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Rapid antibody production in response to invading pathogens
requires the dramatic expansion of pathogen-derived antigen-
specific B lymphocyte populations. Whether B cell population dynam-
ics are based on stochastic competition between competing cell fates,
as in the development of competence by the bacterium Bacillus sub-
tilis, or on deterministic cell fate decisions that execute a predictable
program, as during the development of the worm Caenorhabditis
elegans, remains unclear. Here, we developed long-term live-cell
microscopy of B cell population expansion and multiscale mechanis-
tic computational modeling to characterize the role of molecular
noise in determining phenotype heterogeneity. We show that the
cell lineage trees underlying B cell population dynamics are medi-
ated by a largely predictable decision-making process where the
heterogeneity of cell proliferation and death decisions at any given
timepoint largely derives from nongenetic heterogeneity in the
founder cells. This means that contrary to previous models, only a
minority of genetically identical founder cells contribute the majority
to the population response. We computationally predict and exper-
imentally confirm nongenetic molecular determinants that are pre-
dictive of founder cells’ proliferative capacity. While founder cell
heterogeneity may arise from different exposure histories, we show
that it may also be due to the gradual accumulation of small
amounts of intrinsic noise during the lineage differentiation process
of hematopoietic stem cells to mature B cells. Our finding of the
largely deterministic nature of B lymphocyte responses may pro-
vide opportunities for diagnostic and therapeutic development.
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How similar cells give rise to distinct fates is a fundamental
question with different answers in different biological con-

texts. Cell fates are established deterministically for some cell
types or organisms, such as Caenorhabditis elegans (1). In other
cases, cell fates are established seemingly stochastically, such as
for the development of competence by the bacterium Bacillus
subtilis (2) or the generation of alternative color vision photore-
ceptors in Drosophila melanogaster (3), and are thereby independent
of cellular history (4). Here, we examined whether B lymphocyte
proliferation decisions are the result of stochastic or deterministic
fate decisions, and whether molecular network determinants may
be identified.
B lymphocytes are an essential component of the adaptive

immune response and source of antibody-producing cells. In re-
sponse to invading pathogens, B lymphocytes rapidly proliferate,
differentiate into antibody-producing cells, and produce antigen-
specific antibodies, which are essential for an effective immune
response. B cells genetically diversify by rearranging the Ig locus to
produce a diverse antibody repertoire and, therefore, diverse B cell
receptor (BCR)-antigen affinities, which control mitogenic signals.
While genetic heterogeneity arising from BCR diversification

has the potential to be a source of heterogeneity of B cell fate,
BCR-antigen affinity is a poor predictor of B cell proliferative
expansion (5), and snapshot flow-cytometry measurements re-
veal a high degree of cell-to-cell generational heterogeneity even
in response to BCR-independent stimuli (6). This led to the
notion that B cell fate decision-making is highly stochastic. In-

deed, direct measurement of division times at single-cell reso-
lution revealed a highly variable first division (7, 8), consistent
with a stochastic decision-making process. Based on these ob-
servations, Hodgkin et al. (9) developed a phenotypic model of
lymphocyte proliferation using probability distributions of di-
vision and death times. The Cyton model has shown remarkable
ability to fit dye dilution measurements by flow cytometry and
derive corresponding cell biological parameters (such as division
and death times) (9–13).
Whereas a key assumption of the Cyton model is the independent

stochastic decision-making of each cell at each generation, direct
observation of sibling cell behavior revealed correlations in cell fate
decisions and division times (8, 10, 11, 14). This has prompted re-
visions of the model to consider heritability. Thus, lymphocyte
population dynamics models have been proposed that structure cell
decisions by age (9, 15, 16) or division number (17) (or technical
aspects; refs. 18 and 19). However, the degree to which fate deci-
sions are nonstochastic remains unclear (20). Recently developed
approaches combining multiple division-tracking dyes revealed that
clonal populations were all of a similar generation at given time-
points during the proliferative expansion phase (21). To mathe-
matically account for these results, one recent study proposed a
distributed division destiny time that is inherited through cell di-
vision, controlled in part by the proto-oncoprotein Myc and a sep-
arate “time-to-die” mechanism (22).
Prior studies therefore provide the basis for considering the

molecular mechanisms underlying B cell decision-making and,
thereby, quantify the degree of inheritance versus intrinsic noise.

Significance

This study addresses why splenic B lymphocytes show differ-
ential cell proliferation and death decisions, and whether these
may be predictable. Biology provides examples of both sto-
chastic decision making and highly deterministic developmen-
tal programs. Prior studies of B lymphocytes suggested these
cells make stochastic decisions, but the key experiment—long-
term tracing of individual cell lineages—has not been done.
Overcoming the technical challenges, we found that B cell fate
decisions are largely nonstochastic. Using a mathematical model,
we found that they are predictable, as long as the state of the
molecular network in founder cells is known. That allowed us to
identify the molecular determinants of proliferative fate deci-
sions, which potentially constitute novel drug targets and
biomarkers for B cell-mediated diseases.
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Generally, progeny cells are thought to inherit proteomic net-
works that mediate decisions (23, 24), Indeed, direct observation
of protein abundances indicated that the mixing time of inher-
ited proteins exceeds two generations (more than 40 h) (25).
However, in studies of TRAIL-induced death, the concordance
of cell fates among siblings decayed rapidly (with a half-life of
1.5 h) (23). Blocking protein synthesis slowed this loss of con-
cordance, indicating a substantial role for intrinsic gene expres-
sion noise (26). To what degree gene expression noise or other
sources of intrinsic molecular variability affect phenotypic het-
erogeneity of B cell decision-making remains to be determined.
In the present study, we addressed the molecular underpin-

nings of the heterogeneity of cell fate decisions during B cell
expansion and examined the roles of heritability and intrinsic
noise. To obtain accurate, longitudinal, single-cell lineage in-
formation, we established an experimental workflow for long-
term live cell microscopy of primary B cells and a computational
workflow for image analysis and data processing. Resulting data
were then used to parameterize a multiscale mechanistic model
that accounts for B cell proliferation as a function of the in-
terplay of cell cycle and apoptosis molecular networks, each re-
ceiving inputs from a multidimeric NF-κB signaling model (24).
Using an iterative systems biology approach, we could there-
by quantify the degree of heritability and stochasticity in cell

fate decisions, identify the sources of phenotypic cell-to-cell
heterogeneity, and then computationally predict and experi-
mentally confirm cell-intrinsic determinants of proliferative
capacity.

Results
B Lymphocyte Proliferative Decisions Are Predictable. To study the
heterogeneity of underlying B cell fate choices, we circumvented
the complexity of differential BCR-antigen affinities by using the
BCR-independent stimulus, Toll-like receptor 9 ligand, CpG, in
dye dilution assays with Cell Trace Red (CTR) monitored at
several time points by flow cytometry (Fig. 1A). The diversity of
cellular responses within the population could be determined by
fitting the probability distributions of the established non-
heritable phenotypic-scale Cyton model to the data (9, 13), re-
vealing that cell division and cell death times of proliferating
cells vary between ∼4 and 12 h and 8 and 48 h, respectively (Fig.
1B). These distributed timings underlie the successive peaks of
individual generations while the maximum total cell count was
reached at about 72 h (Fig. 1C). We extended the Cyton model
to a single-cell probabilistic formulation (referred to as the phe-
notypic model), in which each simulation sampled from these dis-
tributions of division and death times (Fig. 1D), and showed that
it also recapitulated the total and generation-specific population
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Fig. 1. Phenotypic and mechanistic cell fate models of lymphocyte expansion predict similar cell population dynamics but distinct single-cell lineage trees.
(A) Histogram of cell generations revealed by a dye dilution timecourse (38, 48, 70, and 90 h) of CTR-labeled, CpG-stimulated B cells. Plots indicate undivided
founder cells (generation “0,” red line), total cell count (black histogram), and best fit of the probabilistic Cyton model using computational tool FlowMax (13)
(green). (B) Probability density plots of log normal distributions of division and death time for founder cells (Tdiv0/Tdie0) and subsequent generations (Tdiv1+/Tdie1+)
following FlowMax fitting to the data in A. (C) Line graphs of total cell count (black) and individual generations (indicated colors) over time following FlowMax fitting
from A, compared with measured cell counts (orange crosses). (D) Schematic of the single-cell phenotypic cell-fate model in which cell fate is determined by in-
dependently sampling division and death times at each generation from appropriate distributions, the shortest of which determines cell fate. (E) Stacked area plot of
total cell counts of the probabilistic single-cell model with the contribution of each generation marked with the same color as used in C. (F) Schematic of the
mechanistic single-cell model in which molecular signaling networks determine cell fate and are inherited during cell division (24). (G) Stacked area plot of total cell
counts of the mechanistic single-cell model with the contribution of each generation (as in E). (H) Lineage tree generated using the probabilistic single-cell model.
(I) Lineage tree generated using the mechanistic single-cell model.
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dynamics (Fig. 1E). An alternative, multiscale model (referred to
as the mechanistic model) of single-cell fate decision-making as a
function of the molecular networks that control cell cycle, cell-
survival/death, and the NF-κB signaling network (Fig. 1F and SI
Appendix, Figs. S1 and S2) (24) also adequately recapitulated the
total and generation-specific population dynamics (Fig. 1G).
Although the two models (phenotypic and mechanistic) account

for dye dilution flow cytometry data, they are based on funda-
mentally different assumptions. The phenotypic model assumes
that each cell at each generation makes a stochastic decision about
its division and death times. The mechanistic model assumes that
cellular decisions are predictably determined by a molecular
network, whose constituents are naturally inherited from their
predecessor; in this case, variable cell fates are then largely due to
preexisting differences in the molecular networks of founder cells.
Given these different assumptions, we sought to produce distin-
guishable predictions by plotting respective lineage trees. We
found the lineage trees were fundamentally distinct: The pheno-
typic model yields many similar looking lineage trees, with a range
of terminal generations within each single lineage (Fig. 1H); the
mechanistic model yields highly diverse lineage trees but with all
progeny within a lineage sharing the same terminal generation
(Fig. 1I). The fundamental difference in the lineage trees gener-
ated by each modeling approach is a reflection of the degree of
inheritance within each lineage. The phenotypic model (without
inheritance) assumes division and death mechanisms reset with
each division and generates lineage trees consistent with a mech-
anistic model in which signaling molecule concentrations are
resampled from a wide distribution with each division (SI Appen-
dix, Fig. S3A). Conversely, the recently reformulated phenotypic
model with heritable division destiny (22) generates lineage trees
consistent with the mechanistic model with perfect inheritance (SI
Appendix, Fig. S3B).
To quantify what degree of heritability best reflects B cell fate

choices during population expansion, we developed a long-term
time-lapse microscopy workflow coupled to accurate single-cell
tracking (Fig. 2A and Movie S1). The resulting lineage trees
showed a high degree of regularity as each founder cell gave rise
to progeny of generally equal terminal generations (Fig. 2 B and
C). However, founder cells differed dramatically in their pro-
liferative capacity or the terminal generation of the lineage tree.
Such intralineage regularity and interlineage heterogeneity was
also observed within specific B cell subtypes (Fig. 2 D–G and SI
Appendix, Fig. S4). In sum, mathematical models of B cell pro-
liferative decisions must contain heritable mechanisms to accu-
rately predict lineage data.

Heterogeneity Between Lineages Exceeds Intrinsic Noise. To quantify
the relative contribution of interlineage (preexisting) and intra-
lineage (intrinsic) heterogeneity, we used cell lineage data to pa-
rameterize these two sources of heterogeneity in the mechanistic
model (Fig. 3A) such that simulated cell lineages (Fig. 3B) and
generation-specific population dynamics (Fig. 3C) provide opti-
mal fits to the experimental data. We considered two metrics in
particular: interlineage differences in the terminal generation
(Fig. 3D) and intralineage differences in terminal generation (Fig.
3E). Whereas the phenotypic model that lacks inheritance (prob-
abilistic model) showed distributions that are quite distinct from
the experimental result, the mechanistic model enabled tuning of
preexisting heterogeneity and intrinsic noise to fit the experimental
data. We first determined how widely biochemical parameters
within molecular networks would need to be distributed between
founder cells to optimally account for the observed distributions in
terminal generations (SI Appendix, Fig. S5), and found it to cor-
respond to an average coefficient of variation (CV) of 32% (Fig.
3F). Then we determined the width of the distribution of pertur-
bations added to progeny molecular networks at each division that
optimally accounted for differences in terminal generation within
lineages and found it to correspond to a CV of 7.9% (Fig. 3G and
SI Appendix, Figs. S6 and S7). The resulting, parameterized heri-
table mechanistic model produces lineage trees and generational

distributions (Fig. 3 B and C) that closely match those observed by
live cell tracking (Fig. 2 B–G).
The model predicts an average 32% CV in founder cell me-

tabolites, however, due to molecular network architecture, not all
signaling molecules are predicted to have the same magnitude of
heterogeneity. We generated individual predictions for three key
molecules (Bcl-2, Myc, and CycD) that showed distinct CVs (SI
Appendix, Fig. S8). Using intracellular antibody staining followed
by flow cytometry, an experimental technique that introduces an
unknown amount of technical noise, we obtained higher CVs, but
found, remarkably, that the relative CV associated with Myc and
CyclD normalized to the lowest observed (associated with Bcl2)
was accurately predicted (SI Appendix, Fig. S8C).
As modeling the experimentally observed lineage trees sug-

gested that the symmetry of division must be tightly controlled (CV
7.9%), while signaling network states are widely distributed be-
tween founder cells (CV 32%), we asked whether this heteroge-
neity is also manifest in measurements of cell mass. Cell mass may
be measured precisely by adapting quantitative phase microscopy,
which measures the phase shift of light as it passes through and
interacts with the material inside of cells (27), to live cell-tracking
experiments. We quantified mass distributions in founder cells (at
5 h after stimulation) and in daughter cells following division (Fig.
4 A and B) and found that founder cell masses were widely dis-
tributed (CV ∼ 35%) but that cell division was generally highly
symmetric with daughter cell masses having a CV of 4.8% (Fig.
4C). While it is unclear how cell mass asymmetry relates to B cell
fate divergence during the proliferative expansion phase, our model
simulations employ a shuffling (at each division) of protein con-
centrations (SI Appendix, Fig. S6) or kinetic rate constants (SI
Appendix, Fig. S7) (that are mediated by enzymes not explicitly
represented in the model). The concordance between molecular
network distributions and mass distributions may suggest that they
are the result of the same sources of heterogeneity and tightly
controlled within lineages but distributed among founder cells.

Proliferative Fates Are Distinct Due to Nongenetic Heterogeneity of
Founder Cells. We wondered whether differences in the molecular
networks in founder cells that determine cell fate may be a conse-
quence of genetic BCR diversity. (Although the TLR9 stimulus
CpG is, of course, a BCR-independent stimulus, distinct BCRs may
produce distinct signaling histories and, hence, molecule networks.)
To address this question, we utilized BCR-transgenic mice in
which >90% of B cells carry the same BCR specific for the hen egg
lysosome (HEL) antigen (28). Both B cell subtypes showed differ-
ences in terminal generation between founder cell lineages that are
largely indistinguishable from nontransgenic controls, which is evi-
dent from dye dilution assay (SI Appendix, Fig. S9) and single-cell
lineage tracking (Fig. 5 A and B). This indicates that heterogeneity
in the molecular networks of founder cells has nongenetic origins.
Many potential sources of nongenetic differences in founder cells

are possible including, but not limited to, distinct histories of mi-
gration from the bone marrow, residence times in microenviron-
ments, and prior antigen exposures. One possible source of the
nongenetic differences in the state of molecular networks in mature
splenic B cells is simply the accumulation of intrinsic noise through
successive generations in each founder cell’s history (Fig. 5C). Based
on our estimates of intrinsic noise and measurements of division
asymmetry, we found that more than 30 generations would be re-
quired to distribute the molecular network sufficiently to explain the
distribution of terminal generations observed by lineage tracking
(Fig. 5D). This number is compatible with estimates of the number
of divisions separating hematopoietic stem cells and splenic B cells
(29–31). Thus, while distinct founder cell histories are more than
likely, they may not be a required driver of founder cell heterogeneity.

The Population Response Is Dominated by Founder Cells with Low
Propensity for Apoptosis. A consequence of the nonheritable phe-
notypic model, in which differences in terminal generation are
predominantly determined by intrinsic noise during proliferation,
is a prediction that many founder cells contribute similarly to
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population responses (Fig. 6A). In contrast, the mechanistic model,
in which cell fate differences are predominantly driven by heritable
differences in the molecular networks of founder cells, predicts
that a remarkably small proportion of founder cells contribute to
the expanded population. The lineages of these founder cells
survive for a disproportionate number of generations, resulting in a
large number of descendant cells that dominate the population
response (Fig. 6B). Given the largely deterministic nature of cell
fate decisions characterized by the mechanistic model, it ought to
be possible to predict which founder cells will contribute highly to
the population and undergo many divisions. Using multivariate
statistical regressions, we sought molecular network components

that are associated with founder cells that are dominant contrib-
utors to the overall population response. Although no single re-
action rate was a reliable predictor of proliferative capacity, in
principle, knowledge of the founder cell molecular network could
predict its proliferative capacity (R2 ∼ 0.6) (SI Appendix, Fig.
S10A). While each individual network component is a poor pre-
dictor, combinations such as low procaspase 8, high Bar, and high
XIAP are predictive of high proliferative capacity (Fig. 6C and SI
Appendix, Fig. S11). Indeed, classifying the state of founder cell
molecular networks, in terms of propensity for apoptosis and cell
cycle activity (Fig. 6 D–F), demonstrated that low apoptotic pro-
pensity was a strong indicator of founder cell terminal generation
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with nondividing cells. Cells which did not divide could be sepa-
rated from cells that divided three or more times by difference in
the state of the founder cell’s apoptosis regulatory network (Fig. 6F).

Key Molecular Regulators in Founder Cells Are Identifiable. To
characterize how nongenetic heterogeneity within the signaling
networks of founder cells affects their proliferative capacity, we
compared the distributions of terminal generations resulting
from simulations containing only intrinsic noise with those that
included distributed founder cell molecular network states within
the apoptosis and cell cycle networks (Fig. 7A). We found that
distributing the components of the apoptosis control network
resulted in a bimodal distribution of proliferative capacities, in-
cluding not only cells with a higher propensity to die curtailing
even a first division, but also founder cells of lineages with much
higher terminal generations. Additionally, distributing the com-
ponents of the cell cycle network could result in a further in-
crease, but also decrease in terminal generations (Fig. 7A and
consistent with Fig. 6A).

A sensitivity analysis found that many reaction rates within the
signaling network controlling cell fate could perturb the terminal
generation of stimulated lymphocytes; however, terminal gen-
eration was predicted to be most sensitive to the state of the
apoptosis control network in founder cells (Fig. 7B and SI Ap-
pendix, Fig. S11). The sensitivity predictions are consistent with B
cell proliferation control by cRel and IκBe seen in previous ex-
periments (24, 32). Perturbations targeting the cell-cycle network
(such as Myc overexpression) are predicted to increase pro-
liferation (SI Appendix, Fig. S12A), and the computational model
recapitulated increases in total cell number and mean division
number reported recently (SI Appendix, Fig. S12B) (22). The
prediction that terminal generation was most sensitive to small
perturbations within the apoptosis control network such as those
controlling the level and activity of caspases (SI Appendix, Fig.
S9), rather than cell growth and cell cycle control networks, was
surprising as inhibition of the mitochondrial amplification loop
was not predicted by the model to substantially alter pro-
liferation, a result also confirmed in a recent experimental study
of Bcl-2 overexpression (22, 24). However, the sensitivity analysis
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tracked cells and the model (optimum CV 7.9%).
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predicted that inhibition of the central apoptotic caspase cascade
would significantly enhance proliferation (SI Appendix, Figs.
S11 and S12D).
To generate a testable quantitative prediction of the degree of

increased proliferation resulting from caspase inhibition, we sim-
ulated the effect of a 25% and 50% reduction in caspase activity,
predicting a dose-dependent increase in the fraction of pro-
liferating cells at late time points (Fig. 7C). To test this prediction
experimentally, naïve B cells were treated with pan-caspase in-
hibitor Z-VAD (33, 34) before CpG stimulation; indeed, we found
increased B cell proliferation at late time points in a dose-dependent
manner (Fig. 7D), based on an increased fraction of cells positive for
the proliferation marker Ki67 (SI Appendix, Fig. S13). Examining
why survival signals would enhance proliferative capacity in more
detail, we found that while growing B cells are protected from cell
death in early divisions, as previously documented (24), during later
divisions, cell death can occur even in growing cells, resulting in
censoring of subsequent generations (SI Appendix, Fig. S14). Thus,
cell death regulation emerges as a critical determinant of proliferative
capacity of founder cells during the B cell immune response.

Discussion
In this study, we showed that the diversity of B cell proliferative
fate decision-making is largely the result of nongenetic differences
between founder cell molecular network states. Indeed, utilizing a
mechanistic mathematical model of the molecular interaction
networks that determine cell proliferation decisions, we were able
to identify predictive markers of a high proliferative capacity and
potential drug targets that control lymphocyte proliferation with
high sensitivity.
The nonheritable phenotypic models of lymphocyte proliferation

have demonstrated great utility in quantifying cell-biological pa-
rameters (such as division and death time) from snapshot flow
cytometry data. These models were based on the assumption that

cells at each generation engage in stochastic decision-making
process (7, 8, 10, 12, 24, 35). However, recent studies revealed
concordance between recently divided siblings (14) and a recent
revision of the phenotypic model proposed to assign division des-
tiny times to founder cells that is then inherited to descendants
through the lineage. The present study extends these findings by
demonstrating that heritability of phenotypic cell fate from one
generation to the next can be understood as a function of the
heritability of the underlying molecular networks. Leveraging the
availability of sufficient high-quality lineage data (complete lineage
trees with no missing branches), we could quantitatively distinguish
between the heritability vs. seeming stochasticity of cell fate deci-
sions through the lineage. Using the molecular mechanistic model
of B cell fate decisions, we could then the quantify the contribu-
tions of heterogeneity in the molecular networks of the starting
founder cell population (“extrinsic noise”) vs. randomization of
abundances of molecular network components at each division
(“Intrinsic noise”) and how each noise source accounts for the
heterogeneity of B cell fates in the population. We found that the
former with a CV of 32% substantially exceeded the latter with a
CV of 7.9%.
Our findings are surprising in the context of previous studies

quantifying the heritability of fate decisions by HeLa cells treated
with the apoptosis-inducing TNF receptor superfamily ligand
TRAIL (23). These studies also found cell fate concordance of
recently divided siblings but reported a decay of this concordance
with a half-life of 1.5 h (a longer half-life when gene expression
was blocked) (23). Including such a substantial degree of intrinsic
noise into our B cell model would produce lineage trees in-
distinguishable from the nonheritable models (Fig. 1H and SI Ap-
pendix, Fig. S3A), but not account for the experimentally observed
lineages. Our study therefore revealed an unexpected degree of
heritability, suggesting that intrinsic noise is tightly controlled during
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type (WT) FO B cell and HEL-Tg FO B cell. (C) Schematic depicting the origins
of the splenic founder B lymphocyte, and the potential accumulation of
intrinsic noise at each division. Hematopoietic stem cells (HSC) differentiate
into multipotent progenitor cells (MPP), MPPs differentiate into common
lymphoid progenitors (CLP), CLPs differentiate into progenitor B cells (Pro),
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transitional 1 B cells (T1), T1 cells differentiate into transitional 2 B cells (T2),
and T2 cells differentiate into follicular B cell (F). HSC to Pre cell differenti-
ation occurs in bone marrow, and T1 to F differentiation occurs in spleen.
(D) Violin plot of the distribution of terminal generations reached by 125
simulated founder cells (gray) with the indicated number of partitioning
steps in which the molecular network is distributed (CV 7.2%) before stimuli
and experimentally (Exp) tracked lineage information (red).
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lymphocyte proliferation. This may indicate that gene expression
noise itself is limited or that topological characteristics of the net-
work minimize the effect of that noise as, for example, observed for
theMyD88 pathway in macrophages (36) or the chemotaxis network
of Escherichia coli (37). This is supported by the high degree of
symmetry in the division mass (CV ∼ 5%). Given that even this
small asymmetry of division nevertheless may contribute to ran-
domization of cell fate decisions, we surmise that the gene expres-
sion noise in proliferating B lymphocytes is remarkably small.
What may be the reasons for the discrepancies between HeLa

cell apoptosis and B cell proliferation? Aside from invoking cell
type differences, we wonder whether gene expression noise may
be a function of whether cells are in a basal steady state or in a
highly activated state in which protein production is maximized.
The distinction between basal vs. activated states may also per-
tain to the covariance of gene expression, a mechanism proposed
to limit phenotypic heterogeneity in T lymphocytes (38); it is
possible that gene expression variation relevant to HeLa cell
apoptosis control is largely independent, whereas there is a
greater degree of covariance in the expression of genes regu-
lating lymphocyte proliferation. We note that key regulators of
lymphocyte proliferation are targets of the same stimulus-induced
transcription factor, NF-κB.
As B cell expansion is largely determined by the highly hetero-

geneous proliferative capacity of mature B cells, we sought to
identify the underlying molecular determinants. We focused our
studies on the molecular networks that are engaged regardless of
the mitogenic stimulus, that is the IKK–NF-κB signaling network,
the cell cycle control network, and the apoptosis control network.
Among these, expression variation that determined apoptotic
susceptibility was found to be the most predictive of proliferative
capacity (Figs. 6 and 7). However, when including receptors and
their proximal signaling pathways, we may indeed find other
prominent molecular sources of phenotypic heterogeneity. In-
deed, in studies of T cell responses, interleukin-2 receptor α (IL-
2Rα) was identified as a significant predictor of cell fate, with its
expression varying across five orders of magnitude. In contrast,
TLR9 (the cognate receptor for CpG) shows an expression vari-

ability of one order of magnitude (38–41), insufficient to be a key
determinant in the stimulation conditions employed in our
studies. In the absence of one key determinant of phenotypic
heterogeneity, a regression analysis of high-throughput simula-
tions of the mechanistic model suggests that many individual
molecules contribute to the cell’s overall propensity for pro-
liferation and survival (Fig. 6 C–F). Measuring expression varia-
tion directly is challenging as the functionally relevant variability
in expression (e.g., 32% CV) is comparable to the technical var-
iability of single-cell assays such as flow-cytometry or fluorescence
microscopy using antibodies or fluorescent reporters (39).
The mechanisms by which the distinct molecular network states of

founder cells are acquired in vivo likely involve a combination of
intrinsically stochastic processes and distinct environmental expo-
sure histories for each cell. In the absence of any other sources of
variability, the small degree of intrinsic noise quantified here may be
sufficient to establish heterogeneous founder cell states only after
more than 30 generations (Fig. 5D). Low abundance components
such as mitochondria have recently been identified recently as a
source of variability in TRAIL-induced apoptosis (42). Heteroge-
neous chromatin states may also contribute to the gene expression
heterogeneity among founder cells. For example, in T lymphocytes,
chromatin states have been found to contribute to IL-4 expression
variability and maintain its state over ∼3 d (43). This relatively long
maintenance of chromatin state could represent a cellular memory
of distinct exposure histories that contributes to founder-cell het-
erogeneity but is unlikely to contribute to intralineage heterogeneity.
What may be the physiological consequences of nongenetic

differences in splenic founder B cell molecular networks? Our
work suggests the hypothesis that founder cell molecular hetero-
geneity contributes significantly to noise in lymphocyte clonal
selection based on antigen-antibody affinity; as such, it might in-
crease the diversity of the antibody repertoire. Antibody diversity
is critical for an effective immune response (44) and a key in-
dicator of immune health during aging (45). Our results therefore
suggest that nongenetic heterogeneity of a splenic B cell plays an
important physiological role in immune system function.
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Fig. 6. Identifying nongenetic determinants of founder B cell proliferative capacity. (A and B) Line plots of the number of descendent cells from 250 founder
cells over time (0–120 h). Descendant cell numbers generated using the single-cell probabilistic model (A) and descendant cell numbers generated using the
mechanistic model (B), colored to indicate the contribution of each founder cell’s descendant relative to the maximum. (C) Three-dimensional scatterplot of
the terminal generation (color code) reached by 20,000 founder cells with distributed kinetic parameters against the values for the first three nonredundant
predictors identified by LASSO [XIAP degradation rate (XIAP deg), procaspase 8 degradation rate (pro c8 deg), and bifunctional apoptosis regulator expression
rate (BAR exp)]. (D) Scatter plot of the terminal generation reached by single-cell simulations. The position of each cell is determined by the state of five key
signalingmolecules in each of the apoptosis and cell cycle networks of each founder cell. The color code for terminal generation is shown on the right. (E) Heatmap
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0.99, indicating the location of the highest density regions for each generation in the space created by the apoptosis and cell-cycle signaling network states.
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Following the proliferative expansion studied here, single lym-
phocytes can produce distinct cellular progeny, such as memory or
plasma B cells (10, 46, 47). These cell fate decisions are also not
primarily stochastic but are thought to reflect the uneven impact
of the germinal center microenvironment that fosters asymmetric
segregation of signaling molecules, transcription factors, and growth
factors into daughter cell (46). Thus, despite the great degree of
phenotypic heterogeneity, rigorous characterization of molecular
interaction networks along with cellular interactions renders both B
lymphocyte proliferation and differentiation decisions surprisingly
predictable. Indeed, the origins of the phenotypic heterogeneity,
that are thus identifiable, are of critical relevance to achieving the
ambitious goals of personalized precision medicine.

Methods
B Cell Isolation and Culture. Spleens were harvested from 10- to 12-wk-old
female C57BL/6 mice and Hemizygote BCR transgenic mice (The Jackson
Laboratory, stock no. 002595). Homogenized spleens were incubated with
anti-CD43 magnetic beads for 15 min at 4–8 °C, washed with MACS buffer
[Phosphate buffer saline, (pH 7.4), 0.5% BSA, and 2 mM EDTA (pH 8)] and
pass-through LS columns (Miltenyi Biotech). The purity of B cells was >95%
based on B220 staining.

Marginal zone (MZ) and Follicular (FO) B cells were isolated usingmagnetic
sorting followed by fluorescence activated cell sorting (FACS). Homogenized
spleens were incubated with MZ and FO B cell biotin-antibody mixture for
5 min at 4–8 °C followed by incubation with Streptavidin microbeads for
10 min at 4–8 °C, then washed with MACS buffer and passed through the LS
column. The eluted B cell population was enriched with MZ and FO B cells.
MZ and FO B cells were purified by FACS sorting. Briefly, the enriched B cell
population was stained with B220-eF450 (48-0452-82; eBioscience), CD23-PE
(101607; Biolegend), CD21-APC (123411; Biolegend), CD93-FITC (11-5892-81;
eBioscience), CD3e-FITC (11-0031-82; eBioscience), CD11b-FITC (11-0112-82;
eBioscience) and Ly-6C-Alexa 488 (53-5932-82; eBioscience). The stained cells
were gated on B220+CD93−CD3e−CD11b−Ly-6C− population to further ex-
clude immature B cell and any residual non-B cell population present in the
enriched B cell population. MZ and FO B cells were sorted based on the
expression CD21 and CD23 on B220+ cells (48, 49). The purity of MZ and FO B
cells were ∼98% (SI Appendix, Fig. S3).

B cells were grown in fresh media with 1% penicillin streptomycin solution
(Mediatech Inc.), 5 mM L-glutamine (Mediatech Inc.), 20 mM Hepes buffer
(Mediatech Inc.), 1 mM MEM nonessential amino acid (Sigma), 1 mM Sodium
pyruvate (Sigma), 10% FBS, and 55 μM 2-ME (Fisher Scientific).

CTR Labeling and Cell Biological Parameter Estimation. Purified B cells were
labeled with CTR (1 μM) and stimulated with 250 ng/mL CpG ODN 1668 (tlrl-
1668-1; Invivogen). The cells were grown in 48-well tissue-culture plates (2 ×
105 cells per mL) at 37 °C, 5% CO2 containing humidified chamber for a
period of 5 d. Stimulated B cells were collected at different time points and
stained with 7 aminoacitomycine D (7AAD) (420404; Biolegend) to exclude
dead cells. B cell proliferation and survival were measured in C6 Accuri Flow
Cytometry (BD Bioscience) and 100 μL of volume counted in each time point.
After manual gating on viable (7AAD-negative) B cells, FlowMax software
was used to construct CTR histograms (13). All assays were performed in
duplicate. The fluorescence of the undivided peak was manually identified
for each time point, and maximum-likelihood fcyton model parameter dis-
tributions were identified from 500 best fit solutions.

Quantitative Phase Microscopy Mass Measurement. Quantitative phase mi-
croscopy measures the phase shift of light as it passes through and interacts
with the material inside of cells. Purified naïve B cells were stimulated with
CpG (250 ng/mL) and grown in poly-L-lysine (PLL)-treated microgrid array
(MGA-250; Microsurface) in an environment-controlled microscope as de-
scribed previously. Images were acquired on an Axio Observer Z1 inverted
microscope (Carl Zeiss Microscopy GmbH) using a SID4-Bio quadriwave lat-
eral shearing interferometry (50) camera (Phasics) and an LD Plan Neofluor
objective at 40×, 0.6 N.A. Images were acquired with illumination from a
660-nm collimated LED (Thorlabs) every 3 min for 5 d.

Z-VAD Treatment and Proliferation of B Cells. Proliferation of B cells was
measured by Ki67 expression. Ki67 is expressed in the nucleus of cells that are
in active cell cycle, thus Ki67 was used as a proliferation marker. (51–53).
Purified naïve B cells were pretreated with Z-VAD(OMe)-FMK (10 and 20 μM)
(BML-P416-0001; Enzo Life Science International) for 90 min followed by
stimulation with CpG (250 ng/mL) for 4 d. Cells were harvested at 4 d,
washed twice with PBS, stained with fixable viability dye eF520 (65-0867-14;
eBioscience) for 30 min in 4 °C, washed with PBS, and permiblization and
staining with Ki67-PerCp-eFluoro 710 (46-5698-82; eBioscience) was per-
formed using Fix and Perm cell permeabilization kit (# GAS003; Thermo-
Fisher) as recommended. Briefly, cells were fixed with reagent A for 15 min
at room temperature (RT), washed with PBS, permeabilized, and stained
with reagent B for 20 min at RT followed by washing with PBS. Cell pro-
liferation was measured by AccuriC6, and data were analyzed with FlowJo. Cell
proliferation was determined by an increase of cell fluorescence index over the
naïve B cells. The data are representative of three biological replicates.

Time-Lapse Microscopy. Purified naïve B cells and MZ and FO B cells were
stimulated with CpG (250 ng/mL) and grown in a microgrid array (MGA-250;
Microsurface) in an environment-controlled microscope. Images were acquired

A

B

DC

Fig. 7. Identifying and targeting the molecular determinants of lymphocyte
proliferation. (A) Violin plots, mean (♦), and median (―) of the distributions of
terminal generations reached in a simulation of 250 founder cells with identical
starting molecular network states and subsequent asymmetric division (intrinsic
noise), with the addition of distributed starting state of the apoptosis network,
cell cycle network, NF-κB network, and combinations of these. Experimentally
(Exp) tracked terminal generation is shown in red. (B) Sensitivity analysis
heatmap of change in terminal generation reached by the mean founder cell
when parameters within each indicated network are scaled by the indicated
parameter modifiers across two orders of magnitude. (C) Bar graph of the
proliferation increase predicted by the mechanistic simulation at day 4 follow-
ing caspase inhibition. One hundred twenty-five founder cells were simulated
with caspase inhibition reactions scaled as indicated, and Cdh1 positivity was
used as a marker for proliferating cells. **P ≤ 0.01 by Student’s t test. (D) Bar
graph of experimentally measured proliferation increase following inhibition of
caspase activity using Z-VAD (10 and 20 μM) at day 4. Ki67 expressionwas used as a
marker for proliferating cells. Data shown is from simulation and biological tripli-
cates at the 4-d timepoint following CpG stimulation. **P ≤ 0.01 by Student’s t test.
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on an Axio Observer Z1 inverted microscope (Carl Zeiss Microscopy GmbH)
with a Pln Apo 20×, 0.8 N.A. objective to a Coolsnap HQ2 CCDcamera (Pho-
tometrics) using ZEN imaging software (Carl Zeiss Microscopy GmbH). Envi-
ronmental conditions were maintained at 37 °C, 8.5% CO2 with a heated
enclosure, and CO2 controller (Pecon). Brightfield images were taken every
3 min for 5 d. Microgrid arrays were coated with PLL before incubating cells
to reduce the movement of the cells during image acquisition to facilitate
lineage tracking.

Cell Tracking. Cell tracking was performed on phase-contrast images using
semiautomated software (24). A representative example of cell tracking and
lineage tree generation can be seen in Movie S1 (created in MATLAB).
Briefly, founder cells were annotated in the first image, and approximate
linear paths were manually drawn for each identified founder cell. While PLL
coating and low cell density enables many frames to be approximated to a
linear path at early time points, the temporal resolution of cell path anno-
tations necessarily increased in later time points. Founder cells were tracked
until a division or death event was manually identified and annotated. Death
events were recognized by morphological changes in cell morphology con-
sistent with apoptotic blebbing. Division events were manually annotated
such that each daughter cell stores the cell ID of its mother cell, enabling
complete lineage reconstruction. The cell tracking software was further de-
veloped to report terminal generation, Δ terminal generation, generation-
specific cell count, total cells within lineage, and generation-specific SD of
division times for each founder cell. To aid comparison of computational
models and live-cell microscopy, the experimental cell tracking software was
modified to take model-generated lineage information as input and perform
identical statistical analysis and lineage tree generation for both in vitro and
in silico experiments.

Measurement of Heterogeneity in Intracellular Protein Expression. Naïve ma-
ture B cells were isolated from the spleen as described above. Cells were
washed twice with PBS, stained with fixable viability dye eF660 (65-0864-14;
eBioscience) for 30 min in 4 °C, washed with PBS, and permeabilization and
staining (with primary antibody followed by secondary antibody) were
performed using Fix and Perm cell permeabilization kit (GAS003; Thermo
Fisher) as recommended. Cell permeabilization and staining protocol was
followed as described above with little modification in staining time. Cells
were stained 15 min with primary antibody and 15 min with secondary
antibody. Cell proliferation was measured by CytoFLEX flow cytometry
(Beckman Coulter), and data were analyzed with FlowJo. Protein abun-
dances were graphed by fluorescence histogram, and the CV was deter-
mined. CycD1 (sc-718; SantaCruz), Myc (ab32072; Abcam), and Bcl-2 (2870S;
Cell Signaling) were chosen as these are key regulators of cell cycle and
cell survival.

Mathematical Modeling.
Single-cell cyton model. A single-cell computational model of the Cyton as-
sumptions was created using MATLAB. Parameters describing the distribu-
tions of division and death times (Tdiv and Tdie, respectively) in first
generation and subsequent generation cells, along with proliferative fate
parameters (pF) from FlowMax were used as input parameters into themodel
to recapitulate CTR population distributions. Ten thousand founding cells
were simulated with identical parameter distributions. To simulate the ex-
perimental time course each initial cell sampled from both division and
death distributions created by the input parameters and the lowest of the
two sampled times determined the fate of the cell. To recapitulate the
proportion of cells progressing to the next generation (pF) as identified
using FlowMax, every cell sampled from a uniform distribution and de-
termined if the value was greater than the appropriate progression factor
for the cells generation; only if the sampled value was less than the pro-
gression factor was a division time sampled, otherwise the cell would die
with the sampled Tdie. Cells which achieved a division fate triggered the
introduction of two new cells that then independently sampled from the
distributions corresponding to division 1+ events.
Mechanistic mathematical model. Mechanistic computational modeling was
performed as described previously (24). Briefly, established ordinary differ-
ential equation models of the NF-κB signaling network (32), apoptotic
control network (54), and cell cycle control network (55, 56) were combined
into single-cell simulations (SI Appendix, Figs. S1 and S2). One hundred
twenty-five starting cells were used for all simulations except where in-
dicated, for example to generate data for identification of fate predictors in
which 20,000 starting cells were simulated to improve statistical power. All
parameters were maintained as published previously with the exception of
CVs as indicated in Fig. 3 and SI Appendix, Figs. S4–S6. Cleaved PARP (cParp)

and cadherin-1 (Cdh1) concentration thresholds triggered cell death and
division, respectively (for parameters, see Dataset S1). Division events trig-
gered the addition of two new daughter cells, which inherited reaction rate
parameters and metabolite concentrations from the mother cell. The timing of
the cell cycle in individual cellular agents is determined by cyclin expression
and resultant dynamics in the established mammalian cell-cycle module that,
in turn, controls the timepoint at which cdh1 crosses the previously defined
threshold (24, 55). Similarly, cell death timings are determined by the dynamics
within the established apoptosis module that determines death when cParp
exceeds the published threshold (24, 54). The computational modeling code is
available in SI Appendix.
Founder cell variation. To distribute the state of starting cells, all initial con-
ditions were sampled from lognormal distributions, and synthesis and deg-
radation rate constants were sampled from a normal distribution with mean
value from the established model and CV indicated. An initial simulation
phase was run to enable individual cells to obtain a steady state after which
IKK activity was transiently increased recapitulating TLR9 activation. The CV
for the distribution fromwhich founder cell parameters were sampled was fit
using particle swarm optimization (max velocity: 2%, maximum CV: 50,
minimum CV: 0, population size: 20) (SI Appendix, Fig. S4D) in which each
particle is a simulation with 125 founder cells distributed with a chosen CV
and scored by the Euclidian distance of each generation and total cell count
time courses to the experimentally measured data shown in Fig. 2A.
Intrinsic noise. Simulations of asymmetric distribution were performed by
sampling the concentration of metabolites inherited by daughter cells. A
division ratio was sampled with a mean of 1 and CV as indicated. The initial
condition of all metabolites in one daughter cell were scaled uniformly by
the sampled division ratio and inversely scaled in the other daughter cell.
The CV for the distribution from which daughter cell parameters were
sampled was fit using particle swarm optimization (maximum velocity: 1%,
maximum CV: 30, minimum CV: 0, population size: 20) (SI Appendix, Fig.
S5C) in which each particle is a simulation with 125 founder cells distrib-
uted with a chosen CV and scored by the Chi-Square statistic comparing the
distribution of intralineage Δ terminal generation between the simulated
results and the single-cell tracked data (Fig. 3E). Simultaneous particle
swarm optimization of both intrinsic and extrinsic noise was also per-
formed to account for potential confounding effects between intrinsic and
extrinsic noise; however, a similar optimal CV for both values was found (SI
Appendix, Fig. S5D). For simulations in which noise was added with division
events, parameters inherited by daughter cells were sampled from with
mean value inherited from the mother cell and CV as indicated (SI Ap-
pendix, Fig. S6). Estimates of intrinsic noise accumulation were generated
by repeated sampling of the distribution of all metabolite concentrations
before simulation.
Sensitivity analysis. Sensitivity analysis of terminal generation was performed
on a simulation without division-introduced variation. Scaling factors were
sampled at 10 points logarithmically chosen from 10-fold lower and higher
than the standard parameter value. A founder cell was simulated for each
scaled parameter value, leading to a simulation of 1,680 distinct founder
cells. The terminal generation reached by each founder cell was stored to
quantify the effect of perturbations in each parameter on terminal
generation.
Statistical analysis. To identify the best predictors of terminal generation, a
simulation with distributed founder cell parameters was performed with
20,000 founder cells. Parameter values, initial (steady-state) metabolite
concentrations (i.e., SI Appendix, Fig. S4A; x1,1, x2,1, x3,1), and terminal gen-
eration were stored for each founder cell. Least absolute shrinkage and
selection operator (LASSO) regression was performed using either founder
cell parameter values initial (steady-state) metabolite concentrations (i.e., SI
Appendix, Fig. S4A; x1,1, x2,1, x3,1) as predictors and maximum depth for each
founder cell as observations using MATLAB’s statistical toolbox (1∙10−6

relative convergence threshold for coordinate descent algorithm and 50-
fold cross-validation). One hundred regularization coefficients λ were fit-
ted, and cross-validation mean square error was plotted for each λ
penalty values.
Caspase inhibition simulation. One hundred twenty-five founder cells were
simulated with distributed molecular networks. All caspase inhibition reac-
tions were scaled as indicated, and Cdh1 positivity was used as a marker for
proliferating cells.
Founder cell module analysis. One hundred twenty-five single-cell simulations
were run with founder cells distributed as described previously but with
distributions of kinetic rates restricted to reactions only in apoptosis, cell-
cycle or NF-κB regulatory modules, or combinations thereof.

To visualize the space of founder-cell networks and the relation to ter-
minal generation, 5,000 single-cell simulations were run with distribution of
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both cell cycle and apoptosis networks in founder cells. Scores for “apoptotic
propensity” were generated by identifying five chemical species within the
apoptosis network that were significantly different between founder cells
that divided one or more times and those that died (phosphorylated caspase
8, Bar, phosphorylated caspase 3, phosphorylated caspase 6, and XIAP). The
concentration of these metabolites in founder cells was then normalized to
unit variance with negative regulators of terminal generation inverted to
match positive regulators, and the average of the five values was the
founder cell’s apoptotic propensity score. An identical approach was taken

for cell cycle activity scores of chemical species showing significant differ-
ences within the cell cycle network of founder cells that divided to late
terminal generation (3+) compared with those that did not (Cdh1, cyclin A,
IEP, Exopolyphosphatase, and Growth).
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