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Abstract
In cell signaling systems, the abundances of signaling molecules are generally

thought to determine the response to stimulation. However, the kinetics of molecular

processes, for example receptor trafficking and protein turnover, may also play an

important role. Few studies have systematically examined this relationship between

the resting state and stimulus-responsiveness. Fewer still have investigated the

relative contribution of steady-state concentrations and reaction kinetics. Here we
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describe a mathematical framework for modeling the resting state of signaling

systems. Among other things, this framework allows steady-state concentration

measurements to be used in parameterizing kinetic models, and enables compre-

hensive characterization of the relationship between the resting state and the cellular

response to stimulation.
I. Introduction
Cell systems respond to external stimuli through a coordinated network of bio-

chemical reactions mediated by any number of molecular species. Although it is

customary to think of these systems as being ‘‘at rest’’ prior to stimulation, a growing

number of studies have demonstrated that the resting state of a cell prior to stimu-

lation can be a powerful determinant of the response. For example, with regards to

stimulation by the death-inducing TNF superfamily member TRAIL, studies have

shown that cells may be sensitized via up-regulation of the TRAIL receptor DR5

(Dolloff et al., 2011) or caspase 8 (Fulda et al., 2001), down-regulation of TRADD

(Kim et al., 2011) or c-FILP (Li et al., 2011), or alternatively desensitized by up-

regulation of Bcl-XL (Hinz et al., 2000) or Bcl-2 (Fulda et al., 2002) (reviewed in

Zhang and Fang, 2005).

By contrast, in other systems it has been shown that the kinetics of species

turnover – not their outright abundance – determine the response to stimulation.

For example, high turnover of the Epo receptor is required to maintain a linear, non-

refractory response over a broad range of Epo concentrations (Becker et al., 2010),

while high turnover of the inhibitor of NFkB is required to distinguish acute

inflammatory stimuli from metabolic stress conditions (O’Dea et al., 2008).

Studies like these highlight an important dichotomy in the resting state of a cell.

In one hand are the concentrations of molecules prior to stimulation, and in the

other are the rates of the biochemical processes in which they participate. How do

each of these facets of the resting state affect the cellular response to stimulation?

Because systematic changes in the resting states of living cells are difficult to

engineer, investigating this relationship cannot be addressed by laboratory science

alone. For example, short interfering (si) RNA can be used to reduce the concentra-

tion of a specific gene product, but this reduction is effected by interfering with the

translation of the product (Fire et al., 1998; Izant and Weintraub, 1984). Changes in

stimulus-responsiveness due to siRNA knockdown may, therefore, be caused by a

reduction in the concentration of the target species, reduction in the kinetics of its

turnover, or both. Furthermore, RNA dilution in rapidly dividing cells (Bartlett and

Davis, 2006) or secondary induction of the mammalian interferon response

(Reynolds et al., 2006) may further cloud interpretation of the results.

Using a mathematical model, the behavior of a system can be studied rapidly and

in isolation, providing a sort of sufficiency test for proposed mechanisms of cellular

responsiveness (Faller et al., 2003; Kearns and Hoffmann, 2009; and Kitano, 2002).

The steady-state of a model, discussed in further detail below, is furthermore a good
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approximation for the resting state of the system. A complication that arises in

models when trying to characterize the relationship between steady-state and stim-

ulus-responsiveness, however, is that models of cell systems are typically nonlinear.

As such, the steady-state must often be found numerically, and this compromises the

modeler’s ability to investigate its role in stimulus-responsiveness.

To that end, in this chapter we describe a method for deriving an analytical

expression for the steady-state of a common class of models, called mass action

models. From this analytical expression, we go on to give precise steps for intro-

ducing systematic changes to the steady-state concentrations of molecular species

and the rates of biochemical processes in which they participate. In doing so, we

demonstrate how specific hypotheses can be generated about the resting state of a

system and its impact on stimulus-responsiveness. Examples include:
�
 Are my measurements of steady-state concentrations and kinetic rate constants

consistent with the proposed model?

�
 Is a change in the steady-state concentration or activity of a particular species

sufficient to explain the changes I observed in the system’s response to

stimulation?

�
 Can I expect a system at a particular resting state to exhibit a certain response to

stimulation?

The remainder of this text is divided into the following sections: ‘‘Overview of

Algorithm,’’ in which we provide a verbal description of the steps required to model a

system and derive a solution to its steady-state; ‘‘Biological Insights,’’ in which we

demonstrate how a model at steady-state can help generate hypotheses about the

relationship between the resting state of a system and its response to stimulation;

‘‘Open Challenges,’’ in which we describe limitations of the method and potential

avenues for refinement; ‘‘Computational Methods,’’ in which we provide step-by-step

instructions for modeling a system and manipulating its steady-state; and finally

‘‘Further Reading,’’ where we offer some references for further reading on the subject

of modeling, steady-state, and parameterization, and dynamic response analysis.
II. Overview of Algorithm
For the purposes of this manuscript we assume that the system to be studied can be

described by a biochemical reaction network (BRN). A BRN consists a set of a set of

molecular species and a set of biochemical reactions. The set of species must contain

every species consumed or produced by the reactions. Neither every species nor

every reaction need be elementary – a species may refer to a complex biomolecule

like a ribosome, for example, and a reaction to a multistep process like protein

synthesis.

A simple BRN to illustrate the steps used in the forthcoming algorithm is the

activation of the tumor suppressor p53. This network consists of two species, p53 and

Mdm2, and four reactions. These reactions describe the process by which p53 and
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Mdm2 self-regulate through coordinated synthesis and degradation. Specifically,

p53 is constitutively synthesized but degraded in an Mdm2-dependent manner.

Mdm2 is synthesized in a p53-dependent manner but constitutively degraded. An

illustration of this network is given in Fig. 1, as are all steps used in the forthcoming

algorithm.
A. Model the System of Interest Using Mass Action Kinetics
We further assume that the BRN used to describe our system can be modeled

using mass action kinetics. Mass action assumes that the velocity of a chemical

reaction – or the rate at which it converts reactants into products – is proportional

to the product of each reactant raised to some power. This power is often equal to

the stoichiometry of the reactant and is, therefore, simply one. Note too that when

we refer to a species of a mass action model, we nearly always mean the abundance

of that species. The resultant mathematical expression for the velocity of the

reaction is often called a rate equation.

There are four reactions in the p53 model, which cumulatively describe the

synthesis and degradation of p53 and Mdm2. Under mass action, the velocity of,

say, p53 degradation is proportional to the product of p53 and Mdm2. Equivalently,

we can say that the velocity of p53 degradation is equal to the product of p53,Mdm2,

and a proportionality constant. This proportionality constant is commonly called a

rate constant.

Once rate equations have been written for each chemical reaction, we apply the

principle of mass balance to arrive at a set of governing equations that describes how

every species behaves over time. This principle holds that the rate at which a species

changes over time is equal to the sum of reaction velocities for which that species is

produced, minus the sum of reaction velocities for which it is consumed. For

example, p53 is produced by a zero-order synthesis reaction and consumed by a

second-order degradation reaction. Consequently, we can write that the first deriv-

ative of p53 with respect to time is equal to the velocity of synthesis minus the

velocity of degradation. In this way, application of mass action kinetics to any BRN

yields a system of ordinary differential equations that describes the instantaneous

rate of change for every species as a function of the reaction velocities.

Mass action may not always be appropriate to model the behavior of a BRN. A key

assumption of the rate equation is that of spatial homogeneity. That is, there are no

gradients in the concentration of any species and the local concentration at any point

in space is equal to the global concentration (Grima and Schnell, 2008). This

condition is violated when there are differences in the diffusivity of the species,

due to either complex formation, tethering to subcellular structures, or compartmen-

talization (Kholodenko, 2009). Such systems are more appropriately modeled using

reaction diffusion equations, reviewed in Slepchenko et al., 2002. A second assump-

tion of the rate equation is that the concentration of each participating species is

sufficiently ‘‘large’’ (Sreenath et al., 2008). If this is not the case, then random
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Fig. 1 Schematic of the simple model of p53 activation and regulation by Mdm2 used throughout this

document. Below that, a flowchart of a mathematical framework for modeling the resting state. Diamonds

represent major steps in the framework while boxes represent the outcome of those steps. The outside

track illustrates the results of this framework when applied to the p53 model. (For color version of this

figure, the reader is referred to the web version of this book.)
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fluctuations can no longer be ignored and the reaction velocity must be modeled by a

propensity function, called the chemical master equation (Gillespie, 1992).

Extending the method presented here to systems where the assumptions of mass

action fail is the subject of future research, and is discussed in Open Challenges.
B. Derive an Expression for the Steady-state of the Mass Action Model
For any mass action model there exists at least one set of reaction velocities where

every species is being produced as quickly as it is being consumed. When this is the

case, the model is said to be at steady-state. In this chapter, we equate steady-statewith

the resting state, but remark that a more sophisticated relationship between the two

could be the subject of future work.

Every mass action model will have one or more trivial steady-states. These are

steady-states in which all reaction velocities are zero. Closed systems, or systems

that don’t consider synthesis and degradation, always have a trivial steady-state in

which every species’ abundance is zero. Open systems also require that one or more

synthesis rate be zero. An example of a trivial steady-state in the p53 model is one

where there is neither p53 nor synthesis thereof. Since trivial steady-states are of little

physiological interest, howmight we identify nontrivial steady-states. More pointedly,

in order to examine the relationship between steady-state and the dynamic response,

how might all nontrivial steady-states be identified?

Mathematically, finding steady-states is equivalent to solving the system of equa-

tions that results when we set the rate of change of every species equal to zero. If the

system happens to be linear in the variables of interest, then a solution can often be

found quite easily. The key then is simply to find a subset of species and rate

constants that may be treated as variables such that the resulting system of equations

is linear. Ideally, the complement of that subset will be species and rate constants for

which accurate measurements are available, since these are elements for which

numerical values will need to be given prior to simulation. A detailed description

of this process, which we call py-substitution, is given below.
1. Develop and Apply a py-substitution Strategy
From the set of all rate constants and species abundances, identify a substitution

strategy by which elements with known values are replaced by a p and elements with

unknown values are replaced by a y. We refer to these quantities as parameters and

variables, respectively. Every substitution strategy must also satisfy the following

conditions: (1) the resultant system of equations is linear in y, and (2) there are at

least as many variables as there are linearly independent equations. The latter of

these ensures that the py-substituted system of equations is not overdetermined.

Zero-order reaction velocities and velocities with exponents not equal to unity

introduce a further complication: the former cannot be substituted by parameters nor

the latter by variables. To do so violates the linearity constraint. If this constraint is
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undesirable, awork-around is to introduce a pseudospecies. For example, the velocity

of p53 synthesis in our p53 model is independent of any species abundance. That is,

the rate of synthesis is constant and equal to a single rate constant. If a reliable

measurement exists for that rate constant, we may wish to substitute it with a

parameter rather than a variable. But because doing so would violate the linearity

requirement, we let the velocity be equal to the product of a first order rate constant

and a pseudospecies. The latter of these we substitute normally with a variable and,

once the system of steady-state equations has been solved, go back and make sure its

value is unity.

A similar tactic can be used for reaction velocities that are superlinear in one of

their reactants. If no reliable estimate exists for the abundance of the reactant, we

may wish to substitute it with a variable rather than a parameter. Since doing so

results in a superlinearity in y, we replace the reactant with a pseudospecies whose

exponent is unity. The pseudospecies can then be substituted normally with a

variable. After solving the system of steady-state equations, we go back and ensure

that the steady-state expressions for the pseudospecies and the superlinear reactant

are equal.
2. Solve the Linear System
After developing a py-substitution strategy, the system of steady-state equations is

rendered linear in the variables. This allows us to rewrite the system using matrix

notation. Specifically, we can write that the product formed by a matrix of para-

metersCwith a columnvector of variables y equals a columnvector of zeros.We call

this matrix of parameters the coefficient matrix:

Cy ¼ 0 ð1Þ
The solution to this equation is precisely the null space of the coefficient matrix.

Most modernmathematics software can derive a symbolic basis for the null space, so

long as the matrix is not too large. If it is large (say, over 100 rows and columns,

approximately equivalent to a system containing 100 species and reactions), then so

too is the number of row operations needed to derive a basis. Since the elements in

thematrix are symbolic, they can seldom can be reduced after each rowoperation. As

a result, certain elements will grow geometrically in complexity and consume all the

available RAM on the host device, causing a de facto arrest of the computation. Not

all software packages handle this explosion equally well. In our experience, Maple

outperforms both Mathematica and Matlab.

What is the benefit of a symbolic solution to the steady-state equation over a

numerical one? With the latter, every independent parameter is a numeric value,

which by the coefficient matrix is mapped efficiently to a value for each variable

such that the system is at steady-state. The downside of this approach is that the

contribution of each parameter to the variables is lost during the calculation. If the

values of the independent parameters change, as is often required during the analysis

of a mass action model, the values for the dependent variables must be calculated
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anew. With a symbolic solution, the contribution from each parameter to the steady-

state expression of each variable is preserved. This has several advantages. (1) The

relationship between a variable and an independent parameter can sometimes be

identified directly from its steady-state expression. For example, the expression may

reveal that a certain concentration scales linearly or nonlinearly with another species’

concentration, or that the concentration does not depend at all on certain reaction rates.

(2) More generally, the sensitivity of each dependent variable to each independent

parameter can be calculated, so that, for example, changes in parameter values can be

identified that only affect a certain subset of variables. This is precisely the approach

we use below to selectively alter the steady-state turnover of p53 and Mdm2.
3. Derive a General Expression for the Vector of Variables
A basis for the null space of the coefficient matrix spans the solution to the steady-

state equation. If we let the vector of variables be any linear combination of null

space basis vectors, then the system will be at steady-state no matter what values we

assign to the parameters. By any linear combination, we mean that the coefficient of

each basis vector can be any real-valued number. If the basis vectors are arranged as

columns in a matrix, this is equivalent to postmultiplying that matrix by a column

vector of real-valued coefficients.
4. Resolve Any Constraints Imposed by Pseudospecies
Once a general expression is derived for the vector of variables, we must resolve any

additional constraints imposed by the pseudospecies. Typically thesewill have the form

ya= yb
2 in the case of a superlinearity, or ya= 1 in the case of a sublinearity. The solution

to these equations is not always straightforward, especially the former. Whichever

mathematics software was employed to derive the null space for the coefficient matrix,

however, can be used again here to solve the pseudospecies constraints.

Another complication that may arise during this step is that a superlinear con-

straint will yield two or more possible solutions. In theory, this presents a very

interesting scenario where two or more values for the same species result in an

otherwise identical steady-state. In other words, this may represent a bi- or multi-

stability. In practice, our experience has been that when two solutions are possible,

one of them is always negative and, therefore, physiologically infeasible.

Furthermore, bistabilities reported in the literature typically manifest themselves

in all of the species, not just one. Therefore, a practical resolution to this complica-

tion has been to keep both symbolic solutions but discard the infeasible one after

numerical values are given to the parameters.
5. Reverse the py-substitution
Once the steady-state equation is solved and an expression derived for the vector

of variables, one may wish to revert the substitution so that the relationships between
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variables and parameters are expressed in terms of species and rate constants. For

simple systems, this can yield insight into how steady-state is achieved. For larger

systems, these relationships can become intractable. Furthermore, for subsequent steps

in this algorithm, the parametric description of steady-state can be the more useful of

the two. For these reasons, reverting the py-substitution is an optional step.

If reversion is desired, note that a technical complication was introduced by the

linear combination of null space basis vectors. Specifically, the forward py-substi-

tution results in a linear system that is solvable but underdetermined. If this was not

the case then the coefficient matrix would not have a null space. By taking a linear

combination of the basis vectors, we effectively identify dimensions of the null space

that are independent and thus need to be given a numerical value. In other words, the

original py-substitution contained too many variables. A number of these variables

equal to the dimension of the null space must become parameters. Fortunately, by

scaling the basis vectors such that they are normalized with respect to the desired

variable, we have a fair amount of freedom in specifying which variables are to

become parameters.

Once this is done, we are left with an equation where the left hand side is the

original vector of variables, and the right hand side is the product of thematrix of null

space basis vectors and the vector of coefficients. Letting these elements be repre-

sented by y, N, and q, respectively, the equation looks like the following.

y ¼ Nq ð2Þ
It is precisely this equation that preserves the steady-state in our mass action

model. The left hand side is within the domain of the inverse of the original py-

substitution and can be reverted quite easily. The right hand side is a function of

parameters and basis vector coefficients. The latter of these is not within the domain

of the inverse py-substitution, sowemust first convert these tovariables. Fortunately,

this conversion can be easily identified from the equation itself. By the derivation of

the null space basis via row reduction of the coefficient matrix, there will exist at

least one row inN for which only one column contains a nonzero entry. If the vector

is scaled to this entry, then the row defines a one-to-one mapping between basis

vector coefficients and variables. This mapping restores the right hand side to the

domain of the inverse py-substitution, thus making the full reversion possible.
C. Identify the Isostatic Subspace of the Mass Action Model
Oncewe have derived an expression for the steady-state of our mass action model,

wemaywish to characterize the relationship between the dynamics of the system and

its rate constants and steady-state abundances. The former of these is not straight-

forward, however, because changes in kinetic rate constants often result in changes

to the abundances. To isolate the effects of changes in rate constants on system

dynamics, we must derive an expression for the isostatic subspace of the model, that

being the set of all parameter perturbations that do not in turn alter the steady-state

species abundances.
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1. Calculate the Jacobian Matrix of Partial Sensitivities in Abundances
With Respect to Parameters
The first step in deriving the isostatic subspace is to define precisely what we

mean by a perturbation in parameters that in turn does not alter the steady-state

abundances. From our derivation of the steady-state above, we have that every

species abundance is equal to some function of parameters and null space basis

vector coefficients. It is convenient at this point to simply consider the latter of these

as parameters as well. Some species equate one-to-onewith a single parameter; other

species are equal to complex expressions in the parameters. Either way, we are

interested in a change in parameters Dp that, when added to the original set of

parameters p, results in a change in species Dx equal to zero. This is expressed

succinctly by the following equation.

Dp 2 fDp 6¼ 0 : Dx ¼ xðpÞ � xðpþDpÞ ¼ 0g ð3Þ
Avalid change in parameters is thus any that satisfies

xðpÞ ¼ xðpþDpÞ ð4Þ
The right hand side of this equation can be approximated by a truncated Taylor

series, as follows,

DxðpþDpÞ � xðpÞ þ J xDp ð5Þ
where Jx is the Jacobian matrix whose elements are the partial derivatives of each

species with respect to each parameter. The first step in deriving the isostatic

subspace is, therefore, to calculate this matrix, which can be done efficiently using

our choice of mathematics software.
2. Derive a Basis for the Null Space of the Jacobian Matrix
We are now confronted with the same situation as we were when deriving an

expression for the steady-state. Since wewant our new vector of species abundances

to equal the old one, we require that

J xDp ¼ 0 ð6Þ
In other words, the change in parameters must reside within the null space of the

Jacobian matrix. Equivalently, we call this particular null space the isostatic sub-

space, since it contains every perturbation in the parameters that does not affect the

steady-state species abundances. A basis for this subspace can be derived as before.
3. Derive a General Isostatic Perturbation Vector
Every dimension in the isostatic subspace is a degree of freedom through which we

can introduce an isostatic perturbation. A general expression for an isostatic pertur-

bation then is simply the product of a matrix whose columns are the basis vectors of

the isostatic subspace and a vector of basis vector coefficients. Notice how closely this
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step mirrors the derivation for an expression for the vector of variables, above. Once

this multiplication is done, we are left with a general isostatic perturbation vector.
4. Derive a Specific Isostatic Perturbation Vector
Each degree of freedom in the general isostatic perturbation vector may introduce

a perturbation that, in isolation, is of no physiological interest. For example, in the

p53 model, we may be interested in introducing a perturbation that alters the rate of

synthesis and degradation of p53. There is no guarantee that this perturbation exists

as a single vector in our basis for the isostatic subspace. Therefore, the final step is to

identify a specific combination of basis vectors to achieve the desired perturbation.

In Section V, below, all of these steps are illustrated in detail as they are applied to our

simple model of p53 activation.
III. Biological Insights
In this section, we illustrate some of the insights and hypotheses that can be

generated from the steady-state and isostatic subspace of a mass action model. First,

we show that statics and kinetics must cooperate to achieve steady-state. If an expres-

sion for the steady-state is known, then static parameters can be used to calculate the

values for some, but not all, kinetic parameters. The fact that not all kinetic parameters

can be calculated is related to the fact that the dynamic response to perturbation cannot

be uniquely determined from static information alone. Using our simple model for the

activation of the tumor suppressor p53,we show that the kinetics of homeostatic protein

turnover determine the dynamic response of p53 to DNA damage.
A. Explicit Derivation of Kinetic Rate Constants From Static Measurements
A key motivation for the development of py-substitution was to calculate kinetic

rate constants directly from static measurements (Fig. 2). For example, in the p53
[(Fig._2)TD$FIG]

Fig. 2 A comparison of py-substitution versus a traditional parameterization strategy. A traditional

strategy requires numeric values for all four rate constants. Using py-substitution, the steady-state

abundances of p53 and Mdm2 can be given explicitly. In conjunction with the rates of synthesis of p53

andMdm2, the degradation rate constants can be calculated such that steady-state is preserved. (For color

version of this figure, the reader is referred to the web version of this book.)
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model, values can be given for the steady-state abundances of p53 and Mdm2. Just

the degradation rates of p53 and Mdm2 are then required to fully parameterize the

model. The rates of synthesis can be calculated explicitly using these four para-

meters and the steady-state expression derived by py-substitution.

By comparison, a traditional parameterization strategy would require that all four

kinetic rate constants be specified. The steady-state abundances of p53 and Mdm2

could then be derived numerically by integrating the model to steady-state, but this

process is comparatively less efficient. Furthermore, the steady-state behavior of

p53 andMdm2 over a range of synthesis and degradation rates is unknowable except

through simulation. If estimates for the steady-state abundances of p53 and Mdm2

exist, then a parameter fitting procedure must be used to infer the optimal values for

the kinetic rate constants. This is an example of a ‘‘backward problem,’’ in that the

‘‘forward problem’’ – calculating the steady-state abundances of p53 and Mdm2

given a set of four kinetic rate constants – must be iteratively solved until an optimal

set of rate constants is identified. If, however, an expression for the steady-state is

known, this backward problem is turned into a forward problem: given the steady-

state abundances for p53 and Mdm2 and their rates of degradation, a simple calcu-

lation gives the rates of synthesis required to support that steady-state.

The significance of this difference is that making kinetic measurements can be a

considerable technical challenge. Typically kinetic parameters must be determined

with purified proteins using in vitro assays (Nutiu et al., 2011; Tanious et al., 2008)

or must be derived from biochemical assays requiring millions of cells

(Schwanh€ausser et al., 2011). By contrast, static measurements are often more

sensitive and can be performed using fixed cells (Itzkovitz and van Oudenaarden,

2011; Jain et al., 2011). As a result, measuring static variables is easier and more

accurate than measuring kinetic ones, and py-substitution allows kinetic rate con-

stants to be derived explicitly from simpler, static measurements.
B. Static Control of the Dynamic Response
Another benefit of py-substitution is that we can systematically evaluate the

relationship between dynamic responsiveness and steady-state abundances. This is

made possible by the fact that py-substitution allows steady-state abundances to be

treated as independent parameters. For example, the dynamic response of p53 to

DNA damage is affected by the steady-state abundance of Mdm2. Because we have

modeled this abundance as an input parameter, it is straightforward to vary it over a

range of values and simulate the p53 response at each value.

In Fig. 3, we let Mdm2 vary from 0.1 to 10 times its nominal wildtype value. As

Mdm2 increases, p53 exhibits a faster and stronger dynamic response. As it

decreases, p53 becomes slower and weaker. This is because the rate of p53 degra-

dation scales with the steady-state abundance of Mdm2. As the latter increases, so

does the former. Since we have not varied the steady-state abundance of p53 but

rather kept it fixed, the rate of p53 synthesis must also scale with the abundance of

Mdm2. In other words, a higher steady-state abundance of Mdm2 results in a higher
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Fig. 3 The effect of the steady-state abundance of Mdm2 on the dynamic response of p53 to stimulation. At top, the steady-

state abundance of Mdm2 is varied from 0.1 (light gray) to 10 (dark gray). The result of this variation on the time and amplitude

of the p53 response are shown as bar graphs on the right. At bottom,Mdm2 is again varied from 0.1 to 10. Each of the five panels

represents a distinct but constant abundance of Mdm2. The abundance of p53 is always 1. The rates of p53 and Mdm2 synthesis

and degradation are then allowed to take a random value from a uniform distribution over 0.1 to 10 times their nominal wildtype

values. The p53 response to perturbation is simulated for 1000 samples in each panel and the median dynamics plotted. (For

color version of this figure, the reader is referred to the web version of this book.)
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steady-state turnover of p53. The velocity of this turnover partially dictates the

dynamics of the p53 response. Homeostatic turnover will be examined in more

detail in the next subsection.

Interestingly, even though steady-state abundances affect the dynamic response,

they do not uniquely determine it. Put another way, the dynamic response to pertur-

bation is underdetermined with respect to the steady-state abundances. This is

illustrated in Fig. 3, bottom. Here, each panel depicts the median behavior of

1000 simulations of the p53 model. For a given panel, every simulation has the same

steady-state abundance of Mdm2 and p53. The rates of homeostatic turnover of

Mdm2 and p53, however, are allowed to take a uniform random value between 0.1

and 10 times their nominalwildtype value.We say that these simulations are isostatic

but anisokinetic – their steady-state abundances are identical but their kinetic rate

constants are not. This variability in the kinetics causes variability in the dynamics,

but is entirely opaque with respect to the steady-state abundances.
C. Kinetic Control of the Dynamic Response
As Fig. 3 shows, isostatic systems can exhibit significant variability in their

response to perturbation. This is a consequence of the fact that the steady-state of



[(Fig._4)TD$FIG]

Fig. 4 The effect o

0.1 (light gray) to 10 (

10 (dark gray) times it

on the right. (For colo

94 Paul Loriaux and Alexander Hoffmann
a mass action model is degenerate with respect to its kinetics; an infinite number of

kinetic rate constants can support the same set of steady-state abundances. We call a

change in kinetic rate constants that does not affect any steady-state abundances an

isostatic perturbation to the parameters, or an isostatic perturbation for short.

Special cases of isostatic perturbations are those that simultaneously alter the

homeostatic rates of synthesis and degradation – or flux – of a particular species.

Above we saw that changing the steady-state abundance of Mdm2 altered the flux of

p53 and thereby its dynamic responsiveness. However, we can alter the flux of p53

without altering the steady-state abundance ofMdm2 aswell. This is shown in Fig. 4.

Similar to the subsection above, increasing the flux of p53 results in a faster, stronger

response. Decreasing the p53 flux results in a slower, weaker response, and to a

greater degree than observed when changing Mdm2 alone.

In addition to p53, we can alter the homeostatic flux of the negative regulator,

Mdm2. This is shown in Fig. 4, bottom. In contrast to p53, increasing the flux of

Mdm2 results in a faster but weaker p53 response. This result highlights the fact that

while the homeostatic flux of a species within a biochemical reaction or gene

regulatory network can affect the dynamic response to perturbation, the precise

nature of the effect depends on the function of that species within the network.
D. Precise Control of the Dynamic Response by Homeostatic Flux
The distinct effects of homeostatic p53 versus Mdm2 flux on the dynamic

response of p53 raise the possibility that these fluxes can be used to precisely control

the shape of the p53 trajectory. Using the time and amplitude of the peak of the p53

trajectory as descriptors of the shape, we can look for isostatic perturbations that
f p53 andMdm2 flux on the dynamic response of p53 to stimulation. At top, the flux of p53 is varied from

dark gray) times its nominal wildtype value. At bottom, the flux of Mdm2 is varied from 0.1 (light gray) to

s wildtype vale. The effects of each on the time and amplitude of the p53 response are shown as bar graphs

r version of this figure, the reader is referred to the web version of this book.)
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Fig. 5 Precise tuning of the dynamic response of p53 to stimulation by homeostatic flux. At top, the flux of p53 is varied from

0.1 (light gray) to 10 (dark gray) times its nominal wildtype value, while the flux of Mdm2 is varied from 10 (light gray) to 0.1

(times its wildtype value). The result of this modulation is that amplitude of the p53 response is held constant. At bottom, the flux

of Mdm2 is varied from 0.1 (light gray) to 10 (dark gray) times its wildtype value. A modification to the flux of p53 is then

derived numerically such that the time of the p53 response is held constant. (For color version of this figure, the reader is referred

to the web version of this book.)
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affect the flux of both p53 andMdm2 such that the peak time is altered independently

of the amplitude, or the amplitude independently of the time.

In Fig. 5, we see that this is indeed possible. In fact, in Fig. 4 we can see that the p53

and Mdm2 fluxes have an equal but opposite effect on the peak amplitude. This

suggests that an isostatic perturbation that pairs an increase in one flux with an equa

but opposite decrease in the other will preserve the amplitude of p53. This is shown to

be the case in Fig. 5 top. Since this same phenomenon is notmanifested in the p53 peak

time, it is less straightforward to derive the desired isostatic perturbation. However

given a particular change inMdm2 flux, we can indeed find a change in p53 flux such

that the p53 peak time is preserved (Fig. 5, bottom). Together, these results demon-

strate that the dynamic response of p53 can be precisely controlled by homeostatic

flux, independently of the steady-state abundances of either p53 or Mdm2.
IV. Open Challenges
Because the assumptions of spatial homogeneity and high concentrations remain

prevalent in the systems biology and modeling literature, we believe there is ample

opportunity to use py-substitution to generate novel hypotheses about the impact o

steady-state on stimulus responsiveness. Nevertheless, even within a mass action

framework there are limitations to the method as described here. Chief among these

is that of model size. Deriving symbolic bases for the solution space to the steady-

state equation and isostatic subspace of a large model can yield elements with



96 Paul Loriaux and Alexander Hoffmann
hundreds and sometimes thousands of terms. An attractive solution to this problem

would be a priori identification of network modules (Bowsher, 2011; Hartwell et al.,

1999). In the ideal case, this would result in block diagonal coefficient and Jacobian

matrices. Since each block can be treated independently, the algebraic complexity of

the resultant basis vectors would be much more manageable. Identifying modules

would also offer the benefit of allowing some species to be in disequilibrium, as the

case might be when a signaling network experiencing ambient, tonic signaling is

coupled to a periodic oscillator such as the cell cycle.

For systems in which the assumptions for mass action are not supported, somework

will have to be done to extend the py-substitution framework. For spatially heteroge-

neous systems, the mass balance equations include a diffusion term in addition to the

standard mass action rate equations. It remains to be shown whether such a system of

equations can be linearized in the samemanner as described here. If indeed it can, this

could lead to new insights regarding the interplay between reaction kinetics and

diffusivity in establishing spatial gradients and responding to spatially heterogeneous

signals.When the assumption of high concentrations is violated and a system loses its

deterministic behavior, the inference of kinetic parameters from steady-state concen-

trations or dynamic response measurements becomes a probabilistic one. Additional

work will be done to extend py-substitution to these stochastic systems.

More generally, the class of models that can be addressed using py-substitution

remains to be determined. Are their structural motifs within a BRN that are partic-

ularly challenging to linearize? Can more exotic reaction rate equations be enter-

tained, notably Michaelis–Menten kinetics and Hill functions? Precisely defining

the domain of py-substitution will not only guide its further development, but

perhaps also dissuade the use of exotic reaction kinetics to achieve a certain dynam-

ical behavior, at the expense of a knowable steady-state.
V. Computational Methods
In this section, we give step-by-step instructions for identifying the steady-state of

the p53 model. Although the size of this model makes it unnecessary to employ the

rigorous treatment described here, that the results can be reproduced by hand makes

the steps tractable and easy to follow. For information on how the method scales to

larger models, see Loriaux et al., 2012. Once we identify a solution to the steady-

state of the p53 model, we show how to derive a basis for its isostatic subspace.

Finally, from the isostatic subspace we show how to derive specific isostatic pertur-

bation vectors for modifying the homeostatic flux of p53 and Mdm2.

All of the steps below are performed using Matlab. As noted earlier, Matlab is not

the best choice of software for symbolic calculations, but because it enjoys the most

familiarity, we use it here for clarity. In the passages that follow, commands are

identified by a double arrow prompt while output from the Matlab terminal is

identified by a boldface font. Finally, it should be noted that the following code is

in noway optimal; a more efficient implementation would make use of matrices, but

again this efficiency comes at the expense of clarity.
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A. Identifying an Expression for the Steady-state of a Mass Action Model
The p53 model consists of two species and four reactions. These must all be

declared as symbolic variables using the syms keyword. Following convention, we

use x to denote species, v for reaction velocities, and k for reaction rate constants.

The real keyword identifies these variables as being real-valued. The semi-colon

suppresses Matlab output.

By mass balance, we let the rate of change of each species be equal to the sum of

reaction velocities in which that species is produced minus the sum of reaction

velocities in which it is consumed. This yields the following.

Assuming mass action, we let the velocity of each reaction be equal to the product of

its reactants and the corresponding rate constant.

Substituting in the reaction velocities yields a system of mass balance equations

expressed in terms of species and rate constants.
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Wemust now linearize the system by imposing a py-substitution strategy. Even for

a model of this size, several strategies exist. Here we’ll implement a strategy that

assumes we have accurate measurements for the abundances of p53 and Mdm2 and

the rate of p53 synthesis. The degradation rate constants and rate ofMdm2 synthesis

will be left variable. Note that substituting for the rate of p53 synthesis requires the

use of a pseudospecies, x3, which we introduce now.

As before, we must declare all symbolic parameters and variables prior to substitu-

tion. Once a strategy is defined, we can use the same subs command to generate the

py-substituted mass balance equations.
As expected, py-substitution results in a linear system of mass balance equations. As

such, we can express it as the product between a coefficient matrix of parameters and a

vector of variables. To derive the coefficientmatrix, we use thejacobian command.
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Nowwe’d like to find all vectors that, when left-multiplied by the coefficient matrix

equal zero. In other words, the vector must be in the null space of the coefficien

matrix. To ensure this is true, we need to find a basis for the null space. This can be

done using the null command. We’ll store the results of this operation in a second

matrix, N.

We now let the vector of variables equal any linear combination of column vectors

in N. Because N has two columns, we’ll need two additional parameters, q1 and q2
These will be the coefficients of the null space basis vectors.

Next, we must resolve the pseudospecies such that its value is one. Since y1 is the

variable that corresponds to the pseudospecies x3, this means we must find a value
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for q1 such that y1=1. Also note that the coefficient q2maps to y4. This indicates
that the rate constant k4must in fact be a parameter. Here wewill assume that this is

not desirable, and that we would prefer to let the rate of Mdm2 synthesis be a

parameter instead. To do this, we scale the second null space vector N(:,2) by a

factor a2 such that N(2,:)*[q1;a2*q2]=q2.
The final expression for the vector of variables is as follows.
To be prudent, we verify that this vector is in the null space of the coefficient matrix.
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Finally, wemaywish to revert the substitution so that our steady-state expression is in

terms of species and rate constants. Notice that the linear combination [q1;q2]
effectively identifiesvariables that,because thecoefficientmatrixwasunderdetermined,

turn out to be parameters. These variables map one-to-one with null space basis vector

coefficients. Thus in our steady-state expression for y, to the left hand side we simply

reverse the substitution from py back to kx. To the right hand sidewe first perform the

one-to-one substitution from q to y, then the reverse substitution from py to kx.
The result of the inverse substitution is a relationship between dependent and

independent species and rate constants that, if satisfied, guarantees steady-state.

Note that this relationship is particular to our choice of py-substitution strategies

and null space basis vector coefficients. As illustrated above, by scaling the appropri-

ate basis vector, wewere able to choosewhich variables remain dependent. Finally, it is

worth verifying that our solution for y does indeed guarantee steady-state.
he Isostatic Subspace of a Mass Action Model
B. Identifying t
AsillustratedinFigs.2–4,therearemanyadvantagestohavingananalyticalexpression

forthesteady-stateofamassactionmodel:(a)staticmeasurementsofspeciesabundances

canbeusedtocalculatekineticrateconstants, (b) thetotalnumberofparameters required

is often reduced (Loriaux et al., 2012), and perhaps most importantly, (c) we can char-

acterize the relationshipbetweendynamic responsiveness and theabundancesof species

at steady-state. However, as seen in Fig. 3, steady-state abundances do not uniquely

determine the dynamic response; the kinetics of the system are also important.
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To study the effects of kinetics on dynamic responsiveness in isolation, we would

like to identify any and all changes that can be made to the kinetic rate constants that

do not alter the steady-state species abundances. The set of all such changes is called

the isostatic subspace. To identify this subspace, it is first easier to return to the

parametric description of the steady-state. At this point, we’ll also replace the null

space basis vector coefficient q2 with the parameter, p4.
As expected, every element in our model is a function of the four parameters

used in the py-substitution strategy. Now recall that a Taylor expansion can be

used to approximate how these elements change in response to changes in

parameters. The first order term of this expansion requires a matrix of partial

derivatives of each element with respect to each parameter. This matrix is also

called the Jacobian matrix, and can be calculated in Matlab using the jaco-
bian command.
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In the Jacobian Jx, the rows correspond to steady-state species abundances

and the columns to parameters. Element Jx(1,1)=1 indicates that a change in

parameter p1 results in an equal change in species x1. This of course is not

surprising since our py-substitution strategy had that x1=p1. It is also not

surprising that Jx(1,2)=Jx(1,3)=Jx(1,4)=0; the species x1 doesn’t depend

on any other parameter. The second row of Jx has a similar structure; the species x2
depends only on the parameter p2. This Jacobian matrix is extraordinarily simple

because both steady species abundances were modeled as independent parameters. In

general, there will be species whose steady-state abundances are variable expressions

of the parameters, and this significantly complicates the Jacobian.

It now remains to identify the set of all vectors that, when left multiplied by Jx,
result in zero. By our Taylor expansion, any such vector identifies a change in

parameters that results in no changes to the species abundances. By the same

argument as above, any such vector must be in the null space of the Jacobian, and

as before, a basis for this null space is found using the null command.
In this matrix, each row corresponds to a parameter and every column to a degree of

freedomin thenull space.That the first two rowsare comprisedentirelyof zeros indicates

that we can alter neither p1 nor p2without altering at least one steady-state abundance.

Again, this is not surprising sincex1=p1 andx2=p2. The bottom two rows indicate that

wecanaltereitherp3orp4 independentlyofoneanother.Thistooisnotsurprising;neither
p3 nor p4 appear in the steady-state expressions for x1 and x2. As with the Jacobian
matrix, the null space basis will typically have amore complicated expression.

To derive a general expression for the isostatic subspace of our p53model, we take

a linear combination of the null space basis vectors. The null space is two-dimen-

sional so two coefficients are required, q1 and q2. And because we already used

these variables in the previous subsection, we’ll clear them prior to using them again.
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The vector isox states simply that wemaymake any change to the parameters p3
and p4without altering the steady-state abundances x1 and x2. To verify that this is
true, wemap the parameter perturbationisox into a species abundance perturbation

delx using the Jacobian, Jx. As expected, the parameter perturbation resides in the

null space of the Jacobian, indicating that the perturbation causes no change in

species abundances.
How does the general isostatic perturbation isox affect the rate constants of our

model? And how do we identify a specific perturbation such that only certain rate

constants are altered? To calculate the effect of the general perturbation isox on the

set of rate constants we use the same procedure as above, but using the Jacobian

matrix of rate constants with respect to the parameters instead of species

abundances.
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As we saw with Jx, the first two rows indicate that changes to p3 and p4 result in

equivalent changes to k1 and k2, respectively. This simply reflects the fact that

k1=p3 and k2=p4, and that our py-substitution strategy was designed to make the

rates of synthesis of p53 and Mdm2 independent parameters. The degradation rate

constants k3 and k4 are variable and constrained by steady-state, and are thus each

sensitive to changes in three out of four parameters. The product of Jx and isox
maps this perturbation into a change in rate constants.
As we observed in the Jacobian, a change q1 in parameter p3 results in an

equivalent change in the rate constant k1. A change q2 in parameter p4 results

in an equivalent change in k2. The resultant changes in the degradation rate con-

stants, however, are scaled by the species abundancesp1 and p2.We can calculate the

vector of rate constants that results from the perturbation isox by executing the first

sum in the Taylor expansion.
Finally, what if we are interested in not just any isostatic perturbation but a specific

one? In Fig. 5, we saw that the homeostatic flux of p53 and Mdm2 can precisely

control the dynamic response of p53 to DNA damage. Altering the homeostatic flux

is just a special case of the general perturbation isox. We need only find values for

q1 and q2 such that the rate constants k1 and k3 and k2 and k4 take on values
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theta1 and theta2 times their nominal wildtype values, respectively. To do this,

we first declare the symbolic variables theta1 and theta2. We then express our

desired outcome as a system of equations. Specifically, letting k1prime and

k2prime be the altered values of k1 and k2, the ratio of the k1 prime to k1 should

be theta1, and the ratio of k2 prime to k2 should be theta2. Once expressed as
such, we can solve for the requisite values of q1 and q2.
Substituting these values into the general isostatic perturbation isox results in the

desired, specific isostatic perturbation that scales the homeostatic flux of p53 and

Mdm2.
Finally, it remains to verify that this perturbation results in the desired change.

Again this is done by executing the first sum in the Taylor expansion.
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In summary, from the parametric expression for the steady-state of our model, we

have identified a specific isostatic perturbation that alters the homeostatic flux of

either or both p53 and Mdm2 to the user-specified parameters theta1 and

theta2, respectively.
VI. Further Reading
Another method for deriving expressions for the steady-states of mass action

models was introduced by King and Altman in 1956 (King and Altman, 1956). This

graphical method was greatly improved upon in Volkenstein and Goldstein (1966)

and again in Thomson and Gunawardena (2009), and enjoys a robust and sophisti-

cated implementation in Matlab (Qi et al., 2009).

The application of linear algebra to dynamical networks has a similarly rich

history, especially as it pertains to flux balance analysis (Gianchandani et al.,

2010) and systems biology (Palsson, 2006). For a deeper understanding of the

relevant concepts in linear algebra, see Poole (2010) and Cooperstein (2010).

Evaluating the effects of perturbations on network dynamics and steady-state has

long been the subject of metabolic control analysis, or MCA (Heinrich and

Rapoport, 1974; Fell, 2005). Succinctly, MCA can be used to quantify the steady-

state change in a reaction velocity or species concentration due to a change in an

independent parameter. Recently this framework was extended to dynamical states
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aswell (Ingalls and Sauro, 2003). For an excellent reviewof quantitativemodeling of

network dynamics, see Sauro (2009).
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