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Summary: Tumor necrosis factor receptor (TNFR) superfamily mem-
bers mediate the cellular response to a wide variety of biological inputs.
The responses range from cell death, survival, differentiation, prolifera-
tion, to the regulation of immunity. All these physiological responses are
regulated by a limited number of highly pleiotropic kinases. The fact that
the same signaling molecules are involved in transducing signals from
TNFR superfamily members that regulate different and even opposing
processes raises the question of how their specificity is determined. Regu-
latory strategies that can contribute to signaling specificity include scaf-
folding to control kinase specificity, combinatorial use of several signal
transducers, and temporal control of signaling. In this review, we discuss
these strategies in the context of TNFR superfamily member signaling.
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Diverse biological responses to TNFR superfamily

members

The tumor necrosis factor receptor (TNFR) superfamily

consists of 29 receptors that mediate cellular responses to 19

ligands. While most ligands bind to a single receptor, some

bind to numerous receptors. For example, BAFF can associate

with three receptors, and TNF-related apoptosis-inducing

ligand (TRAIL) can even bind to five receptors (1, 2). All TNFRs

are characterized as type I transmembrane proteins, with an

extracellular N-terminus and intracellular C-terminus necessary

for signaling initiation (3). The TNFR superfamily can be cate-

gorized into three overlapping classes: activating receptors,

death receptors, and decoy receptors. Activating receptors such

as TNFR1 and CD40 mediate activation of nuclear factor-jB

(NFjB) and mitogen-activated protein kinase (MAPK) path-

ways. Death domain containing receptors (such as TNFR1 and

FAS) contain an 80 amino acid death domain in their cytoplas-

mic domain. Its deletion abolishes ligand-induced cell death.

Through sequestration of the ligand, decoy receptors (e.g.

DCR1, OPG) have been shown to inhibit cell signaling.

Most receptors are expressed on a wide variety of cell types.

Receptor engagement by members of the TNF superfamily
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can trigger diverse cellular responses, such as apoptosis [for

example TNF, lymphotoxin (LT), FAS ligand (FASL)], survival

[receptor activator of NFjB ligand (RANKL) and B-cell activat-

ing factor belonging to the TNF family (BAFF)], differentia-

tion (such as TNF, RANKL), or proliferation (such as TNF,

CD40L, OX40L, BAFF). These cellular responses are mediated

by the activation of transcription factors NFjB, which com-

prise NFjB1 (p50 and its precursor p105), NFjB2 (p52 and

its precursor p100), c-Rel, RelA (p65), and RelB, and activator

protein-1 (AP-1), composed of Fos (c-Fos, FosB, Fra-1, and

Fra-2) and Jun (c-Jun, JunB, and JunD) family members, as

well as closely related transcription factors CREB, ATF2, ATF3,

and B-ATF), which are activated by MAPK [p38, c-Jun N-ter-

minal kinase (JNK), extracellular signal-regulated kinase

(ERK)] and inhibitor of NFjB kinase (IKK) signaling cascades

(1, 2).

Signaling by TNF superfamily members is essential for a

large variety of physiological processes including hematopoie-

sis, protection from bacterial infection, immune surveillance,

and tumor regression. Ligands, including TNF, LTb, and

RANKL, provide crucial signals for the morphogenesis of sec-

ondary lymphoid organs; TNF, FAS, and TRAIL contribute to

the function of cytotoxic effector cells in the recognition and

destruction of virus-infected cells. The expression of FASL on

activated T cells induces their cell death, a mechanism to mod-

ulate the immune response. Importantly, misregulation of

TNFR signaling has been associated with a diverse range of

diseases including autoimmunity, liver disease, tumorigenesis,

lymphproliferative diseases, diabetes, and even allergic asthma

(1, 2, 4–6). The diverse pathological effects caused by TNFR

misregulation reflect the large variety of biological processes

they are involved in and highlight the importance of precise

regulation of TNFR superfamily signaling. Interestingly, the

MAPK and IKK cascades are the critical signal transducers for

all TNFRSFs raising the question of how the functional speci-

ficity of these kinases is determined to ensure signaling speci-

ficity.

Pleiotropic signal transducers within the TNFR signaling

network

The key signal transducers of the TNFR superfamily members

are the kinases IKK2, IKK1, JNK, p38, and ERK. Below we

have summarized some key facts about each kinase, indicating

the wide variety of substrates and biological functions that

have been ascribed to each (Fig. 1).

IKK2

IKK2 is a key regulator of NFjB activation induced by

inflammatory cytokines, pathogens, environmental and meta-

bolic stress and some developmental signals. By phosphory-

lating the classical IjBs (IjBa, IjBb, IjBe), it triggers their

proteasomal degradation and release of NFjB to the nucleus

to allow for transcriptional activation. The primary canonical

NFjB effectors are RelA, cRel, and p50 in both homodimeric

or heterodimeric forms. Induction of their activity by IKK2

leads, in most cell types, to a general cell activation response,

that may involve the secretion of inflammatory molecules,

increasing the resistance to cell death-inducing stimuli, and,

in lymphocytes particularly, activation of a proliferative pro-

gram (7, 8). Apart from its role in activating NFjB, IKK2 has

many additional substrates that are not part of the NFjB sig-

naling system. The IKK2-dependent phosphorylation of the

tumor suppressor p53 at S362 and S366 is thought to be a

mechanism for regulating its stability (9). Upon TNFa stim-

ulation, IKK2 phosphorylates insulin receptor (IR) substrate

1 (IRS-1) at S307, resulting in the termination of metabolic

insulin signaling (10). In addition, IKK2 phosphorylates the

tumor suppressor tuberous sclerosis 1 (TSC1) at position

S487 and S511, which leads to its suppression and coincides

with the activation of the mTOR pathway, enhanced angio-

genesis and tumor development (11). b-catenin, a key mole-

cule in Wnt signaling, and FOXO3a, which acts downstream

of growth factor signaling (PI3K ⁄ Akt), have also been

reported to be specifically phosphorylated by IKK2 (12).

Recently, IKK2 has also been found to play a critical role in

Fig. 1. Kinases involved in TNFRSF-member signaling are highly pleiotropic. The pleiotropic kinases JNK, p38, and ERK1 ⁄ 2 (MAPKs), canonical
IKK2, and non-canonical IKK1 are key regulators in signal transduction in response to a large variety of cellular signals and can trigger highly diverse
biological responses.
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starvation-induced autophagy, in an NFjB independent

manner (13, 14). The substrates however remain to be

identified.

IKK1

The IKK1 kinase functions as a homodimer and as a heterodi-

mer with IKK2. As a homodimer it may be activated through

the NFjB-inducing kinase (NIK) by developmental signals

such as BAFF and LTb (6, 8). IKK1 dependent phosphoryla-

tion of p100 results in p100 processing and induction of tran-

scriptional activation. The main mediators of transcription are

RelA, RelB, p50, and p52 controlling cell survival and devel-

opmental processes (6, 8). Similar to IKK2, IKK1 has also

been reported to have additional NFjB independent sub-

strates. Like IKK2, IKK1 also phosphorylates b-catenin (15).

Interestingly, while IKK2-induced phosphorylation negatively

regulates b-catenin activity, phosphorylation by IKK1

increases b-catenin-dependent transcription, indicating dis-

tinct biological roles for these kinases. Many other IKK1 sub-

strates localize to the nucleus, including the coactivators

SMRT, SRC3, and CBP, as well as the histone H3, and they are

thought to regulate cell proliferation in an NFjB-independent

manner (16–18).

JNK

JNK is a member of the MAPK family of signaling proteins

(19, 20). It consists of 10 JNK isoforms, which are derived

through alternative splicing of mRNA transcripts generated

from the three genes JNK1, JNK2, and JNK3. It is activated in

response to cellular stress, cytokines, pathogens, and mito-

gens. JNK activation leads to the phosphorylation of a large

number of transcription factors, the most prominent of which

is c-Jun, a component of AP-1, as well as of numerous cellular

proteins most of which are associated with apoptosis (such as

Bcl2 and p53). Gene disruption in mice revealed its essential

role in TNFa-induced c-Jun phosphorylation and AP-1 tran-

scription factor activity. JNK is activated through phosphory-

lation of the Thr-Pro-Tyr motif in its activation loop by MAPK

kinases (MAPKKs) MKK4 and MKK7. Activation of these

kinases in turn is initiated by a cascade of kinases linked

through stimulus-dependent association with different scaf-

fold proteins (see below). The complex regulation of JNK is

A B C

Fig. 2. Activation of signal transducers downstream of TNFR1, CD40, and LTbR engagement. (A) TNF triggers the assembly of a signaling com-
plex involving the TRADD, RIPK1, and ubiquitin ligase complexes. TAK1 is recruited and activated by binding of its scaffolds TAB 2 ⁄ 3 to polyubiqu-
itin chains. Subsequent binding of NEMO to ubiquitin chains allows for the activation of IKK2. MAP3Ks activate MAPKs through a cascade of
phosphorylation events. (B) CD40 engagement triggers the assembly of a complex containing TRAF2, TRAF3, TRAF6, cIAPs, MEKK1, and the LUBAC
complex to activate MAPKs, NEMO-IKK2, and non-canonical IKK1. (C) Binding of LTb to the LTbR triggers degradation of TRAF2 and TRAF3 result-
ing in NIK stabilization, which activates non-canonical IKK1 (see text for details).
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indicative of its critical role in multiple physiological pro-

cesses. Indeed, JNK has been implicated in the regulation of

cell survival and apoptosis, inflammation, metabolism, and

development. By phosphorylating several pro-apoptotic mem-

bers of the Bcl2-related protein family (Bim, Bmf, Bad) and

through JNK-dependent activation of AP-1, it can activate the

mitochondrial apoptotic pathway, while its phosphorylation

of several anti-apoptotic members (Bcl2, Bcl-xL, Mcl-1) pro-

mote cell survival. In addition, JNK has been implicated to

play important roles in other types of death including necrosis

and autophagic ⁄ lysosomal cell death. JNK is also a potent

inducer of inflammatory gene expression primarily through

the activation of the transcription factors AP-1 and ATF-2.

Accordingly, many autoimmune diseases (rheumatoid arthri-

tis, multiple sclerosis, psoriasis) correlate with hyperactivity

of JNK. The activation of JNK causes insulin resistance at least

in part through the phosphorylation of Insulin receptor sub-

strate-1 (IRS-1) at the inhibitory site Ser-307, thus suppress-

ing insulin receptor signaling, indicating its role in

metabolism (19–21).

p38

p38 is another member of the MAPK family. It consists of

four isoforms, p38a, p38b, p38c, and p38d, each encoded

by a distinct gene. They have similar in vitro substrate speci-

ficity but differ in regards to how their activity is regulated

or their responsiveness to ligands; the p38 pathway is acti-

vated by a large number of growth factors, GPCR agonists,

environmental stresses, pathogens, and cytokines. Dependent

on the isotype, they are activated by dual kinases (threonine

and tyrosine) MKK3, and the JNK kinases MKK4 and MKK7.

Once activated, p38 phosphorylates several cytoplasmic sub-

strates (including MBP, HSP27, and MAPKAPK2) and upon

nuclear translocation activates the transcription factor ATF-2

through direct phosphorylation (22–24) as well as CREB

(25). p38 can also indirectly regulate transcription through

AP-1. One of the main consequences of p38 activation is

increased expression of cytokines and receptors involved in

inflammation and immunity (19, 21, 26). However, it

remains unclear whether the aforementioned transcription

factors account for p38’s function in gene expression or

another reported p38 function in stimulus-induced mRNA

stabilization (27). In addition, p38 is involved in inflamma-

tion, cell death, cell cycle regulation, and cell differentia-

tion. Inhibition of p38 using specific pharmacological

inhibitors results in reduced proliferation and cell cycle

arrest (19, 21, 26).

ERK

ERKs are encoded by two genes, ERK1 (MAPK3), and ERK2

(MAPK1), that encode two main proteins, p44 (ERK1), and

p42 (ERK2). They are preferentially activated by mitogens

but, similar to JNK and p38, are also activated in response to

GPCR agonists, cytokines, and environmental stress. Activation

occurs through the Raf ⁄MEK ⁄ ERK signaling cascade through

different isoforms of the small GTP-binding protein Ras. Acti-

vated Raf binds to and phosphorylates MEK1 and MEK2,

which in turn phosphorylate ERK1 ⁄2. Markedly, ERK1 ⁄2 have

been reported to phosphorylate more than 160 substrates,

including numerous important transcriptional regulators such

as NF-AT, Elk-1, c-Fos, c-Myc, and H3 to control the cell cycle

progression and cell death. Apart from ERK’s critical role in

cell proliferation, it is also critically involved in differentia-

tion, migration, and cellular transformation (28, 29).

Activation of signal transducers downstream of specific

TNFRSF members

The key kinases are connected to members of the TNFR super-

family via complex signaling mechanisms that involve a

multitude of protein adapters and enzymatic functions. Their

cooperative or sequential regulation control dose response and

dynamic behavior of the key kinases. Therefore, knowledge

about the signaling molecules involved in the activation of the

key signaling kinases and their regulation is of major impor-

tance to gain insights into how signaling specificity may be

achieved. Below we detail what is currently known about these

signaling mechanisms for three TNFRSF members (Fig. 2).

TNFR1

Activation of TNFR1 triggers a wide variety of biological

responses from cell death to survival, effects on metabolism,

differentiation, adhesion, and motility. TNFR1 is particularly

important in inflammatory responses (2). TNFR1 knockout

mice show impaired clearance of bacterial pathogens and

resistance to LPS (30–34). Although lymph nodes develop

normally, these mice show defects in germinal center forma-

tion and impaired development of Peyer’s patches, indicating

a critical role of TNFR1 in acute immune responses (30, 31).

TNFR1 mediates its physiological functions through activation

of canonical IKK, JNK, MAPK, and ERK.

Upon binding of TNF to the TNF receptor, the first steps in

signaling are the recruitment of the adapter molecules TRADD

and RIPK1 and then of TRAF2 ⁄5 to TRADD (35). TRADD is

essential for TNF-induced signaling in MEFs as in TRADD-
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deficient MEFs TNFR-induced IjBa phosphorylation and deg-

radation are completely abolished (36–38). In contrast, in

macrophages the TRADD requirement is less complete, sug-

gesting that in these cells TRAF2 may be recruited in a

TRADD-independent manner (38). The requirement for RIP1

varies between cell types; while largely dispensable in MEFs

(39–41), it is absolutely required for TNF-induced NFjB acti-

vation in T and B cells, as human T cells lacking RIPK1 and

pre-B-cell lines derived from RIPK1 knockout mice show

defects in NFjB activity (42–44). Notably, its kinase activity

is not required (39). TRAF2-deficient mice show only a slight

reduction in TNFR-induced NFjB activation, while TRAF2 ⁄5
double deficiency results in complete impairment, suggesting

redundant functions for these molecules (39). However, this

topic remains controversial.

Subsequently, cIAP1 ⁄2 are recruited to the complex, which

is not only important for NEMO-containing IKK activation

(45–47) but also for inhibition of the non-canonical IKK1

activity, as these E3 ligases are also involved in constitutive

degradation of NIK (48, 49) (see below). Within this com-

plex, RIPK1, TRAFs, and NEMO undergo several forms of

‘non-destructive’ ubiquitination, primarily conjugation of

K63 or head-to tail (linear) polyubiquitin chains. While K63

ubiquitination of RIPK1 and NEMO is catalyzed by the E3 lig-

ases cIAP1 ⁄2 or TRAF2 together with Uev1A and Ubc13 (44,

45, 50), the LUBAC complex, consisting of HOIL-1, HOIP,

and SHARPIN, exclusively modifies RIPK1 and NEMO with

linear polyubiquitin chains (51–54). Conjugation of K63 and

linear ubiquitin chains to RIP1 triggers the recruitment of IKK

activating kinases. First, the IKK-kinase TAK1 (IKK-K) is

recruited by specific binding of its scaffolds TAB2 ⁄ 3 to the

ubiquitin chains (39, 50, 55). TAK1 itself is K63 ubiquitinat-

ed, which triggers its autophosphorylation and activation

(55–57). In vitro unanchored K63 polyubiquitin chains have

been shown to be sufficient for TAK1 activation (58), but

whether conjugation of ubiquitin chains to components of

the complex may contribute to dose-responsiveness or speci-

ficity in vivo remains to be investigated.

Binding of NEMO to these ubiquitin chains brings IKK in

close proximity to TAK1, allowing for IKK activation by

phosphorylation of the activation loop serines (50–52, 59).

TAK1 appears to be the major kinase responsible for IKK acti-

vation, as TAK1-deficient cells are largely defective in TNF-

induced NFjB activation (60, 61). However, MEKK3 has also

been reported to act as an IKK kinase. Similar to TAK1,

MEKK3 binds to RIPK1 and TRAF2 and can phosphorylate

IKK2 (62). Consistently, MEKK3 deficiency impairs IKK and

MAPK activation in fibroblasts (62). Whether MEKK3 can

replace TAK1 or whether they act cooperatively is currently

not clear. Activation of the NEMO-IKK complex results in

phosphorylation and degradation of the canonical IjBs and

NFjB activation.

In addition to the activation of IKK, TNFR1 also leads to the

potent activation of JNK, p38, and ERK1 ⁄2. Activation of JNK

depends on TRAF2 and on the formation of ‘non-destructive’

K63 ubiquitin chains (63–70). The involvement of linear

chains is still controversial (53, 54, 71). Activation of p38

similarly depends on TRAF2 and RIPK1; however, the contri-

bution of ubiquitin chains is unclear (72, 73). Several

MAP3Ks have been implicated in the activation, including

TAK1 (74), MEKK1 (74), TPL-2 (75), and ASK1 (74, 76, 77).

Genetic deletions of MAP3Ks have not revealed an absolute

requirement for any kinase, indicating some redundancy in

TRAF2-dependent JNK and p38 activation. MAP3Ks then

phosphorylate and activate MAP2Ks, which are somewhat

pathway specific. While MKK3 and MKK6 specifically phos-

phorylate and activate p38, MKK7 activates JNK. MKK4 is less

specific and can activate both p38 and JNK (reviewed in 78).

The main activator of the TNF-induced ERK1 ⁄ 2 cascade is

TPL-2 (79). Macrophages from Tpl2 knockout mice are defec-

tive in ERK1 ⁄ 2 activation induced by TNF, while activation of

other MAPKs and NFjB remain unaffected (79). In contrast,

TNF stimulation of Tpl2-deficient MEFs results in defective

activation of JNK, p38, ERK1 ⁄2 as well as NFjB (75), indicat-

ing a cell type-specific role for TPL-2.

CD40

CD40 is expressed on DCs, B cells, and endothelial cells. In

DCs, CD40 signaling promotes cytokine production, induc-

tion of costimulatory molecules, and facilitates cross presenta-

tion; in B cells, CD40 signaling can promote germinal center

formation, isotype switching, somatic hypermutation, and

formation of plasma cells and memory B cells. In addition, it

has been demonstrated to be important for the survival of

many cell types, including GC B cells, DCs, and endothelial

cells. CD40-deficient mice show defective B-cell development,

Ig class switching, and GC formation, ultimately causing

immunodeficiency (80–83). In similarity to TNFR1, CD40’s

physiological functions are also mediated by the signal trans-

ducers IKK1, IKK2, JNK, p38, and ERK.

In contrast to TNFR1 signaling, activation of CD40 signal-

ing does not require the adapter TRADD but instead is initi-

ated by binding of ubiquitin ligases TRAF2, TRAF3, and

TRAF6 directly to the receptor (84, 85). In the case of CD40

activation, the TRAF molecules do not appear to have
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redundant functions. TRAF2 has been shown to be the pri-

mary mediator of JNK and p38 activation (67, 68, 86).

Engagement of TRAF2 to CD40 results in the recruitment of

MEKK1 (87), which drives the phosphorylation of JNK and

p38. TRAF2-deficient fibroblasts are defective in CD40L-

induced JNK and p38 activation, with only little defect in

NFjB activation (67, 68, 86). Attenuation of MAPK activation

was also observed in TRAF2-deficient B cells (88). In addi-

tion, TRAF2 deficiency caused constitutive p100 processing

and elevated c-Rel activity (88). This reflects the fact that in

contrast to TNFR1, CD40 engagement also triggers the activa-

tion of non-canonical IKK through NIK (89). In unstimulated

cells, NIK expression is very low due to its constitutive degra-

dation by cIAPs, TRAF2, and TRAF3 (48, 49). CD40 engage-

ment triggers self-degradation of TRAF2 and cIAP-dependent

degradation of TRAF3, resulting in stabilization and accumu-

lation of NIK (90–93). Indeed, germ line inactivation of

either TRAF2 or TRAF3 leads to NIK accumulation and con-

stitutive p100 processing, indicating that NIK accumulation is

sufficient for its activation of non-canonical NFjB pathway

(94–96). It subsequently activates IKK1 through phosphoryla-

tion of activation loop serines. NIK and IKKa phosphorylate

p100 resulting in its processing and induction of NFjB tran-

scription (97–99).

Binding of TRAF6 to CD40 is important for activation of

JNK and p38 activation as well as NFjB (100). Its deficiency

results in reduction or abrogation in the activation of canoni-

cal NFjB, JNK, and p38 (101, 102). Similar to TNFR signal-

ing, the cIAP1 ⁄ 2 and LUBAC ubiquitin ligase complexes have

also been shown to be recruited to the CD40 receptor (103–

105). Whereas TNFR1 signaling involves conjugation of K63

and linear Ub-chains to recruit RIPK1 and NEMO and mediate

activation of TAK1 and downstream MAPK and canonical IKKs

(44, 45, 50–54), CD40 signaling requires ubiquitination of

TRAF2 and TRAF6 for these downstream signaling events.

Interestingly, K63 ubiquitination appears to be critical for JNK

and p38 activation and less important for CD40-induced

NFjB activation, as B cells and macrophages from ubc13) ⁄ )

mice, which are defective in catalyzing K63 chains, show

strong defects in JNK and p38 activation, while NFjB activa-

tion is largely intact (105). In contrast, interfering with com-

ponents of the LUBAC complex results in defective NFjB and

JNK activation (52, 54), indicating differential requirements

of Ub chains for MAPK and NFjB activation. A more detailed

understanding of the nature of Ub-chains important for sig-

naling, the proteins they are conjugated to (if any) and the

kinetics of Ub-chain formation will be important for a better

understanding of signaling specificity.

In similarity to TNFR1 signaling, both TAK1 and MEKK3

are implicated as the activating kinases for canonical IKK by

CD40 ligand engagement (57, 106, 107). Several kinases have

been suggested to mediate activation of MAPK pathways. As

mentioned above, MEKK1 is recruited to the CD40 complex

through its interaction with TRAF2 to induce JNK and p38

activation (87). Accordingly, in MEKK1-deficient B cells no

JNK and p38 activation can be detected, while there are con-

flicting results on the effects on NFjB activation (108–111).

Several other MAP3Ks have been suggested to be important

for JNK and p38 activation, including TAK1, MEKK3, and

TPL-2. Although TAK1 is critical for TNF, BCR, and TLR

ligand induced activation of MAPKs, it appears to only play a

minor role in CD40-induced signaling, as CD40 engagement

in TAK1-deficient B cells shows only modest defects in JNK

and p38 activation (61). In overexpression experiments

MEKK3 has been demonstrated to be able to induce JNK and

p38 activation (112), due to embryonic lethality the physio-

logical relevance for CD40-induced MAPK activation however

remains unclear (113). Interestingly, the MAP3K TPL-2 does

not appear to be involved in JNK, p38, or NFjB activation in

CD40 stimulated B cells (79) but instead plays a critical role in

the activation of the ERK pathway (79). Tpl2-deficient mice

show a partial activation defect of ERK in response to CD40

and TLR activation resulting in partial inhibition of IgE pro-

duction (79, 114). TPL-2 has also been implicated to be

involved in processing of NFjB1 p105 (115); however, pro-

cessing appeared to be normal in Tpl2 knockout mice (79).

LTbR

LTbR signaling primarily controls the development of second-

ary lymphoid organs (lymph nodes and Peyer’s patches).

LTbR-deficient mice lack all lymph nodes, Peyer’s patches,

and display a disturbed splenic architecture (116–118). In

adults, LTbR also controls the maturation and maintenance of

the microarchitecture of lymphoid organs through expression

of specific chemokines (such as CXCL13 and CCL19), which

induce stromal cell differentiation (117, 119).

In contrast to CD40 signaling, which leads to the activation

of MAPKs, the canonical NEMO-IKK2 complex and non-

canonical-NIK-IKK1, LTb, and BAFFR only induce NEMO-

independent, non-canonical IKK1. In similarity to CD40, the

cytoplasmic domain of LTbR associates with TRAF3 and

TRAF2 (120, 121). Ligation of LTab or LIGHT to the LTb

receptor triggers the degradation of TRAF2 and TRAF3 result-

ing in accumulation of NIK and subsequent activation of IKK1

(see CD40 signaling). Through IKK1-induced degradation

Schröfelbauer & Hoffmann Æ Signaling specificity of TNFRSFs

34 � 2011 John Wiley & Sons A/S • Immunological Reviews 244/2011



and processing of p100 RelA:p50 and RelB:p52 dimers are

released into the nucleus to activate transcription (122–124).

NFjB activation induced by developmental signals such as

LTb is considerably slower and weaker as compared to inflam-

matory signals. LTbR engagement also weakly induces JNK

activation in a TRAF2-dependent manner (125, 126); the

exact mechanism however remains elusive.

Mechanisms that ensure signaling specificity

As described above, TNFRSF signal transduction pathways

involve a small number of signaling enzymes, yet their bio-

logical responses are highly diverse. Over the past few years,

many studies using a variety of genetic tools have revealed that

the functional requirements of specific signaling proteins in

signal transduction are cell type specific. Cell type-specific

genetic requirements may be the result of differential expres-

sion of parallel, potentially compensating pathway compo-

nents. However, it may also be the result of cell-type specific

expression of proteins that modulate the function or kinetics

of the key signaling enzymes that thereby control signaling

specificity.

Broadly, the specificity of signaling can be controlled at the

level of substrate specificity of the key kinases, differential

wiring of signaling inputs through scaffolding, the kinetics of

the kinase activities, as well as through combinatorial and

temporal control mechanisms. Below we discuss some of

these mechanisms of regulation and how they may contribute

to signaling specificity.

Regulation of the enzymatic substrate specificity of kinases

MAPKs and IKKs are highly pleiotropic kinases, involved in

numerous distinct biological responses by phosphorylating a

diverse array of substrates. MAPKs have been estimated to have

as many as 200–300 substrates each (127–129). One mecha-

nism by which specificity may be ensured in vivo may involve

co-factors that alter the intrinsic enzymatic specificity. How-

ever, unlike other enzymes such as prokaryotic RNA polyme-

rases whose DNA binding specificity is regulated by sigma

factors, surprisingly little information has emerged about

specificity factors for the pleiotropic kinases in the TNFR sig-

naling network.

MAPKs are known to have substrate binding sites, usually

referred to as docking domains (130–132). These domains

are distinct from the serine ⁄ threonine phospho-acceptor sites

and consist of positively and negatively charged residues.

Docking interactions themselves can be regulated by post-

translational modifications (130–132). Apart from regulating

interactions with substrates, binding can trigger allosteric con-

formational changes that can in turn affect strength and dura-

tion of MAPK signaling (133). However, not all known

substrates have docking sites, suggesting that additional mech-

anisms are likely to exist in order to achieve substrate selectiv-

ity to ensure efficient and specific signaling (127).

IKK1 and IKK2 are also known to be pleiotropic kinases that

can phosphorylate a wide range of substrates influencing

diverse cellular responses (134, 135). Interestingly, in in vitro

assays IKKs do not show a high degree of substrate specificity,

and in contrast to MAPKs, IKKs do not appear to have docking

sites raising the question of how their activity is regulated to

ensure signaling specificity. To understand the molecular basis

for signaling specificity in cellular pathways, it will be of

major importance to further elucidate mechanisms that con-

trol substrate specificity in vivo.

Signaling specificity via scaffolding

When analyzing signaling responses to diverse biological

inputs, it becomes clear that many signal transducers are

shared, and, as described above, their substrate specificities

appear limited. Yet, the biological outputs are highly specific.

Signaling specificity can be achieved by organizing discrete

subsets of proteins in space and time. One way to achieve this

is by sequestering functionally interacting proteins into

specific subcellular compartments, such as organelles or the

plasma membrane. Another prevalent strategy is the assembly

of functionally interacting proteins into specific complexes

through protein scaffolds. Scaffolds bind to two or more com-

ponents of a cascade, bringing them in close proximity,

thereby not only facilitating efficient propagation of the signal

but also mediating its insulation from other signals. In addi-

tion to organizing signaling molecules into signalosomes,

scaffolds can also have allosteric effects on the kinases thus

regulating kinase activity itself.

The most prominent signaling cascades that are regulated by

scaffolds are the MAPK pathways. As mentioned above, initia-

tion of JNK and p38 pathways is triggered by many MAP3Ks

including TAK1, ASK1, MEKKs, and TPL-2 (74–77), which,

among others, can phosphorylate MKK4 and MKK7 to activate

JNK, and MKK3, MKK4, and MKK6 to activate p38 (78). The

usage of alternative kinases at each step of the cascade might

allow for the precise stimulus-dependent control of MAPKs.

Indeed, the stimulus-specific organization of different kinases

into cascades by scaffolds can create functional signaling mod-

ules to control specificity of signal transduction (Fig. 3). For

example, filamin has been identified as a scaffold that may
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coordinate the specific activation of JNK upon stimulation with

TNF (136). The actin binding protein interacts with the

TNFR1 adapter TRAF2, the MAP2K MKK4, and JNK, thereby

coordinating a module that channels the upstream TNFR1 sig-

nal to JNK (137). Accordingly, filamin deficiency causes a

selective loss of TNF-induced JNK activation (136). The dual

specificity protein phosphatase SKRP1 has also been reported

to be involved in TNF-induced JNK activation through a scaf-

folding function facilitating the interaction of the MAP3K

ASK1, MAP2K MKK7, and JNK (138–141). Similar examples

for a stimulus-specific organization of MAPK cascades by scaf-

folds can be found for the activation of p38. The osmo-sensing

scaffold for MEKK3 (OSM) for example associates with Rac,

MEKK3, and MKK3 to regulate p38 activation specifically in

response to osmotic shock (142). Other p38-specific scaffolds

include JIP4 (143) and JLP1, which is implicated in p38-

dependent regulation of differentiation (144–146). Interest-

ingly, the MAP3K MEKK1 not only acts as a kinase to activate

JNK upon CD40 ligation, but itself possesses a scaffolding

function by interacting with components of the JNK module

(108, 147–151). It also constitutively interacts with Raf-1,

MEK1, and ERK2 to facilitate stimulus-induced activation of

ERK1 ⁄ 2 (147, 152, 153). TAK1, which is involved in trans-

ducing signals from diverse upstream receptors (e.g. TNFRs,

TLRs, NLRs) to activate downstream JNK, p38, as well as NFjB

pathways, associates with the scaffolds TAB1, TAB2, and

TAB3. Apart from mediating TAK1 activation (see below),

through binding to poly-ubiquitin chains, TAB2 ⁄3 also recruit

TAK1 to NEMO-IKK2 to mediate NFjB activation.

A well-known scaffold necessary for the activation of the

canonical IKKs is NEMO (154–156). Binding of NEMO to

stimulus-induced polyubiquitin chains brings IKKs in close

proximity to each other (allowing for trans-autophosphoryla-

tion) and to the IKK-kinase TAK1, which then activates IKK2

through phosphorylation of its activation loop serines (39,

50–52, 55, 59). Thus, NEMO links upstream inflammatory

signals to IKK2 through binding to ubiquitin chains. How is

active IKK2 able to phosphorylate IjBs so efficiently and rap-

idly while phosphorylation of alternative substrates is much

weaker and occurs with much slower kinetics? Our unpub-

lished data suggest that IKK2-dependent phosphorylation of

IjB is also mediated by NEMO (BS and AH, unpublished

data). Binding of NEMO to IjBs specifically channels IKK2

kinase activity towards inflammatory responses. Thus, scaf-

folding of NEMO ensures downstream signaling specificity by

directing the pleiotropic IKK2 kinase to the canonical NFjB

pathway. The complex between NEMO-IKK2 and IjBa

appears to be constitutive, which might not only ensure

specific phosphorylation of IjBs but also enables the rapid

response, necessary for efficient inflammatory signal transduc-

tion. In analogy to stimulus-specific MAPK kinase modules,

A B C

Fig. 3. Scaffolding to achieve signaling specificity. Scaffolds can organize pleiotropic kinases into stimulus-specific signaling modules to direct them
to one specific pathway. (A) Filamin interacts with TRAF2, MEKK4, and JNK to allow for JNK activation upon TNFR1 engagement. ERK1 ⁄ 2 and p38
might similarly be organized into stimulus-specific modules through yet unidentified scaffolding proteins. (B) Binding of NEMO to IKK2 allows for its
activation but is also required for proper signaling propagation to IjBa in response to inflammatory signals. (C) NIK is not only the activating kinase
of IKK1 but also channels IKK1 activity to p100.

Fig. 4. Combinatorial control of kinases facilitates stimulus specific-
ity. Engagement of TNFRSFs activates pathways leading to the activation
of ERK, JNK, p38, IKK2, and IKK1. Phosphorylation of downstream
effectors induces a transcriptional program. Some genes require a syner-
gistic function of several transcription factors and may thus be transcribed
in a stimulus-specific manner. Specificity can also be achieved post-
transcriptionally through p38-dependent regulation of mRNA stability.
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NEMO assembles an inflammation-specific IKK module by

linking upstream IKK activators with the downstream effector

IjBa. The specificity of IKK1 for p100 also seems to be regu-

lated through scaffolding. NIK forms a complex with IKK1

and p100, thereby not only activating IKK1 but also directing

IKK1s kinase activity towards p100. Thus, active IKK1 will

only induce p100 processing when NIK is stabilized by spe-

cific developmental signals (e.g. LTb, CD40) (99).

In summary, pathway-specific scaffolds can direct a pleio-

tropic kinase to one specific pathway and at the same time

prevent the activation of pathways irrelevant to that particular

stimulus. Thus, scaffolds ensure stimulus-specific functions of

kinases. The identification of scaffolds that are specific for each

TNFR superfamily member will be critical to gain a better

understanding about the regulation of signaling specificity.

Combinatorial coding

Signaling specificity may also be mediated through the combi-

natorial use of several pleiotropic signal transducers (Fig. 4).

In this scenario, stimulation of a single receptor triggers the

formation of a signalosome that allows for the activation of a

subset of signal transducers. Downstream effectors (e.g. the

promoters of potential target genes) may integrate the combi-

nations of signal transducers (e.g. transcription factors) to

determine the stimulus-specific activity level (e.g. of target

genes).

Because they lack intrinsic enzymatic activities, TNFRs asso-

ciate with TRAF proteins to initiate intracellular signaling.

TRAF protein recruitment forms the basis for the encoding of

a combinatorial code by which a receptor-associated complex

leads to the activation of several pleiotropic kinases. The fam-

ily of TRAF proteins consists of 6 members, TRAF1-6, that

have both overlapping as well as distinct roles. The TRAF pro-

teins with which the receptor associates at least in part deter-

mines the pathways that are activated. TRAFs are not only

critically involved in signaling of TNFR superfamily members

but also play important roles in TLR ⁄ IL-1R signaling, where

TRAF3 is indispensable for IRF3 activation upon TLR3 engage-

ment (157), or TRAF6 is necessary for activation of NFjB by

LPS (101, 158). TRAFs have a RING-finger domain (RING)

with an associated E3 ligase activity, a Zinc-finger (ZF) motif,

and a highly conserved C-terminal domain that mediates

homo- and heterodimerization of TRAFs as well as association

with cell surface receptors (85, 159).

The association of TRAF2 to CD40 is important for activa-

tion of MAPKs and to a lesser extent for the activation of

canonical IKKs (67, 68, 86). Accordingly, TRAF2 deficiency

results in defective JNK activation and shifts the balance of

signaling towards non-canonical IKK, despite a defect in

TRAF3 degradation (86, 88). This observation highlights the

importance of TRAF2 in negatively regulating the activation

of non-canonical IKKs. In B cells, TRAF3 deficiency similarly

results in enhanced activation of NIK-IKK but also in enhanced

canonical IKK and JNK activity (48, 49, 159, 160). Thus,

although both TRAF2 and TRAF3 are important negative regu-

lators of non-canonical IKK, they have different functions in

regulating JNK activity. TRAF6 is dispensable for TNFR1 and

LTb signaling but is essential for CD40-induced JNK, p38,

ERK1 ⁄ 2, and canonical IKK activation (84, 85).

For activation of downstream kinases, TRAFs do not just act

as adapters or scaffolds, but their E3 ubiquitin ligase activity is

required. In conjunction with Uev1A and Ubc13, TRAFs

mediate the conjugation of K63-linked ubiquitin chains onto

other TRAFs, RIPK1, and NEMO, which has been shown to be

critical for activation of NEMO-IKK2 and JNK by TNF as well

as CD40L (44, 50, 70, 103–105). In fact, non-destructive

ubiquitin chains (such as K63 and linear chains) might add an

additional level of regulation to achieve signaling specificity.

The type of ubiquitin chain as well as the molecules they are

conjugated onto are likely to be stimulus specific. Interest-

ingly, TNF and IL1b signaling appear to have differential

requirements for ubiquitin chain types (161). While for

IL-1b-induced IKK activation the Uev1A ⁄ Ubc13 ⁄ TRAF2 E3

ligase complex that is restricted to K63 chain linkage is neces-

sary for IKK activation, TNF-induced signaling does not

require catalysis of K63 chains (161). Recently, mass spec

analysis revealed that RIPK1 and NEMO are heavily ubiquiti-

nated with K63, linear and K11-linked chains upon stimula-

tion with TNF, indicating the high level of diversity in

ubiquitin modifications that occur during signaling (54).

More work is required to get a better understanding of the

stimulus specific role of ubiquitin chains. The use of ubiqu-

itin-chains as scaffolds allows for highly flexible and dynamic

assembly of diverse signaling complexes but also for the

recruitment of specific activators and inactivators. Binding of

the scaffolds TAB 2 ⁄3 to polyubiquitin chains for example

recruits the MAP3K TAK1 to the TNFR1 complex to allow for

IKK2 activation, which in turn also depends on the ability of

its scaffold NEMO to bind to ubiquitin chains (39, 50–52, 55,

59). In addition to coordinating a signaling cascade, one can

imagine that ubiquitin chains may branch one upstream signal

to multiple downstream kinases through association of dis-

tinct ubiquitin binding proteins to different types of poly-

ubiquitin chains, thereby playing a key role in encoding a

combinatorial signaling code.
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The decoding of combinatorially coded signals has been

studied primarily at the level of gene expression. Gene pro-

moters or enhancers often contain binding sites for several

signal-responsive transcription factors that are the down-

stream effectors of pleiotropic kinases. Synergistic function

by several transcription factors has been documented in syn-

thetic experimental systems (162). The multivalent interac-

tions by the ubiquitous co-activators CBP ⁄p300 suggest a

possible decoding mechanism in vivo. For some specific

genes, a combinatorial requirement has been established and

examined at a mechanistic level. The classic example is the

control of the IFNb enhancer, which requires the activity of

AP-1, IFN response factor 3 (IRF3), and NFjB. A nucleo-

some located over the transcription start site was identified

as the block for transcription initiation, and only the assem-

bly of an ‘enhanceosome’ (163) allowed for the recruitment

of chromatin remodeling factors that in turn allow for pre-

initiation complex assembly (164). Interestingly, although

AP-1 and NFjB are separated by four IRFs on the enhancer,

protein-protein interactions between them were found to be

critical (165). These are facilitated by HMG proteins capable

of inducing DNA bends (166). Similarly, expression of the

chemokine MCP1 ⁄ CCL2 requires communication between a

proximally bound SP-1 and a distally bound NFjB that

suggests chromosome looping (167). A different mechanism

of combinatorial control has been proposed for the TNF

gene. Expression of TNF requires NFjB binding to its

promoter but also ERK and p38 signals to control mRNA

nuclear-cytoplasmic transport, mRNA stability, and transla-

tion (114, 168, 169). These examples indicate different

mechanisms in the gene regulatory network may be targeted

by the combinatorial control of TNFRSF-induced intracellu-

lar signals.

Temporal coding

Biochemical cell population timecourse studies and single cell

studies with in vivo reporters have revealed that the activity

profile of TNFRS-induced transcription factors is dynamic and

that the observed temporal profiles are stimulus-specific (170,

171). These observations led to the proposal that stimulus-

specific temporal control of pleiotropic transducers may allow

for stimulus-specific signaling (7). The temporal code may be

encoded via receptor-associated mechanisms, transmitted via

stimulus-specific temporal control of a pleiotropic transducer,

and decoded by mechanisms associated with the effector, for

example the gene regulatory network controlling the expres-

sion of a target gene.

Evidence for the temporal coding model for generating

stimulus-specific signaling can be found in JNK, p38, and ERK

signaling (170, 172). A prominent example demonstrating

the importance of temporal control in MAPK signaling is the

neuronal cell line PC12, in which ERK signaling can induce

proliferation (in response to EGF), as well as differentiation

(in response to NGF) depending on the duration of the signal

(173). While EGF induced MAPK signaling is transient, MAPK

activity induced by NGF is sustained. Extensive evidence for

the importance of temporal coding also comes from canonical

NFjB signaling. Quantitative measurements of the canonical

IKK activity revealed that its induced activity profile is stimu-

lus-specific (171). Whereas TNF activates a transient IKK

activity, LPS leads to prolonged IKK activity. In the former

case, the negative feedback regulator A20 limits late IKK activ-

ity, whereas in the latter, cytokine feedback via TNF ensures

an elevated late phase. Within the TNFRSF network, temporal

control of effectors is mediated by the kinetics of key reaction

mechanisms, such as receptor internalization, recycling, and

replenishment, ubiquitin chain formation rates and their deg-

radation through deubiquitin enzymes (DUSPs) such as A20,

nuclear translocation rates, and negative feedback mechanism

impacting IKK or NFjB (Fig. 5).

How may target genes distinguish between different tem-

poral profiles of NFjB activity? We may imagine a variety of

Fig. 5. Temporal control can facilitate stimulus specificity. The tem-
poral profile of key signal transducers, whether pleiotropic kinases or
transcription factors, may determine signaling specificity. Temporal pro-
files are encoded and transduced through kinetic mechanisms that control
receptor internalization and recycling, half-life control of signaling medi-
ators, including ubiquitin chain second messengers or scaffolds, as well
as negative and positive feedback. Signaling dynamics may be decoded to
determine the activity of effectors, such as downstream genes, by mRNA
half-life control, cooperativity with other transcription factors or chroma-
tin regulatory mechanisms.
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mechanisms by which the temporal code may be decoded by

gene regulatory networks (GRNs). At its simplest, short versus

long mRNA half-life may sensitize a gene to transient versus

prolonged NFjB activity. Coupled to non-linear or threshol-

ded dose response curves of promoters, the GRN may decode

complex temporal profiles of NFjB in specific ways. In more

sophisticated GRNs, NFjB may need to coincident with or

phase shifted relative to other transcription factors to allow for

gene activation. On others yet, NFjB may be required to be

coincident with a transcription factor induced by the early

NFjB activity, forming a feed forward control loop.

Conclusion

The signaling network innervated by members of the TNFR

superfamily consists of a number of kinases with highly pleio-

tropic functions. Generally, these kinases show too little

intrinsic specificity in vitro to account for their apparent signal-

ing specificity in cells, but several models have emerged that

begin to explain the mechanisms by which signaling specific-

ity is achieved. The most prominent of these may be the utili-

zation of scaffolding proteins, which may recruit kinases to

upstream activators or to downstream substrates. Indeed when

such scaffolds are multivalent, the same protein may deter-

mine both upstream activators and downstream targets, thus

placing the kinase within a cascade and effectively insulating it

from other signaling pathways. Within the MAPK field, prom-

inent examples of such scaffolds are the yeast Ste5 ⁄ Pbs2 scaf-

fold modules, and in mammals, the MAPK kinase cascades

that are organized by various stimulus specific scaffolds. In

NFjB signaling, NEMO appears to play a similar role (Schrö-

felbauer et al. unpublished data). However, we expect that

ongoing efforts to understand specificity of signaling within

the TNFRSF network will lead to the identification of other

such scaffolding proteins and the characterization of their

roles in signaling insulation and as mediators of signaling

crosstalk.
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