n = 11) mice and displayed

graphically. The difference is statistically significant (*p < 0.001, unpaired t test).

(D) PPs were counted from WT (n = 6) and NfkbiaNES/NES (n = 7) mice and displayed graphically.

(E) Aggregate size of PPs were calculated as in (C) from samples in (D). Data are mean ± SD, *p < 0.001 versus WT.

(F) Spleens from WT and NfkbiaNES/NES mice were analyzed by H&E stain and immunostaining with anti-B220, 43 objective.

(G) Immunofluorescent histochemical analysis of the spleens from WT or NfkbiaNES/NES mice were analyzed with anti-MOMA-1 and anti-IgM. MZ B cell layer is

external to the ring of metallophilic macrophages.

(H) Thymii from WT or NfkbiaNES/NES mice were analyzed by H&E stain, 43 objective.
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NfkbiaNES/NES mice were also detected at variable amounts in

heterozygous Nfkbia+/NES mice (Table 1), demonstrating that

a single copy of themutant allele had a variably dominant impact

on these biological processes.

Diminished Constitutive and Canonical Activation
of NF-kB in NfkbiaNES/NES B Cells
To determine whether NF-kB activation was affected in B cells of

themutant mice, we isolated splenic B cells and performed elec-

trophoretic mobility shift assays (EMSA) and supershift analyses.

We found that a constitutive NF-kBcomplex primarily composed

of cRel and p50 or p52 (Figure 4A, upper complex) was severely

reduced in NfkbiaNES/NES B cells compared to WT cells. When

these B cells were exposed to anti-IgM to stimulate B cell

receptor signaling, we also observed activation defects

(Figure 4B). Similarly, mutant B cells were incapable of efficiently

activating NF-kB in response to lipopolysaccharide (LPS)

(Figure 4C), demonstrating that mutant B cells were defective

in canonical NF-kB activation. Anti-IgM- and LPS-induced

degradation of IkBa was less efficient in mutant B cells (Figures

4D and 4E), despite similar IKK activation as observed after LPS

stimulation (Figure 4F) in WT and NfkbiaNES/NES B cells. IkBb

degradation appeared to be induced at comparable amounts

(Figures 4D and 4E). When we examined the subcellular

localization of IkBa by immunofluorescence analysis, it was

predominantly localized in the nucleus in mutant B cells

(Figures 4G–4I). Similarly, more cRel was found in the nucleus

(Figures 4G–4I) even though it did not bind DNA (Figure 4A).

Coimmunoprecipitation analysis showed that IkBa was associ-

ated with cRel (Figure 4J). We were unable to obtain similarly

high nuclear IkBa and cRel amounts in mutant B cells by a cell

fractionation approach, probably because of technical limita-

tions (Figure S3A). In total, the results suggest that spatial sepa-

ration between active cytoplasmic IKK and nuclear inactive cRe-

l:IkBa complexes prevented efficient canonical NF-kB activation

in NfkbiaNES/NES B cells. Interestingly, RelA subcellular localiza-

tion was perturbed to a much smaller extent in B cells (Figures

S3B andS3C), possibly because of the presence of a compensa-

tory NES in RelA (Harhaj and Sun, 1999; Tam et al., 2001).

Defective Noncanonical NF-kB Activation
in NfkbiaNES/NES B Cells
In the above coimmunoprecipitation analysis, we noted that the

steady-state amount of cRel was reduced in mutant B cells

compared to WT cells (Figure 4J). The expression of the genes

encoding several NF-kB family members is controlled by

NF-kB in B cells because of the presence of kB elements in their

promoters (Grumont and Gerondakis, 1994; Perkins, 2007).

Accordingly, expression of cRel, RelB, p105 (p50), and p100

(p52) in the mutant B cells was reduced compared to the WT

littermate control (Figure 5A). Expression of RelA in mutant B

cells was also slightly reduced. Quantitative real-time

polymerase chain reaction analysis showed that amounts of

transcripts encoding cRel, RelB, and p100 (p52) were consider-

ably lower in the NfkbiaNES/NES B cells (Figure 5B). Moreover,

although the transcript of the mutant Nfkbia gene was not statis-

tically significantly different (not shown), the amount of mutant

IkBa protein was higher in mutant B cells (Figures 4D, 4E, 4J,

and 5A). This was also evident in Nfkbia+/NES B cells (Figure 5A).
This is due to higher stability of mutant IkBa protein (Figure 5C),

consistent with its resistance to signal-induced degradation

(Figures 4D and 4E). The relative stability of the mutant IkBa

would lead to a greater steady-state pool of the mutant as

compared to WT IkBa. This could explain why Nfkbia+/NES

mice also had considerable defects in B cell maturation and

development of lymph nodes and Peyer’s patches (Table 1),

functioning as a dominant-suppressive IkBa mutant protein

in vivo. Finally, IkBb was slightly reduced in the mutant B cells

(Figures 4D, 4E, 4J, and 5A), possibly reflecting the reduced

expression of its partner NF-kB proteins in these cells. Although

B cell activating factor-receptor (BAFF-R) expression was

normal (Figure S4A) and BAFF-induced p100 processing was

evident (Figure 5D), there was a severe defect in activation of

BAFF-induced noncanonical NF-kB activation containing RelB

(Figure S4B) in NfkbiaNES/NES B cells (Figure 5E). In contrast,

basal expression of p100 and all other NF-kB family members

was similar between mouse embryonic fibroblasts (MEFs)

derived fromNfkbiaNES/NES andWT littermate controls (Figure 5F;

Figure S4C). Noncanonical NF-kB activity induced by anti-lym-

photoxin beta (LTb) was also similar in these cells (Figure 5G).

Canonical activation induced by tumor necrosis factor alpha

(TNF-a) or LPS was also mostly normal in MEFs derived from

NfkbiaNES/NES mice (Figure S4D). Thus, the reduced basal

NF-kB family member expression and canonical and noncanon-

ical NF-kB activation defects seen in mutant B cells were cell

type-selective phenotypes. This was associated with a marked

reduction in constitutive activation of cRel complexes along

with constitutive nuclear cRel:IkBa complexes that were resis-

tant to signal-induced activation in mature B cells. Taken

together, these results demonstrate that a nuclear export defect

in IkBa caused large-scale perturbations in the capacity of B

cells to maintain NF-kB activation potentials through constitu-

tive, canonical, and noncanonical pathways.

Defective Proliferation and Survival
in NfkbiaNES/NES B Cells
Deficiencies in canonical and noncanonical NF-kB activation are

associated with cellular proliferation and apoptosis defects in B

cells (Ghosh and Hayden, 2008; Vallabhapurapu and Karin,

2009). Consistent with severe canonical and noncanonical

NF-kB activation defects, we found that B cells (both AA4.1+

immature and AA4.1� mature) from NfkbiaNES/NES mice dis-

played reduced proliferation rates compared toWT cells (Figures

6A and 6B). This correlatedwith reduced entry ofNfkbiaNES/NESB

cells into S and G2-M phases upon anti-IgM+interleukin-4 (IL-4)

or LPS stimulation (Figures 6C and 6D). Upon stimulation, more

mature B cells from NfkbiaNES/NES mice underwent apoptosis

than those from WT cells (Figure 6D). Accordingly, expression

of Myc and Bcl2l1 (encoding protein BCLxL), both NF-kB target

genes involved in proliferation and survival, respectively, was

markedly reduced in mutant B cells (Figures 6E and 6F). Thus,

IkBa N-NES is also critical for B cell proliferation and survival.

In contrast, proliferation of thymic and splenic T cells from

both WT and NfkbiaNES/NES mice in response to anti-CD3, anti-

CD3+anti-CD28, or anti-CD3+IL-2 was indistinguishable

(Figure 6G). Subcellular localization of mutant IkBa in

NfkbiaNES/NES T cells wasmostly normal in association with cyto-

plasmic RelA (Figures S5A and S5B). A flurry of recent reports
Immunity 34, 188–200, February 25, 2011 ª2011 Elsevier Inc. 191



Immunity

In Vivo Role of IkBa Nuclear Export

192 Immunity 34, 188–200, February 25, 2011 ª2011 Elsevier Inc.



Immunity

In Vivo Role of IkBa Nuclear Export
demonstrates that cRel plays an essential role in the develop-

ment of regulatory T cells by promoting Foxp3 transcription

(Deenick et al., 2010; Hori, 2010; Isomura et al., 2009; Long

et al., 2009; Ruan et al., 2009; Vang et al., 2010; Visekruna

et al., 2010; Zheng et al., 2010), so we also investigated whether

regulatory T cells were affected in the mutant mice. Analysis of

a limited number of WT and NfkbiaNES/NES mice showed statisti-

cally significant developmental defects of this cell type in the

mutant mice (Figures S5C and S5D). Similarly, cRel and p50

have also been implicated in the development of CD4+

memory-like T cells (Zeng et al., 2008; Zheng et al., 2003). Like-

wise, we also found statistically significant reductions of CD4+,

but not CD8+, memory-like T cells in the mutant mice (Figures

S5E and S5F). Thus, in these T cell subsets, cRel activities are

probably disrupted in the NfkbiaNES/NES mice. Overall, our data

demonstrate that a defect in the IkBa N-NES function causes

multiple unexpected biochemical and functional perturbations

in mature B cells and subsets of T cells and malformation of

multiple secondary lymphoid tissues and organs.

DISCUSSION

In the present study, we demonstrated that IkBa N-NES-medi-

ated export of NF-kB has important physiological roles, particu-

larly for maturation of B cells and proper formation of several

secondary lymphoid organs and tissues. The primary molecular

defect appears to be the abnormal nuclear localization of

inactive cRel:IkBa complexes, which makes them resistant to

signal-induced IkBa degradation and cRel complex activation

in NfkbiaNES/NES B cells. Because the mutant protein accumu-

lates over the WT protein (because of its resistance to degrada-

tion), it also functions as a dominant-suppressive mutant

causing heterozygous Nfkbia+/NES mice to similarly show signif-

icant in vivo defects. Consistent with these findings, some of the

phenotypes observed in NfkbiaNES/NES mice were reminiscent of

those previously described in Rel�/� mice, such as reduced

proliferation of splenic B cells and a reduction of serum IgG1

(Köntgen et al., 1995). Furthermore, NfkbiaNES/NES mice also

displayed reductions in FO andMZ B cell populations and serum

IgA previously observed in Rel�/�Nfkb1�/� double-mutant mice

(Pohl et al., 2002). In contrast, NfkbiaNES/NES mice showed

normal peritoneal B1 B cell development, unlike Rel�/�Nfkb1�/�
Figure 2. Severely Impaired B Cell Maturation in NfkbiaNES/NES Mice

Comparisons between WT and NfkbiaNES/NES mice are shown in each panel.

(A) Splenocytes were stained with anti-B220 and anti-Thy1.2. Percentages abov

(B) The numbers of total splenocytes and total splenic B and T cells are displaye

(C) Thymocytes fromWTandNfkbiaNES/NESmicewere stainedwith anti-CD4andan

(D) The numbers of total thymocytes and DN, DP, CD4+, and CD8+ T cells in the

(E) Splenocytes were stained with anti-B220, anti-IgM, and anti-IgD. For cells g

shown.

(F) Splenocytes were stained with anti-IgM, anti-CD21, and anti-CD23. For cells g

cells gated on CD23�, T1 (CD21loIgMhi) and MZ (CD21hiIgMhi) B cells are shown

(G) Splenocytes were stained with anti-B220, anti-CD21, and anti-CD23. For ce

(H) Top: Splenocytes were stained with anti-B220, anti-CD1d, and anti-CD9. For

were stained with anti-IgM, anti-CD1d, and anti-CD23. For gated lymphoid cells

(I) The numbers of T1, T2, FO, and MZ B cells obtained from (F) are displayed g

(J) Serum Ig amounts were determined by ELISA. The mean value and standard

Data shown are representative of or obtained from 7 (A–G, I), 2 (H), or 10 (J) mic
mice (Pohl et al., 2002). It is likely that the amount of inhibition of

cRel:p50 activity or other cRel-associated complexes is not

sufficiently inhibited in B1 B cells of NfkbiaNES/NES mice to yield

profound defects observed in Rel�/�Nfkb1�/� mice.

We also observed severe defects in noncanonical NF-kB

activation in NfkbiaNES/NES B cells. This was a surprising finding

because IkBa does not bind RelB:p52 heterodimers and there-

fore it cannot directly inhibit noncanonical NF-kB activity.

Accordingly, BAFF-induced p100 processing to p52 could be

readily detected, indicating that the noncanonical signaling

pathway per se is not defective in NfkbiaNES/NES B cells. More-

over, the noncanonical activation defect was specific to mutant

B cells, because we did not find any defect in LTbR-induced

noncanonical p100 processing or RelB:p52 activation in

NfkbiaNES/NES MEFs. Instead, our data indicate that the nonca-

nonical activation defects in NfkbiaNES/NES B cells arose from

the reduced transcripts for Nfkb2 and Relb genes and resulting

reductions in their encoded noncanonical NF-kB proteins. Ferch

et al. (2007) recently reported that B cell receptor (BCR) signaling

induces Bcl10- and MALT1-dependent cRel activation whereas

Bcl10, but not MALT1, is involved in RelA activation, thereby

separating the mechanism of these canonical complex activa-

tion pathways. In addition, Stadanlick et al. (2008) and Castro

et al. (2009) also reported that ‘‘tonic’’ BCR-stimulated NF-kB

activity during B cell maturation promotes the de novo produc-

tion of cRel. They further showed that this cRel synthesis is

required for sustained cRel activity and de novo p100 synthesis,

which permitted BAFF (BLyS)-mediated noncanonical RelB:p52

activation and B cell survival. Consistent with these reports,

severe defects in constitutive (or tonic) and anti-IgM-induced

cRel complex activity observed in mature NfkbiaNES/NES B cells

are associated with reduced expression of Rel and Nfkb2 genes

and proteins. Moreover, we further found that expression of Relb

mRNA and protein was also considerably reduced in mature

NfkbiaNES/NES B cells. Transcription of Rel, Nfkb2, and Relb

(as well as Nfkb1) is controlled by NF-kB in B cells (Castro

et al., 2009; Grumont and Gerondakis, 1994; Perkins, 2007).

Thus, nuclear export of IkBa is required for tonic (or constitutive)

and sustained cRel activation, cRel-mediated synthesis of non-

canonical NF-kB components, p100 and RelB, and the crosstalk

between canonical and noncanonical NF-kBpathways inmature

B cells. Defects in agonist-induced proliferation and apoptosis,
e each box indicate cells in the gated lymphoid population.

d graphically.

ti-CD8.Percentages indicate cells in thegated lymphoidpopulation (CandE–G).

thymus of WT and NfkbiaNES/NES mice are displayed graphically.

ated on B220+, T1 (IgMhiIgD�), T2 (IgMhiIgD+), and FO (IgMloIgD+) B cells are

ated on CD23+, T2 (CD21hiIgMhi) and FO (CD21intIgMlo) B cells are shown. For

.

lls gated on B220+, MZ B cells (CD21hiCD23lo) are shown.

cells gated on B220+, MZ (CD1d+CD9+) cells are shown. Bottom: Splenocytes

, T2 (CD1d+CD23+) and MZ (CD1d+CD23�) cells are shown.

raphically.

deviation of the serum Ig amounts were calculated.

e of each genotype.
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Table 1. SummaryofDefectsSeeninNfkbia+/NESandNfkbiaNES/NES

Mice

Phenotypes Nfkbia+/+ Nfkbia+/NES NfkbiaNES/NES

B Cells (3106)

Bone marrow (6)

Total B 9.3 ± 1.1 12.1 ± 2.5 11.7 ± 2.3

Pro pre-B 4.2 ± 0.7 6.8 ± 1.5** 7.3 ± 1.3**

Immature B 1.3 ± 0.2 2.1 ± 1.0 2.0 ± 0.8

Mature B 2.6 ± 0.4 2.0 ± 0.5 1.3 ± 0.4**

Spleen (7)

Total B 26.6 ± 7.1 14.9 ± 2.6** 12.9 ± 3.3**

Transitional T1 1.3 ± 1.5 1.3 ± 0.7 1.5 ± 1.1

Transitional T2 5.7 ± 2.0 1.9 ± 1.1** 0.8 ± 0.7**

Follicular 12.4 ± 3.4 7.8 ± 2.0** 4.7 ± 1.3**

Marginal zone 0.7 ± 0.2 0.3 ± 0.2** 0.2 ± 0.1**

Lymph nodes (4)

Total B 1.0 ± 0.5 0.3 ± 0.1* 0.2 ± 0.1*

T Cells (3106)

Thymus (7)

Total T 95.6 ± 30.1 84.7 ± 26.0 64.6 ± 26.3

CD4�CD8� 2.0 ± 0.8 1.5 ± 0.4 1.3 ± 0.6

CD4+CD8+ 83.7 ± 25.9 73.6 ± 23.6 54.8 ± 21.9

CD4+CD8� 6.7 ± 2.5 6.7 ± 1.6 6.0 ± 2.7

CD4�CD8+ 2.8 ± 1.1 2.7 ± 0.9 2.2 ± 1.2

Spleen (7)

Total T 19.6 ± 4.4 18.5 ± 2.3 23.3 ± 4.9

CD4+CD8� 12.0 ± 2.9 11.8 ± 1.6 14.7 ± 3.4

CD4�CD8+ 7.5 ± 1.7 6.7 ± 0.9 8.5 ± 1.8

Lymph nodes (4)

Total T 3.7 ± 1.2 1.9 ± 0.2* 1.9 ± 1.0

CD4+CD8� 2.2 ± 0.7 1.2 ± 0.1* 1.2 ± 0.6

CD4�CD8+ 1.5 ± 0.5 0.7 ± 0.1* 0.7 ± 0.4*

Inguinal LNs (16)

Mean number 2.0 1.8 0.7**

Mean volume 3.4 ± 1.7 2.0 ± 0.9* 1.2 ± 0.6**

Peyer’s Patches (5–7)

Mean number 6.5 6.4 1.7**

Aggregate volume (mm3) 30.3 ± 8.8 17.8 ± 4.3** 2.3 ± 1.7**

Numbers in parentheses refer to the number of mice analyzed for the

values shown. Significance at *p < 0.05 or **p < 0.01.

Figure 3. Severely Impaired B Cell Maturation in Recipients of BM

from NfkbiaNES/NES Mice
Sublethally irradiated Jak3�/� mice were transplanted with BM from WT

(Jak3�/� + Nfkbia+/+) or NfkbiaNES/NES (Jak3�/� + NfkbiaNES/NES) mice. Irradi-

ated Jak3�/�micewithout BM transplantation were used as a negative control.

(A) BM from the recipient mice were stained with anti-B220 and anti-IgM.

Percentages here and below indicate cells in the gated lymphoid population.

(B) Splenocytes from the recipients were stained with anti-B220 and anti-

Thy1.2.

(C) Splenocytes from the recipients were stainedwith anti-IgM, anti-CD21, and

anti-CD23. In cells gated onCD23+, T2 and FOB cells are shown. In cells gated

on CD23�, T1 and MZ B cells are shown.

(D) Splenocytes from the recipients were stained with anti-B220, anti-CD21,

and anti-CD23. In cells gated on B220+, MZ B cells are shown.

Data are representative of five recipients transplanted with each genotype

of BM. Controls in (C) and (D) are not shown due to very low percentages.

Immunity

In Vivo Role of IkBa Nuclear Export
expression of target genes associated with these processes,

and B cell maturation defects at the T1-T2 transition are all

consistent with this model.

In contrast to the defects of B cell maturation, the abnormal

formation of the spleen, inguinal lymph nodes (LN), and Peyer’s

patches (PP) observed in NfkbiaNES/NES mice have not been

reported in Rel�/� or Rel�/�Nfkb1�/� mice (Köntgen et al.,

1995; Pohl et al., 2002). The proper development of LN and PP

requires the convergence of both canonical and noncanonical

NF-kB activation pathways through a combined action of

lymphotoxin (LT)a1b2-LTb receptor (R), tumor necrosis factor

(TNF) a, or LTa3-TNFR1, and receptor activator of nuclear factor
194 Immunity 34, 188–200, February 25, 2011 ª2011 Elsevier Inc.
kappa-B ligand (RANKL-RANK) pathways (Drayton et al., 2006;

Hoffmann and Baltimore, 2006; Weih and Caamaño, 2003). In

contrast to Nfkb1NES/NES mice, Rankl�/� and Rank�/� mice

show LN defects but the PP development and spleen architec-

ture are largely normal (Dougall et al., 1999; Kong et al., 1999).

Similarly, Tnfr1�/� and Traf2�/� mice show PP defects but

have normal LNs and spleen (Piao et al., 2007), again differing

from NfkbiaNES/NES mice. Finally, Lta�/� and Ltbr�/� mice lack



Figure 4. Defects in NF-kB Activation and cRel and IkBa Localization in NfkbiaNES/NES B Cells

(A) Total cell lysates of unstimulated splenic AA4.1�mature B cells fromWT andNfkbiaNES/NESmicewere analyzed by a supershift assay to detect different NF-kB

family members.

(B and C) Splenic AA4.1�mature B cells of WT andNfkbiaNES/NESmice were stimulated with anti-IgM (10 mg/mL, B) and LPS (10 mg/mL, C) for the indicated times.

Total cell extracts were made and NF-kB activity was measured by EMSA with an Igk-kB probe. Variable increases in p50 homodimer binding seen in (B) are

probably due to enhanced detection of p50 homodimer that has a lower affinity to the Igk-kB site used because of the lack of competition by high-affinity

heterodimer complexes for a limited amount of probe used. A short exposure time is shown in (C) to highlight the difference of induced activity (the basal activity

difference is thus less evident because of underexposure).

(D and E) Samples in (B) and (C) were analyzed by immunoblotting with anti-IkBa, -IkBb, and -actin.
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all LN and PP and exhibit a disorganized spleen (Banks et al.,

1995; De Togni et al., 1994) whereas Ltb�/� mice lack peripheral

LN and PP but retain mesenteric and cervical LN (Koni et al.,

1997). Lta�/� and Ltb�/� mice also show a reduction in serum

IgA (Koni et al., 1997) similar to that seen in NfkbiaNES/NES

mice, consistent with the role of mucosal lymphoid organs,

such as PPs, as the predominant producers of IgA (Kelsall,

2008). Clues to why NfkbiaNES/NES mice have defective LN

organogenesis confined to the inguinal LNs may lie in the fact

that development of LN groups requires distinct amounts of

signaling as highlighted by mice deficient in LTa, LTb, and

LTbR (Banks et al., 1995; De Togni et al., 1994; Koni et al.,

1997). Thus, both canonical and noncanonical NF-kB functions

in critical cell types, including B cells, are probably sufficiently

perturbed in NfkbiaNES/NES mice to induce the observed

secondary lymphoid organ and tissue defects that were not

observed in Rel�/� or Rel�/�Nfkb1�/� mice.

Unlike defects in B cells and secondary lymphoid organs and

tissues, based on CD4 and CD8 cell surface staining alone we

did not observe perturbations in CD4+ and CD8+ thymic T cell

development or their numbers in thymus and spleen of the

NfkbiaNES/NES mice. In T cells, it is reported that IkBa is mostly

associated with RelA, not cRel (Sen, 2006; Tam et al., 2001).

RelA, but not cRel or p50, harbors an intrinsic NES motif (Harhaj

and Sun, 1999; Tam et al., 2001). Accordingly, subcellular local-

ization of inactive RelA complexes in NfkbiaNES/NES thymic and

splenic T cells was mostly cytoplasmic even though a complex

between RelA and mutant IkBa could be readily detected.

Thus, it appears that the RelA NES compensated for the lack

of nuclear export function in NES mutant IkBa. However,

consistent with recent reports demonstrating the role of cRel in

the development of regulatory T cells (Deenick et al., 2010;

Hori, 2010; Isomura et al., 2009; Long et al., 2009; Ruan et al.,

2009; Vang et al., 2010; Visekruna et al., 2010; Zheng et al.,

2010), we found evidence for developmental defects of this

cell type in NfkbiaNES/NES mice. In addition, CD4+ but not CD8+

memory-like T cells in the mutant mice were also reduced,

consistent with previous reports on the role of cRel and p50 in

the development of CD4+ memory-like T cells (Zeng et al.,

2008; Zheng et al., 2003). Therefore, molecular defects arising

from defective IkBa export also impinge on these T cell subsets

and more analyses are warranted to fully investigate molecular,

biological, and pathological consequences of reduced regula-

tory and memory-like T cells in NfkbiaNES/NES mice.

In conclusion, derivation and analysis of NfkbiaNES/NES mice

revealed the surprisingly widespread role for IkBa N-NES

in vivo. To our knowledge, NfkbiaNES/NES mice represent the first
(F) The IKK complex was immunoprecipitated from B cells stimulated with LPS (1

66aa) as substrate.

(G) Splenic AA4.1� mature B cells were fixed and stained with anti-IkBa and ant

(H) Percentages ±1 SD of pronounced nuclear staining for each protein as in (G) we

a statistically significant difference p < 0.001.

(I) Quantitation of nuclear and cytoplasmic IkBa and cRel in splenic AA4.1� matur

Mean intensity of staining in the nuclear and cytoplasmic compartments of 10 ran

expressed as a ratio of mean nuclear intensity/mean cytoplasmic intensity (N/C)

significant difference in N/C ratio of IkBa and cRel between WT and mutant cells

(J) Lysates obtained from splenic AA4.1� mature B cells of WT and NfkbiaNES/N

immunoblotting with anti-cRel, -IkBa, and -IkBb (left). Inputs were blotted with th
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in vivo model to directly evaluate the role of a specific NES

motif in the regulation of the NF-kB-Rel family of transcription

factors. Other mechanisms that control subcellular distribution

of NF-kB-Rel proteins, including RelA NES, IkBa C-NES, and

IkB3 NES, could also play important roles in a cell type- or

context-dependent manner. Resolving in vivo roles of these

discrete mechanisms will necessitate creation and analysis of

additional animal models. Similarly, although nucleocytoplasmic

regulation mediated by specific NES motifs has been docu-

mented for many other critical regulatory factors, including the

tumor suppressor p53 (Chu et al., 2007; Terry et al., 2007), direct

examination of the functions of most of these NES-mediated

export mechanisms in vivo remain to be performed. Additional

in vivo studies in which specific NES motifs are disrupted will

help broaden our understanding of the control of biological and

pathological processes via active nuclear export of regulatory

factors.

EXPERIMENTAL PROCEDURES

Generation of NfkbiaNES/NES Mice

In brief, the targeting construct harboring a genomicNfkbia locus with the triple

IkBaN-NESmutation (M45A,L49A,I52A) introduced within exon 1was electro-

porated into 129/Sv R1 ES cells. Two correctly targeted ES cell clones

(11D and 12G clones; Figure S1B) were each injected into C57BL/6J blasto-

cysts to generate chimeras. Germline-transmitted Nfkbia+/NES lines were

then generated and subsequently crossed with EIIa-cre mice to delete the

neo cassette in germline (Lakso et al., 1996), and the mice with mutant

Nfkbia allele lacking both the neo cassette and the EIIa-cre gene were back-

crossed onto the C57BL/6J strain for 5–7 generations. Two independent

Nfkbia+/NES lines were derived from the original two ES clones. The bulk of

the data presented is derived from the analysis of 11D mouse line. Similar

results were also confirmed in a limited analysis of the 12G line. See Supple-

mental Experimental Procedures for further details.

Lymph Node and Peyer’s Patch Analyses

Inguinal LNs were enumerated in situ by visual examination. LN volume was

derived from the formula width2 3 length/2 of histologic sections. PPs were

enumerated by visual examination of flushed small bowels. The aggregate

volume of PPs in each mouse was determined by the sum of estimated

volumes for each PP as above.

Flow Cytometry

Single-cell suspensions from BM, spleen, and lymph nodes were treated with

Gey’s solution to lyse red blood cells and then resuspended in phosphate-

buffered saline (PBS) with 2% fetal bovine serum (FBS). The cells were stained

with a combination of fluorescence-conjugated antibodies. Allophycocyanin

(APC)-conjugated anti-B220 (17-0452), anti-IgM (17-5790-82), anti-CD4

(17-0042-82), fluorescein isothiocyanate (FITC)-conjugated anti-Thy1.2

(11-0902), anti-BAFFR (11-5943), phycoerythrin (PE)-conjugated anti-CD1d

(12-0011), and anti-CD9 (12-0091) antibodies and PE-Cy5.5-conjugated
0 mg/mL for 30 min) and an IKK kinase assay was performed with GST-IkBa(1-

i-cRel and counterstained with Hoechst dye.

re derived from triplicate counts of random 200 cells. **paired t test determined

e B cells. Images of stained cells as in (G) were analyzed by Image J software.

dom cells stained with each antibody, normalized to background intensity, and

are shown as columns with 1SD bars. Paired t test determined a statistically

, **p < 0.001.
ES mice were incubated with anti-cRel and the precipitates were analyzed by

e same antibodies and an anti-tubulin loading control (right).



Figure 5. Reduced Expression of Noncanonical NF-kB Members and Activation in NfkbiaNES/NES B Cells

(A) Splenic AA4.1� mature B cells were purified from Nfkbia+/+, Nfkbia+/NES, and NfkbiaNES/NES mice and total cell extracts were made. The expression of NF-kB

and IkB family members were analyzed by immunoblotting.

(B) Total RNA from splenic AA4.1� mature B cells of WT and NfkbiaNES/NES mice were analyzed by an RT2 Profiler Mouse NF-kB Signaling Pathway PCR Array

(SA Biosciences) and the statistical analysis was done according to the manufacturer’s instructions.

(C) Splenic AA4.1� mature B cells of WT and NfkbiaNES/NESmice were treated with cycloheximide (25 mg/ml) for indicated times or with LPS alone (10 mg/ml, 1 hr)

and total cell lysates were analyzed for IkBa and IkBb degradation by immunoblotting. The relative degradation as measured by laser scanning of each band

followed by NIH ImageJ analysis normalized to actin loading control showed that the rate of mutant IkBa degradation was 2-fold slower than that of the WT

protein.

(D) Splenic AA4.1� mature B cells purified from WT and NfkbiaNES/NES mice were treated with BAFF (500 ng/mL) for 24 hr. The processing of p100 to p52 was

detected by immunoblot with an anti-p52.

(E) EMSA analysis was performed with samples in (D) via an Igk-kB probe.

(F) MEF cells generated fromNfkbiaNES/NES andWTmice were treatedwith anti-LTbR (0.5 mg/ml) for the indicated times (hr). The processing of p100was detected

by immunoblot with anti-p52 along with antibodies to other NF-kB and IkB family members.

(G) EMSA analysis of extracts from (F) was performed as in (E).
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streptavidin (35-4317) were purchased from eBioscience. PE-conjugated

anti-B220 (553090), anti-CD43 (553271), anti-CD21 (552957), anti-CD23

(553139), anti-CD5 (01035B), anti-CD8 (553033), APC-conjugated anti-

CD19 (550992), FITC-conjugated anti-CD21 (553818), anti-IgD (553439),

and biotin-conjugated anti-CD23 (553137) were purchased from BD Biosci-

ences PharMingen. All antibodies were mouse monoclonal antibodies.

Apoptosis and cell cycle analyses were done by terminal deoxynucleotidyl

transferase dUTP nick end labeling (TUNEL) and propidium iodide (PI) stain-

ing (Chen et al., 2008). Samples were applied to a flow cytometer (LSRII,

Becton Dickinson). Data were collected and analyzed with CellQuest soft-

ware (Becton Dickinson).
Bone Marrow Transplantation

Bone marrow (BM) cells were isolated from hind limbs of WT or NfkbiaNES/NES

mice. Subsequently, cells (5 3 106) were injected retroorbitaly into sublethally

irradiated (900 rads) Jak3�/� recipients as previously reported (Chen et al.,

2008). Eight weeks after transplantation, B cell development in the recipients

was examined.

Immunocytochemical and Fluorescence Analyses

Tissue sections were stained with tetramethylrhodamine isothiocyanate

(TRITC)-conjugated goat anti-mouse IgM (Southern Biotechnology, Birming-

ham, AL), anti-B220 (BD Bioscience PharMingen), and FITC-conjugated rat
Immunity 34, 188–200, February 25, 2011 ª2011 Elsevier Inc. 197



Figure 6. Defective Proliferation and Survival of NfkbiaNES/NES B Cells

(A and B) Splenic immature (AA4.1+) and mature (AA4.1�) B cells purified from WT and NfkbiaNES/NES mice were stimulated with anti-IgM with or without IL-4 or

with LPS. Proliferation was assessed by [3H]thymidine incorporation. Data are representative of at least four independent experiments.

(C and D) Splenic immature (AA4.1+) andmature (AA4.1�) B cells were purified fromWT andNfkbiaNES/NESmice and then stimulated with anti-IgM plus IL-4 or with

LPS. Subsequently, cells were collected, stained with propidium iodide, and analyzed for cell cycle profile by flow cytometry. The percentages of cells in subG0,

G0-G1, and S-G2-M are indicated.

(E and F) Splenic mature (AA4.1�) B cells purified from WT and NfkbiaNES/NES mice were stimulated with IgM antibody or with LPS. RNA expression amounts of

Bcl2l1 (encoding Bcl-XL) andMycwere determined with real-time reverse transcription PCR. Data were done in triplicate from three and twomice each for Bcl2l1

and Myc, respectively.

(G) Spenic and thymic T cells purified from WT and NfkbiaNES/NES mice were stimulated with indicated agonists and analyzed as in (A).
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anti-mouse metallophilic macrophages, MOMA-1 (Serotec), as previously

reported (Chen et al., 2008). Images were taken with fluorescence microscope

(Zeiss Axioskop, Carl Zeiss Inc., Jena, Germany) with a 103 objective lens
198 Immunity 34, 188–200, February 25, 2011 ª2011 Elsevier Inc.
(numerical aperture 0.3) and a charge-coupled device (CCD) camera (Sensys,

Photometrics, Tucson, AZ). Alternatively, images were acquired with an

Olympus BX41 microscope (Olympus America) and an Olympus DP20
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camera, and data were analyzed with the MetaMorph Version 6.1 software

(Molecular Devices, Downington, PA).

Analysis of NF-kB and IkBa Subcellular Localization

Splenic B cells were purified by AutoMACS depletion with anti-CD4-, anti-CD8-,

and anti-Mac-1-conjugatedmicrobeads (Miltenyi Biotec). The purified cell popu-

lations were seeded onto CC2-treated four-well glass chamber slides (Lab-Tek).

Cellswere stained as inO’Connor et al. (2005). Each experiment was repeated at

least twice and 200 cell counts were conducted in triplicate to yield % ± SD.

EMSA, Immunoblotting, and Immunoprecipitation Analyses

Splenic B cells were isolated by negative selection as above. Immature

(AA4.1+) and mature (AA4.1�) B cells were separated with biotin-conjugated

anti-AA4.1 (eBioscience) and anti-streptavidin microbeads (Miltenyi Biotec).

EMSA, immunoblot, and immunoprecipitation analyses were performed as

previously described (O’Connor et al., 2004). The antibodies used for immuno-

blottingwere anti-RelA (C-20), anti-RelB (C-19), anti-p52 (C-5), anti-p50 (E-10),

anti-IkBa (C-21), anti-IkBb (C-20), and anti-Actin (I-19) purchased from Santa

Cruz Biotechnologies. The cRel antibody (5071) was previously described

(Inoue et al., 1991). Anti-tubulin (DM1A) was purchased from Calbiochem.

Proliferation Assay

Cell proliferation was analyzed by 3H-thymidine incorporation assay as previ-

ously reported (Chen et al., 2008).

Quantitative RT-PCR and NF-kB Signaling Pathway PCR Array

Analysis

See Supplemental Experimental Procedures for details.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and five figures and can be found with this article online at doi:10.1016/j.
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